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Abstract

Acoustic imaging is a standard technique for mapping positions and powers of acoustic sources using microphone arrays,

which often causes an ill-posed inverse problem. In this article, we firstly improve the forward model of acoustic power

propagation by considering background noises at the sensor array, and the propagation uncertainty caused by wind

tunnel effect. We then propose a robust super-resolution approach via sparsity constraint for the acoustic imaging in

strong background noises. The sparsity parameter is adaptively derived from the sparse distribution of source powers.

The proposed approach can jointly reconstruct source powers and positions, as well as the background noise power.

Our approach is compared with the conventional beamforming, deconvolution and sparse regularization methods by

simulated, real data and hybrid data respectively. It is feasible to apply our approach for mapping complex monopole

sources using the 2D non-uniform microphone array in wind tunnel tests.
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1. Introduction

Acoustic imaging is used for the acoustic source local-

ization and power reconstruction using microphone sen-

sors. It can provide the insights into acoustic proper-

ties, acoustic comfort and machinery security in automo-

bile and aeronautic industries for wind tunnel tests [1–4].

In this article, we mainly focus on the signal processing

techniques applied in acoustic imaging, such as the con-

ventional beamforming, deconvolution and regularization

methods, as well as our proposed approach. The con-

ventional beamforming [5] is a direct, robust and rough

estimation for acoustic imaging, since its spatial resolu-

Iarticle partly based on that accepted at the IEEE International

Symposium on Signal Processing and Information Technology (IS-

SPIT2011) pp 286-289, Bilbao, Spain, Dec.14-17,2011.
∗Corresponding author: Ning.CHU@lss.supelec.fr. Tel. : +33

(0)1 69 85 1743. Fax : 00 33 (0)1 69 85 17 65
1The author’s PhD study is financed by China Scholarship Coun-
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tion is limited due to the high side-lobes. MUltiple SIgnal

Classification (MUSIC) [6] can greatly improve the con-

ventional beamforming resolution, but original MUSIC re-

quires the high signal-to-noise ration (SNR) or the exact

number of sources for effective subspace separation; and

MUSIC could not directly reconstruct source powers due

to its pseudo-power estimation. Based on the conventional

beamforming, the acoustic power propagation can be mod-

eled by a determined linear system of equations, which

could hardly be solved by direct inversions. Therefore,

the deconvolution methods, like the CLEAN [7], can iter-

atively extract strong sources from the fuzzy beamforming

power image. But CLEAN could leave out weak sources

interfered by strong background noises; and some impor-

tant parameters of CLEAN have to be empirically selected

for good performance. Recently, the Deconvolution Ap-

proach for Mapping of Acoustic Source (DAMAS) [8] has

been a breakthrough and effectively applied in wind tun-
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nel tests by the NASA. The DAMAS can iteratively solve

the power propagation model under the non-negative con-

straint on source powers. Since the DAMAS could be sen-

sitive to strong background noises, diagonal removal (DR)-

DAMAS [8] has been proposed for the noise suppression;

however, weak sources could be also removed off by the

DR-DAMAS. To overcome the deconvolution drawbacks,

the DAMAS with sparsity constraint (SC-DAMAS) [9]

greatly improves the spatial resolution, but SC-DAMAS

could be overweening to week source detection or sensitive

to strong noise interference due to the sparsity parameter

selection. The Covariance Matrix Fitting (CMF) method

[10] can effectively improve the robustness by jointly es-

timating the source power covariance matrix and back-

ground noises; however, the original CMF is not feasible

to use due to its huge dimensionality of variables in co-

variance matrix. For robust acoustic imaging, the Spectral

Estimation Method (SEM) and its extensions [11, 12] are

proposed to subtract the reference noise power from the

measured data for noise suppression; and this reference

noise power can be obtained beforehand by measuring the

observed signals without any object in wind tunnel. How-

ever, the estimated noise power might not be the same

as the object exists in the wind tunnel. Furthermore,

sparse regularization methods [13–15] have been widely

developed by using the ℓ1-norm. However, some of them

have to carefully select the regularization parameter, or

make necessary approximations on subspace separation.

To summarize, all the above state-of-the-art methods

have excellent performance on their own applications, but

there is no one-fits-all methods; and most of them suffer

one of the following drawbacks: coarse spatial resolution,

sensitivity to background noises and high computational

cost. In addition, most of them need to set some important

parameters for good performance.

In this article, our main contributions are: we firstly

improve the robust forward propagation model of acous-

tic power propagation by considering both the background

noises at the microphone sensors, and propagation uncer-

tainty caused by acoustic multi-propagation effects in the

wind tunnel; in order to reconstruct source powers with

super-resolution and wide dynamic range, we investigate

an adaptive sparsity constraint owing to the sparse distri-

bution of source powers; and we jointly estimate source

powers and positions, as well as the background noise

power; for the adaptive estimation of sparsity parameter

in strong background noises, we explore the incoherence

of measured signal covariance matrix. Furthermore, pro-

posed approach does not depend on parameter selection,

and its computational cost maintains feasible to use.

This article is organized as follows: Section 2 briefly in-

troduces the forward model of acoustic signal propagation.

Then the improved model of acoustic power propagation

is proposed in Section 3. Our proposed robust deconvo-

lution approach with sparsity constraint is investigated in

Section 4. Then we show the method performance com-

pared with state-of-the-art methods for complex monopole

source imaging through simulations in Section 5 and real

data in Section 6 respectively. In order to further prove

the effectiveness of proposed approach, Section 7 demon-

strates the performance comparisons on the hybrid data,

in which, some known synthetic sources are added to the

real data. Finally we conclude this article in Section 8.

2. Forward model of acoustic signal propagation

2.1. Assumptions

For acoustic imaging, a source is usually supposed to

be a uncorrelated monopole [7–9, 11, 16–18]. In this ar-

ticle, we use the monopole model in order to simplify the

physical process and explicitly build up the forward model

of acoustic propagation; to approach real cases, we use

the complex monopole source which composes of several

monopoles forming different spatial patterns. Moreover,

we suppose that background noises are Additive Gaus-

sian White Noise (AGWN), mutually independent and
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Figure 1: Illustration of acoustic propagation in the wind tunnel [19].

identically distributed (i.i.d), and independent to acous-

tic sources; sensors are omni-directional with unitary gain;

and complex reverberations are negligible in wind tunnel,

but the first order reflection at the ground and the refrac-

tion on the interface between the wind flow and common

air are taken into considerations.

2.2. Acoustic signal propagation

Figure 1 illustrates the acoustic signal propagation from

the source plane to the microphone sensor array in the

open wind tunnel, where sensors are installed outside the

wind flow and this causes the multi-propagation such as

the ground reflection and wind refraction. We consider M

sensors at the known positions on the 2D plane; and on

the source plane, we suppose K unknown original source

signals s∗ = [s∗1, · · · , s∗K ]T at unknown positions P∗ =

[p∗
1, · · · ,p∗

K ]T , where p∗
k denotes the 3D coordinates of

kth original source signal s∗k; and (·)T denotes transpose

operator. In order to model the source spatial distribu-

tion, we discrete the source plane into N identic grids at

known discrete positions P = [p1, · · · ,pN ]T , where we as-

sume that K original sources sparsely distribute on these

grids. And we suppose N>M>>K and P∗ ⊂ P. Then we

get N discrete source signals s at known positions P as

follows:

s = [0, · · · , s∗1, 0, · · · , s∗k, 0, · · · , s∗K , 0, · · · ]TN , (1)

where s∗k = sn for p∗
k = pn. Since K << N , thus s is a

sparse signal with K-sparsity in the spatial domain. There-

fore, to reconstruct original source signals s∗ is transferred

to reconstruct K-sparsity signals s. To be clear, we state

that s∗ = [s∗1, · · · , s∗K ]T denote the original source signals,

while s = [s1, · · · , sN ]T denotes the (discrete) source sig-

nals. In Eq.(1), source position p∗
k can be deprived from

the position pn, where the source power of sn is not trivial.

Based on the discrete source model in Eq.(1), we can

give the forward model of acoustic signal propagation.

For each sensor, received signals are divided into I blocks

with L samplings per block, noted as zi,m(t) with senor

m ∈ [1, · · · ,M ], samplings block i ∈ [1, · · · , I], sampling

time t ∈ [(i − 1)L + 1, · · · , i L] and total samplings T =

IL. Since acoustic signals usually have wide-band frequen-

cies, we apply the L-points Discrete Time Fourier Trans-

form (DTFT) in each sampling block so as to separate the

wide-band into L narrow frequency bins. Since the sig-

nal processing is made independently for each frequency

bin, we omit the frequency notation fl, l ∈ [1, · · · , L] at
simplicity in the followings. Then the measured signals

zi = [zi,1, · · · , zi,M ]T at the ith sampling block of all senors

can be modeled in the frequency domain as [16]:

zi = A(P) si + ei , (2)

where si = [si,1, · · · , si,N ]T denotes N source signals at

the ith sampling block; after DTFT, si still maintains the

sparsity in spatial domain; and ei = [ei,1, · · · , ei,M ]T de-

notes background noises at M sensors; and we suppose

ei ∼ N (0, σ2) to be the i.i.d AGWN distribution, where

σ2 = E[eHi ei] denotes the noise power, with E[·] denoting
expectation operator and (·)H conjugate transpose; and

M × N complex matrix A(P) = [a(p1), · · · ,a(pN )] de-

notes the signal propagation matrix, where a(pn) denotes

the steering vector of the source sn at the position pn on

the source plane. As shown in Fig.(1), we can improve

the classical definition [16] of a(pn) by modeling the first
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order reflection on the ground as follows:

an = ad(pn) + ρar(p−n) , (3)

where ρ denotes the reflection coefficient (0 ≤ ρ ≤ 1),

whose value mainly depends on ground conditions at a

given frequency. For the real data used in this article,

ρ = 0.8 is supposed to be fixed over the frequency band

[1600, 2600]Hz in the wind tunnel experiments, thanks

to the research contributions of Renault SAS [20]. And

ad(pn) =
[

1
rn,1

e−2πflτn,1 , · · · , 1
rn,M

e−2πflτn,M

]T

denotes

the direct steering vector, where rn,m denotes the propaga-

tion distance from source n to sensor m, and τn,m denotes

the propagation time within rn,m. And ar(p−n) denotes

the reflect steering vector, similarly defined as ad(pn), but

p−n denotes the symmetric position to the ground of posi-

tion pn. For rn,m and τn,m on the real data in Section 6, we

can apply mirror sources to analyze the ground reflection,

as well as use equivalent sources for the wind refraction

as discussed in authors’ article [19]. If not, there would

be position shifts due to the wind refraction and ghost

shadows due to the ground reflection.

In short, forward model of signal propagation in Eq.(2)

is an under-determined linear system of equations for dis-

crete source signals s and background noises e, since the

measured signals z are known and signal propagation ma-

trix A(P) can be calculated from Eq.(3) owing to the

known discrete positions P and known sensor positions.

3. Proposed forward model of power propagation

As we have stated in Introduction, acoustic imaging

mainly involves the localization and reconstruction of acous-

tic source powers. According to the forward model of sig-

nal propagation in Eq.(2), we can estimate source signals s

from measured signals z, then we can calculate the acous-

tic powers x = [x1, · · · , xN ]T of uncorrelated sources by

x = diag[E[ssH ]], where diag[·] denotes diagonal items.

However, we confront two difficulties in solving the Eq.(2):

1). equation (2) is under-determined due to the sensor

number less than discrete source number (M < N); 2).

source signals s are the complex signals, which contains

two kinds of unknown variables such as amplitudes and

phases. In order to overcome these obstacles and improve

the robustness to noises, we propose to directly build up

the forward model of acoustic power propagation by con-

sidering the background noises at the sensor array, as well

as the propagation uncertainty caused by the wind tunnel.

Based on the measured signals zi at sensor array in

Eq.(2), a rough estimation of source powers can be directly

obtained by the conventional Beamforming method [4] as:

yn =
E[ãHn zi]

2

‖ãn‖22
≈ ãHn R̂ãn

‖ãn‖22
, (4)

where yn denotes the beamforming power at the position

pn on the source plane; and yn can be an estimated source

power xn of discrete source signal sn; and ã denotes the

beamforming back-projection vector (spatial filter coeffi-

cients) at position pn, defined as

ãn =
an

||an||22
, (5)

where an is the signal propagation steering vector defined

in Eq.(3); || · ||2 denotes the vector ℓ2-norm; and R̂ denotes

the estimation of measured covariance matrix, defined as

R̂ =
1

I

I
∑

i=1

ziz
H
i , (6)

where zi denotes measured signals at the ith sampling

block in Eq.(2); and I is the total number of sampling

blocks. Owing to the assumptions on uncorrelated sources

and AGWN noises in Section 2.1, measured covariance ma-

trix R can be modeled as

R = E{zizHi } =
N
∑

n=1

xn ana
H
n + σ2IM , (7)

where xn ∈ x denotes the source power of sn at position

pn; and IM denotes the M×M identity matrix.

If the sampling number T is large enough and block

number I>>1, we then have R̂ ≈ R in Eq.(6). Therefore,

in Eq.(4) we replace R̂ by R of Eq.(7); then we obtain the
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improved forward model of power propagation as follows:

y = Cx+ σ21N + ξ , (8)

where random variables ξ = [ξ1, · · · , ξN ]T denote the prop-

agation uncertainty, which represents the remaining un-

known effects due to the wind reflection and refraction

happened at other locations rather than the ground or

wind tunnel boundary; owing to ξ, we can derive a de-

termined linear system of equations (8) from the approx-

imating equation (4); 1N = [1, · · · , 1]TN is the contant;

C = [cn,q] with n, q ∈ [1, · · · , N ] denote power propa-

gation matrix [8], where its item cn,q is defined [19] as:

cn,q =
‖ãHn aq‖2
‖ãn‖22

, (9)

where beamforming steering vector ãn and signal propa-

gation steering vector an are defined in Eq.(5) and Eq.(3)

respectively; and cn,q represents the power contribution of

the qth source to the nth position on the source plane. If

the microphone array is ideal enough, cn,q in Eq.(9) be-

comes the Dirac function as cn,q = δn,q with δn,q = 1 for

n = q; δn,q = 0 for n 6= q. Then we get a simple expression

as y = x + σ21N + ξ from Eq.(8), which reveals that the

beamforming powers y measured at the sensors consist of

source powers x, background noise power σ2 and the other

powers of propagation uncertainty.

Compared with the signal propagation model in Eq.(2),

the improved model of acoustic power propagation in Eq.(8)

can profit from the determined linear system of equations

for source powers x; and measured powers y can be ob-

tained by the conventional beamforming [4] in Eq.(4); power

propagation matrix C can be calculated from Eq.(9).

4. Proposed approach with sparsity constraint

Unfortunately, C is usually a singular matrix as dis-

cussed in Ref.[8] and can not be invertible. In order to

jointly estimate x and σ2 from Eq.(8), we need to bring

in useful constraints on these unknown variables. Since

source powers x are as K-sparsity as their source signals s

in Eq.(1) in the spatial domain, even though source num-

ber K is unknown, we can utilize the sparse power distribu-

tions, as well as the non-negative property to reconstruct

source powers x and background noise power σ2 for robust

acoustic imaging.

4.1. Classical sparse regularization methods

To solve the improve forward model of power propaga-

tion in Eq.(8), sparse regularization methods [9, 10, 13–15]

have been widely applied as follows:







x̂ = argmin(x)
{

||y −Cx||22 + α ||x||1
}

s.t. x � 0
, (10)

where the first ℓ2-norm || · ||2 represents the data fitting

part; the second ℓ1-norm || · ||1 enforces the sparsity of

source power distribution, and greatly improves the spa-

tial resolutions owing to the K-sparsity of x; and ℓ2+ℓ1

optimization has been well solved by the LASSO [21] and

atomic decomposition via basis pursuit [18, 22]; the third

term α denotes regularization parameter, which has to be

tuned carefully [22–24] for good performance.

4.2. Proposed sparse deconvolution approach

Compared with classical sparse regularization method

in Eq.(10), we firstly improve the robustness by minimiz-

ing the propagation uncertainty ξ, and jointly estimating

the source powers x and background noise power σ2. To

improve the spatial resolution in strong background noises,

we adaptively estimate the sparsity parameter on source

powers. Therefore our proposed robust super-resolution

approach with sparsity constraint (SC-RDAMAS) is ex-

pressed as follows:







(x̂, σ̂2) = argmin(x,σ2)

{

||y −Cx− σ21N ||22
}

s.t. x � 0, ‖x‖1 = β, σ2 ≥ 0
, (11)

where sparsity parameter β denotes the total power of un-

correlated source signals s; and β is defined as:

β =
K
∑

k=1

x∗
k = ‖x∗‖1 = ‖x‖1 = tr[X] , (12)
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where K is the total number of original source signals

s∗; and x∗ = diag
[

E[s∗s∗H ]
]

denotes the original source

powers; X = E[ssH ] denotes the source power covariance

matrix; tr [·] denotes trace operator. If β in Eq.(12) is

modeled too large, the estimated x̂ from Eq.(11) would

be more dispersed than expected; if β too small, some of

weak sources would be left out. Therefore the adaptive

estimation of sparsity parameter β is an essential issue in

the proposed approach.

4.2.1. Adaptive estimation of sparsity parameter

To adaptively estimate sparsity parameter β, we firstly

keep the total power unchanged during the signal propa-

gation in Eq.(2) as follows: we normalize each column of

the signal propagation matrix A as discussed in Ref.[9],

A′ = [ an

||an||
], n ∈ [1, · · · , N ], satisfying tr [A′HA′X] =

tr[X] for uncorrelated sources. In fact, A reflects the am-

plitude attenuation after the acoustic propagation, while

A′ relects the amplitude compensation. According to the

definition of source power covariance matrix R in Eq.(7),

we define R′ = A′XA′H + σ2tr [IM ]; then we can get

tr[X] = tr [R′] − Mσ2. Since R is also a Hermitian ma-

trix, it can be diagonalized as tr [R] = tr [UΛUH ] = tr [Λ],

where U is the unitary matrix, whose columns are eigen-

vectors of R; and Λ is the eigenvalue matrix of R. Fi-

nally, we can derive tr[X] = tr [Λ′]−Mσ2, where Λ′ is the

eigenvalue matrix of R′, satisfying tr[Λ′] ≥ tr[Λ]. From

the above and Eq.(12), we can obtain β estimation as:

β̂ = tr [Λ̂
′
]−Mσ̂2 , (13)

where Λ̂
′
is obtained from measured signal covariance ma-

trix R̂ in Eq.(6); and σ̂2 can be estimated as [10]:

σ̂2 =
1

M − K̂ + 1

M
∑

m=K̂+1

λ̂m , (14)

where λ̂m denotes the eigenvalue of R̂, satisfying λ̂1 ≥
· · · ≥ λ̂K ≥ λ̂K+1 = · · · = λ̂M = σ̂2; and M is the to-

tal sensor number; K̂ denotes the estimated source num-

ber. In particular case of tr[Λ′] = tr[Λ], if K̂ = 0, then

β̂ = tr[Λ]; if K̂ = M , then β̂ = 0. Our paper [25] gives

a fast and rough estimation on K as: let F(λm) with

m ∈ [1, · · · ,M ] denote the eigenvalue distribution func-

tion; since the big eigenvalues λm refer to original source

powers x∗
k with k ∈ [1, · · · ,K] and K << M , thus F(λm)

has a sparse distribution; and suppose F(λm) to be sec-

ond derivative; if its curvature κ(λK̂) ≈ 0 at the index

K̂ ∈ [1, · · · ,M ], we can get the source number estimation

asK ≈ K̂ owing to the sparse distribution of F(λm). How-

ever, since the under-estimation of source number could

eliminate the weak sources, it is better to initialize K as

a relative big value. Therefore, we can obtain the upper

bound of source number using compressed sensing [26] as:

K = ||x||0 ≤ 1

2
(1 +

1

µ
) , (15)

where µ = max(i 6=j) | < R′
i,R

′
j > | with i, j ∈ [1, · · · ,M ]

denotes the incoherence of the measured signal covariance

matrix R′; and R′
i denotes the ith column. According

to Eq.(7) and independence assumption between sources

and noises in Section 2.1 , µ can reflect the incoherence of

source power covariance matrix X.

4.2.2. Proposed adaptive estimation procedure

In Eq.(11), our proposed approach is a convex quadratic

minimization under linear matrix constraints, which can

be solved by interior point algorithms using MATLAB

toolbox SeMuDi [27]. In order to improve the robust-

ness to background noises σ2 and sparsity parameter β,

we propose an adaptive estimating algorithm as depicted

in Algorithm 1: Let define the cost function J (x, σ2) =

||y −Cx − σ21N ||22; we firstly initialize source number K

by using the matrix incoherence µ of Eq.(15); then σ̂2 and

β̂ are consequently obtained from Eq.(14) and (13); and

then we simultaneously estimate source powers x and σ2

by using the interior point algorithm [27]; finally we up-

date K̂(i+1) = K̂(i) − 1 for a new estimation.
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Algorithm 1 Proposed adaptive estimation procedure

1. Input:

Signal propagation matrix A in Eq.(2);

measured signal covariance matrix R̂ in Eq.(6);

measured beamforming powers y in Eq.(4);

power propagation matrix C in Eq.(9);

2. Initialization:

Iteration number i=1;

source number K̂(1) = 1
2 (1 +

1
µ
) in Eq.(15);

variables x̂(1)=0; σ̂2
(1)

=0;

criterion J (x̂(1), σ̂2
(1)

)=0, J (x̂(2), σ̂2
(2)

)=1;

3. Iterations:

While |J (x̂(i+1), σ̂2
(i+1)

)− J (x̂(i), σ̂2
(i)
)| is not

small enough; Else: Steps 4;

3.1 Update: σ̂2
(i)

by Eq.(14), β̂(i) by Eq.(13);

3.2 Optimize:

Solve Eq.(11) by interior point algorithm [27]:

(x̂(i+1), σ̂2
(i+1)

) = argmin(x,σ2)

{

J (x̂(i), σ̂2
(i)
)

}

s.t. ||x||1 ≤ β̂(i), x̂(i+1) ≥ 0, σ̂2
(i+1) ≥ 0;

3.3 Iterate: K̂(i+1) = K̂(i) − 1, i=i+1;

4. Output: x̂, σ̂2, K̂, β̂, then Stop.

4.3. Power estimation of wide-band acoustic signals

In wind tunnel tests, acoustic sources are usually gener-

ated by wind frictions against the car surface. Different car

parts produce different characteristic frequencies. There-

fore, acoustic signals have the wide frequency band. In

Section 2, we have taken DTFT transformation and sep-

arated the wide-band into L independent frequency bins,

then we have engaged incoherent signal processing at one

single frequency in each frequency bin. Using the proposed

SC-RDAMAS approach in Eq.(11), we can obtain x̂(fl) as

the estimation of source power x(fl) at lth frequency bin.

Finally, total power xwb over the wide-band [fmin, fmax]

can be estimated by averaging the summation of estimated

result in each frequency bin as: x̂wb =
1
L

∑fmax

fl=fmin
x̂(fl).

5. Simulations on uncorrelated source imaging

This section shows the typical simulations on source lo-

calization and power reconstruction of monopole sources.

The proposed SC-RDAMAS approach is compared with 5

classical methods in the poor SNR cases. Reconstruction

results are presented via images which can directly show

the estimated source powers (dB) and positions. Then we

use 3 criteria to quantitatively evaluate estimation perfor-

mance. One is the averaged estimation error of original

source powers, defined as ∆x∗ = 1
K

∑K
k=1 |x̂∗

k −x∗
k|, where

original source powers x∗ = [x∗
1, · · · , x∗

K ]T are defined as

x∗ = diag
[

E{s∗s∗H}
]

; the other is the reconstruction er-

ror of source power image, defined as δ2 =
‖x̂−x‖2

2

‖x‖2

2

; com-

pared with ∆x∗, the value of δi not only depends on the

estimated positions and powers, but also on the estimation

of background noise power; the last one is the averaged

position error, defined as ∆p∗ =

√∑
K
k=1

(p∗

k
−p̂

∗

k
)√∑

K
k=1

p
∗

k

, where p̂∗
k

denotes the estimated positions of kth original source.

In Fig.1, simulation configurations are almost the same

as the wind tunnel experiments carried out by Renault

SAS [28]. For example, D = 4.50m is the distance be-

tween the sensor plane and source plane. There are M= 64

non-uniform sensors locating on the vertical plane. This

Non-Uniform sensor Array (NUA) has a longer horizontal

aperture (4m) than the vertical (2m) [28]. And it has the

d = 3m averaged aperture. The advantage of NUA ar-

ray is that it can yield almost the same performance but

less computation burden than the uniform array with the

same sensors as discussed in Ref.[29]. And c0 ≈ 340m/s is

the acoustic speed in the common air. T = 10000 is the

total number of samplings, which is large enough to meet

the important condition for the bearforming in Eq.(4) and

improved forward model of power propagation in Eq.(8).

To focus on method comparisons, we do not consider the

ground reflection and wind refraction in simulations. But

we reconsider the multi-propagation effects in wind tunnel

experiments in Section 6.

For the simulated sources in Fig.2a, we have simulated
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4 monopoles and 5 complex monopole sources with differ-

ent patterns; and the total number of monopole sources is

K=23. Sources are spaced at least 20cm. Original source

powers x∗ are within [0.08,2] ([-10.3,3.7]dB) and 14dB dy-

namic range. There are 4 parts on Fig.2a: the center

image shows the source positions, patterns and powers; on

its right, the colormap shows the dynamic range of source

powers, in which, the dark-red colors represent strong pow-

ers, while light white colors represent the weak; on the

left and bottom, 2 profile figures reveal the positions of

4 monopoles and complex monopole source on the center.

To simulate the very noisy background, the noise power is

set σ2 = 0.86 (-0.7dB), thus the averaged SNR is 0dB.

In order to make a fair comparison with other classical

methods, some simulation parameters should be selected

carefully. Near-field condition is guaranteed by D < d2 c0
4f

for f > 680Hz. Since the spatial resolution of conventional

beamforming at f=2500Hz is ∆B ≈ Rc0
d f

= 31cm, the

discrete grid is set ∆p = 5cm, satisfying ∆p
∆B

< 0.2 for any

f < 3500Hz, which can avoid the spatial aliasing problem

as discussed in the DAMAS [8]. For the source plane of

100 × 150 cm2, the power imaging is of 21 × 31 pixels.

Since the discrete grid number N = 651 is much more

larger than original source number K = 23, the discrete

source signals s and their source powers x in Fig.2a are

both K-sparsity signals.

5.1. Method comparisons

Firstly we show the method comparisons at 2500Hz,

since this frequency is very sensitive to human hearing and

affect acoustic comfort. In Fig.2, the conventional beam-

forming gives a fuzzy image of source power distributions;

the DAMAS with 5000 iterations (5000i), CLEAN and SC-

DAMAS well detect some of strong sources, but they do

not provide reliable estimation of weak sources in strong

background noises; the DR-DAMAS effectively removes

the noise interference, but some of weak sources are also

removed off; the CMF achieves better estimation on the

Table 1: Power estimations of 4 monopole sources by average power

estimation error ∆x∗, relative errors of power image reconstruction

δ2 and estimated noise power σ̂2 at 2500Hz, SNR=0dB, dynamic

range 14dB; ’-’ means unavailable.

Source power 0.08 0.18 0.98 0.50 ∆x∗ δ2 σ̂2

Beamforming 1.57 11.28 3.51 2.02 69.64 121.9 -

DAMAS - - - 0.44 3.14 1.33 -

CLEAN - 0.25 0.44 0.28 0.87 0.67 -

SC-DAMAS - - - - 1.03 0.58 -

DR-DAMAS - - 0.77 0.23 0.30 0.08 -

CMF 0.09 - 0.80 0.40 0.31 0.10 0.89

Proposed 0.09 0.10 1.05 0.43 0.06 0.06 0.85

noise power and distinguishes most of sources; however, it

fails to reconstruct some patterns of weak sources.

Table 2: Position estimations of 4 monopole sources by averaged

position errors ∆p∗ at 2500Hz, SNR=0dB; ’-’ means unavailable.

Source position (-0.9,1) (-0.6,0.75) (-0.3,1) (-0.6,1.3) ∆p∗

Beamforming - - - - 1

DAMAS - (-0.6,0.85) (-0.3,1) (-0.6,1.25) 0.28

CLEAN (-0.95,1) (-0.6,0.75) (-0.3,1) (-0.6,1.3) 0.01

SC-DAMAS - - - (-0.6,1.2) 0.63

DR-DAMAS - - (-0.3,1) (-0.6,1.3) 0.43

CMF - (-0.6,0.9) (-0.3,1) (-0.6,1.3) 0.29

Proposed (-0.9,1) (-0.6,0.75) (-0.3,1) (-0.6,1.3) 0

Table 3: Power estimations of the complex monopole source on

the center of image by power estimation error ∆x∗ at 2500Hz,

SNR=0dB; ’-’ means unavailable.

Source power 2.00 2.00 2.00 2.00 2.00 2.00 ∆x∗

Beamforming 2.64 9.60 9.70 9.64 11.34 9.77 6.78

DAMAS 4.50 1.25 0.48 2.54 0.49 1.88 1.15

CLEAN 2.29 0.37 1.69 - 0.27 0.34 1.27

SC-DAMAS 1.68 2.49 1.16 0.10 2.23 0.65 0.75

CMF 1.36 2.86 2.07 2.09 1.92 1.05 0.45

DR-DAMAS 2.15 2.05 1.82 1.83 2.50 1.45 0.27

Proposed 1.83 2.00 2.05 1.72 2.16 1.95 0.12

In Fig.2h, proposed SC-RDAMAS approach not only

detects each pattern of complex monopole sources, but

also well reconstructs source powers and positions in poor

SNR situation. According to the 3 quantitative criteria
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Figure 2: Simulation on monopole sources with 14dB power dynamic range at 2500Hz, σ2 = 0.86, SNR=0dB and 15dB display: (a) Monopole

sources (b) Beamforming (c) DAMAS with 5000 iterations (5000i) (d) CLEAN (e) SC-DAMAS (f) DR-DAMAS (5000i) (g) CMF and (h)

Proposed SC-RDAMAS
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∆x∗, ∆p∗ and δ2 in the Table 1, 2 and 3, the proposed

approach works much better than the others. Compared

with the low spatial resolutions of conventional beamform-

ing (∆B = 31cm at 2500Hz), proposed approach makes

good use of sparse distribution of source powers and it

achieves the resolution as high as 5cm in both horizon-

tal and vertical directions. Since the horizontal aperture

of NUA array is larger than the vertical, all the results

of classical methods obtain better horizontal resolution.

Luckily, our proposed approach achieves the super resolu-

tion in vertical direction. Compared with the sensitiveness

of deconvolution methods, proposed approach greatly im-

proves the robustness by jointly estimating the background

noise as well as the source powers. Compared with sparse

regularization methods, we adaptively estimate the spar-

sity parameter on the total source power, so that proposed

approach does not depends on parameter selection and fits

well for noisy situations. Remark that CLEAN, CMF and

SC-DAMAS depend on the parameter selection for better

performance. To make a fair comparison, we realize the

CMF, SC-DAMAS and proposed SC-RDAMAS based on

Matlab toolbox SeMuDi [27].

In Fig.3, we show the relative error of power image

reconstruction δ2 of mentioned methods within SNR [-6,

18]dB at 2500Hz. Proposed approach is more robust to

background noises than other classical methods.

In Fig.4, we show reconstruction errors δ2 versus dif-

ferent frequency bins within [1600, 2600]Hz which affects

the acoustic comfort of human being. The SNR is set 3dB.

At high frequencies, proposed approach provides the most

significant improvements. At low frequencies, proposed

approach still maintains small reconstruction errors.

In Fig.5, we compare the sparsity parameter influence

caused by source number estimation in the SC-DAMAS

and proposed SC-RDAMAS at SNR=0dB and 2500Hz.

Since the complex monopole source is supposed to con-

sist of several uncorrelated monopoles in Section 2.1, it

is reasonable to take source number as K ∈ [9, 23] in
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Figure 3: Performance comparison for relative errors of power image

reconstruction δ2 versus SNR [-6,18]dB on simulations at 2500Hz.
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Figure 4: Performance comparison for relative errors of power image

reconstruction δ2 versus [1600, 2600]Hz on simulations at SNR=3dB.

Fig.(2)a. When source number K̂ > 23 is over-estimated,

proposed SC-RDAMAS still keeps a stable and small errors

δ2. When under-estimated K̂ < 9, both the two method

are very sensitive, but still our proposed approach out-

performs the SC-DAMAS. On this simulation, we obtain

µ ≈ 0.02 from Eq.(15), then K̂=25 is better initialized.

According to our adaptive estimation procedure in Algo-

rithm 1, proposed SC-RDAMAS can well initialize source

number K and adaptively estimate sparsity parameter β

so as to obtain acoustic imaging with super resolution in

strong background noises.
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number K̂ versus power image reconstruction error δ2 between the

SC-DAMAS and proposed SC-RDAMAS at 0dB and 2500Hz.

Figure 6: Wind tunnel S2A [28] in France.

6. Wind tunnel experiments

Figure 6 shows the static vehicle, microphone sensor

array and the wind flow at the speed of 160km/h in the

wind tunnel S2A [28]. One of objects of this wind tunnel is

to detect acoustic powers and positions on the car surface.

This wind tunnel can simulate a traveling car on the high-

way and measure its acoustic comfort to the passengers-by.

6.1. Experiment configurations

We suppose that all acoustic sources locate on the same

plane, since the curvature of the car side is relatively small

compared with the distance D=4.5m between the car and

array plane. The surface of car side is of 150× 500 cm2,

and we discrete this source plane into 31×101 pixels by

the discrete grid ∆p = 5cm; and we also focus on a small

region of the rearview mirror: 1×1.5 m2 (21×31 pixels).

In the real data, there are T=524288 samplings with the

sampling frequency fs=2.56×104 Hz. As discussed in Sec-

tion 2, we separate these samplings into I=204 blocks with

L=2560 samplings per block. The working frequency band

is chosen as [2400,2600]Hz, which is sensitive to acoustic

comfort of human being. The image results are shown by

normalized dB images with 10dB span. For the acous-

tic imaging on the vehicle surface in wind tunnel tests

in Fig.(6), acoustic sources often sparsely locate on the

rearview mirrors and around the wheels, while on the rest

parts there are few significant sources. Therefore discrete

source signals s and their powers x are both sparse signals.

But unfortunately, we do not know the exact source num-

ber or SNR beforehand. Therefore, it is necessary to in-

vestigate the adaptive estimation procedure in Algorithm

1 for robust acoustic imaging in wind tunnel tests.

6.2. Results of single frequency at 2500Hz

Figure.7 illustrates the estimated power images of men-

tioned methods at 2500Hz. In Fig.7a, the conventional

beamforming merely gives a fuzzy image of strong sources

around the front wheel, rearview mirror and back wheel.

In Fig.7b, DAMAS well deconvolves the beamforming im-

age, and discovers weak sources on the front light, front

cover and side window; however, many false targets are

detected on the air; in Fig.7c, DR-DAMAS eliminates

most of the artifacts, but it also removes off some of weak

sources. Figure.7d shows that the CLEAN overcome the

drawbacks of the DAMAS, but we have to carefully se-

clet the parameters for this good performance. In Fig.7e,

the SC-DAMAS has a better noise suppression than the

DAMAS and CLEAN owing to the sparsity parameter se-

lection, but SC-DAMAS does not provide a wide dynamic

range of source power estimations.
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Figure 7: Acoustic imaging of real data on the whole car side at 2500Hz: (a) Beamforming (b) DAMAS (5000i) (c) DR-DAMAS (5000i) (d)

CLEAN (e) SC-DAMAS and (f) Proposed SC-RDAMAS.

Table 4: Computational cost for treating whole car: image 30×100 pixels, at 2500Hz, based on CPU:3.33GHz, ’-’ means unavailable.

Methods Beamforming DAMAS (5000i) DR-DAMAS (5000i) CLEAN Proposed SC-DAMAS CMF

Time (s) 1 10 11 45 852 1254 Very Long

Finally in Fig.7f, proposed SC-RDAMAS not only man-

ages to distinguish the strong sources around the two wheels,

rearview mirror and side window, but also successfully

reconstructs the week ones on the front cover and light.

But proposed approach could have an overweening effect

caused by the sparsity constraint in compressed sensing

[26] as the SC-DAMAS method, especially when the source

number is under-estimated as shown in Fig.5. Moreover,

the proposed adaptive estimation procedure in Algorithm

1 inevitably increases more computational cost than the

deconvolution methods such as DAMAS and CLEAN; but

proposed approach still remains a moderate complexity

compared with sparse regularization methods such as the

SC-DAMAS as shown in Table 4. Due to the high dimen-

sion of variables in source power covariance matrix, we can

not realize the original CMF method in simulation.

Based on the acoustic imaging on the car side, we in-

vestigate a small part containing the rearview mirror. In

Fig.8a, conventional beamforming detects strong sources

on the corner of the front wheel and rearview mirror; the

DAMAS in Fig.8b improves the spatial resolutions, but it

causes some unexpected spots; in Fig.8c, the DR-DAMAS

eliminates most of false spots; in Fig.8e-f, the CMF, SC-

DAMAS and proposed approach achieve much better reso-

lutions and offer more detail of source power distributions

on the rearview mirror.

In brief, the experiment results well agree with the

simulations. The proposed SC-RDAMAS approach can

achieve as good performance as the mentioned classical

methods.

6.3. Results of wide-band data

Based on the imaging results at single frequency, we

show performance comparisons of wide-band data within

[2400, 2600]Hz which affects the acoustic comfort. In Fig.9,

each method obtains a better result than the correspon-

dent one at 2500Hz in Fig.7. This is because that source
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powers are enforced, and the flashing false targets are sup-

pressed over the wide-band average. The reconstruction

of DAMAS in Fig.9a is acceptable, but its spatial resolu-

tion is not high enough on the front wheel and rearview

mirror. Figure.9b shows that CLEAN greatly ameliorates

the resolution, but unexpected points under the car caused

by ground reflection should be further eliminated; the SC-

DAMAS in Fig.9c has the advantages of the CLEAN, but

it could not detect the weak sources around the back wheel

due to the sparsity parameter selection. Finally in Fig.9d,

the proposed approach provides the more accurate recon-

structions of source positions and powers for the strong

sources on the mirror and the front wheel, as well as weak

ones on the back wheel.

7. Hybrid data

Even though our proposed approach obtains good per-

formance on real data from wind tunnel experiments, it is

not sufficient for method validation. This is because the

exact acoustic sources on the vehicle caused by wind flow

are not known beforehand. To further verify the proprosed

method, we use the hybrid data which composes of known

synthetic sources and the real data. In order to avoid over-

lapping the original sources, the synthetic sources are set

on the region where there are no significant sources pow-

ers. In Fig.10a, 5 synthetic complex monopole sources with

different patterns are generated at 2500Hz, whose powers

are within [−4.5, 0]dB. We expect that our proposed ap-

proach can detect both the synthetic and original source

powers respectively from the hybrid data. If these known

synthetic sources are successfully recovered, the proposed

approach can be proved to effectively reconstruct the orig-

inal acoustic sources on the vehicle surface. Moreover, we

consider the ground reflection and wind refraction effects

in both synthetic and real data.

For the synthetic sources, figure.10f shows that pro-

posed approach successfully detects most of the source

powers and patterns; for the original sources in hybrid

data, the proposed approach better discovers both strong

and weak sources on two wheels and rearview mirrors, as

well as obtains a better noise suppression compared with

mentioned methods in Fig.10b-e.

8. Conclusions

In this article, we have proposed a robust super-resolution

approach with sparsity constraint for robust acoustic imag-

ing in strong background noises.

For the robustness to background noises, we have im-

proved the forward model of power propagation by con-

sidering the noises at the sensors, as well as the propa-

gation uncertainty caused by wind fraction and ground

reflection in wind tunnel. For the super spatial resolution,

we have adaptively estimated the sparsity parameter on

source powers in the proposed Algorithm 1.

For the approach validation, we have presented method

comparisons with classical methods. The simulations have

shown that proposed approach obtained the 5cm super res-

olution compared with the beamforming resolution 31cm

at 2500Hz; and it achieved the 15dB dynamic range of

power estimations, and successfully detected complex monopole

sources with different patterns. The Real data results

have demonstrated that proposed approach effectively re-

constructed strong sources on front wheels and rearview

mirrors, as well as the weak sources on back wheels. The

hybrid data experiments have furthermore proved the ef-

fectiveness for reconstructing the known synthetic sources

and original sources in the real data. We have also shown

the moderate computational cost of our approach for the

acoustic imaging in wind tunnel tests.

For future works, it is worthwhile to investigate a hi-

erarchical Bayesian inference with sparse priors for corre-

lated source imaging in the colored background noises.
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Figure 8: Acoustic imaging of rearview mirror at 2500Hz: (a) Beamforming (b) DAMAS (5000i) (c) DR-DAMAS (5000i) (d) CMF (e)

SC-DAMAS and (f) Proposed SC-RDAMAS
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Figure 9: Wide-band data over [2400,2600]Hz: (a) DAMAS (b) CLEAN (c) SC-DAMAS and (b) Proposed SC-RDAMAS
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Figure 10: Acoustic imaging of hybrid data on the whole car side at 2500Hz: (a) Synthetic sources (b) Beamforming (c) DAMAS (5000i) (d)

CLEAN (e) SC-DAMAS and (f) Proposed SC-RDAMAS.
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