
HAL Id: hal-00794230
https://hal.science/hal-00794230v1

Submitted on 25 Feb 2013 (v1), last revised 16 Apr 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust Bayesian super-resolution approach via sparsity
enforcing a priori for near-field aeroacoustic source

imaging
Ning Chu, Ali Mohammad-Djafari, José Picheral

To cite this version:
Ning Chu, Ali Mohammad-Djafari, José Picheral. Robust Bayesian super-resolution approach via
sparsity enforcing a priori for near-field aeroacoustic source imaging. Journal of Sound and Vibration,
2013. �hal-00794230v1�

https://hal.science/hal-00794230v1
https://hal.archives-ouvertes.fr


Robust Bayesian super-resolution approach via sparsity enforcing a priori for
near-field aeroacoustic source imaging I

Ning CHUa,1,∗, Ali MOHAMMAD-DJAFARIa, José PICHERALb
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Abstract

Near-field aeroacoustic imaging has been the focus of great attentions of researchers and engineers in aeroacoustic
source localization and power estimation for decades. Recently the deconvolution and regularization methods have
greatly improved spatial resolution of the beamforming methods. But neither are they robust to background noises in
the low Signal-to-Noise Ratio (SNR) situation, nor do they provide a wide dynamic range of power estimation.
In this paper, we first propose an improved forward model of aeroacoustic power propagation, in which, we consider
background noises and forward model uncertainty for the robustness. To solve the inverse problem, we then propose
a robust Bayesian super-resolution approach via sparsity enforcing a priori. The sparse prior of source powers can
be modeled by double exponential distribution, which can improve the spatial resolution and promote wide dynamic
range of source powers. Both the hyperparameters and source powers can be alternatively estimated by the Bayesian
inference approach based on the joint Maximum A Priori optimization. Finally our Bayesian approach is compared
with some of the state-of-the-art methods on simulated, real and hybrid data. The main advantages of our approach
are of robustness to noise, a wide dynamic range, super spatial resolution, and non-necessity for prior knowledge of
the source number or SNR. It is feasible to apply it for aeroacoustic imaging with the 2D non-uniform microphone
array in wind tunnel tests, especially for near-field monopole and extended source imaging.

Keywords: Source localization, Bayesian inference, parameter estimation, aeroacoustic imaging, sparsity,
super-resolution

1. Introduction

Aeroacoustic imaging is a standard technique for mapping the positions and powers of aeroacoustic sources with
microphone arrays, which provides the insight into the mechanisms and properties of aeroacoustic sources. Nowa-
days, near-field aeroacoustic imaging with non-uniform arrays (NUA) has been widely studied and applied in various
applications for stationary, moving and rotating objects: machinery manufacturing in wind tunnel tests, aeroacoustic
comfort in transportation, performance of stator and rotor in wind power etc. [1–4]. Based on the physical mechanism
and mathematical tool, classical imaging methods could be loosely classified as: Time-reversal aeroacoustic imaging
[5], Near-field Acoustic Holography (NAH) [6], beamforming [7] and inverse problems [8].

In this paper, we focus on the beamforming and inverse problem. The beamforming method [7] is direct, simple
and fast, but its spatial resolution and dynamic range are limited due to the high sidelobes and spatial aliasing effects,
especially at low frequency. Though MUltiple SIgnal Classification (MUSIC) [9] greatly improves the beamforming
resolution, it still requires high SNR and the exact number of sources, moreover MUSIC could not directly estimate
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Nomenclature µ gradient step
an ∈ CM steering vector for pn ρ reflecting coefficient
a∗k ∈ C

K steering vector for p∗k σ2 background noise variance
ãn ∈ CM beamforming vector for pn τn,m time for distance rn,m

A ∈ CM×N steering matrix for P τ−n,m time for distance r−n,m

A∗ ∈ CM×K steering matrix for P∗ θ hyperparameters to be estimated
cn,q impulse response of sensor array, cn,q ∈ C θ0 known parameters
C complex number domain θ1 hyperparameters in forward model
C ∈ RN×N power propagation matrix θ2 hyperparameters in prior models
d aperture of sensor array ξ ∈ RN forward model uncertainty
D distance from array to source plane ∆B beamforming spatial resolution
em noise at sensor m ∆p scanning step
e ∈ CM background noises at M sensors ∆x∗ averaged estimation error of x∗
fl frequency at lth bin 1N ∈ RN vector with N elements of 1
I number of sampling block
IM ∈ RM×M identity matrix with size M×M Operator
K number of modeled sources e natural exponential
L number of frequency bins exp{} natural exponential
M number of microphone sensors E{·} mathematical expectation
N number of scanning points diag [·] diagonal values of matrix
pn ∈ R3 coordinates of source n ln{·} natural log
P ∈ RN×3 coordinate matrix of N sources tr {·} trace of matrix
pm ∈ R3 coordinates of sensor m ∇(·) gradient
P ∈ RM×3 coordinate matrix of M sensors || · || spectral norm of square matrix
p∗k ∈ R

3 coordinates of modeled source k || · ||l l norm of a vector
P∗ ∈ RK×3 coordinate matrix of K modeled sources (·)T transpose
rn,m distance from source n to sensor m (·)H conjugate transpose
r−n,m distance from source -n to sensor m (·)(k) kth iteration
R real number domain ∗ convolution
R ∈ CM×M measured cross spectrum matrix
sn signal of source n Abbreviation
s ∈ CN signal vector of N sources AGWN Additive Gaussian White Noise
s∗k signal of modeled source k CMF Covariance Matrix Fitting method
s∗ ∈ CK signal vector of K modeled sources dB decibel
T total number of samplings DAMAS Deconvolution Approach for Mapping
v wind speed of Acoustic Source
xn power of source n DE Double Exponential
x∗k power of modeled source k DFT Discrete Fourier Transform
x ∈ RN power vector of N sources DR Diagonal Removal
x∗ ∈ RK power vector of K modeled sources GG Generalized Gaussian
X ∈ RN×N cross spectrum matrix of N sources i.i.d independent and identically distributed
y ∈ RN modeled power vector of N sources MAP Maximum A Posteriori
ỹ ∈ RN beamforming power vector of N sources PDF Probability Density Function
zi,m measurements in ith block at sensor m PSF Point Spread Function
zi ∈ CM measurements ith block at M sensors
α regularization parameter Subscripts
β shape parameter inDE(x) model m, n term associated with m and n
δi relative error of image reconstruction -n mirror source n
γ scale parameter inDE(x) model n′ equivalent source n
λ wavelength wb wide-band
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source powers. Many state-of-the-art methods have been explored based on beamforming and MUSIC, such as the
Orthogonal Beamforming [10] and Near-Field Focalization (NFF) [11].

The inverse problem consists of using the measurements of forward physical model to estimate parameters that
characterize this forward model [8]. The deconvolution method is one of the commonly used techniques. For aeroa-
coustic imaging, the CLEAN [12] and RELAX methods [13] can iteratively extract strong sources from a fuzzy
beamforming image. However, they tend to eliminate weak sources drowned in the background noises; besides, some
important parameters (attenuation factor, iteration number) have to be selected empirically. Recently, the Deconvo-
lution Approach for Mapping of Acoustic Source (DAMAS) method [14] has been a breakthrough and effectively
applied in wind tunnel tests by NASA. DAMAS gives an iterative solution of a determined system of linear equation
under non-negative constraint, but DAMAS is sensitive to background noises and suffers from slow convergence.
DAMAS2 and DAMAS3 [15] accelerate the DAMAS by confining the Point Spread Function (PSF) of sensor array
to be shift invariant, but this assumption inevitably affects spatial resolution. To overcome the multiple solutions of
deconvolution methods, one needs to add regularization constraints or prior information on the unknown variables.
For example, DAMAS with sparsity constraint (SC-DAMAS) [16] greatly improves the spatial resolution, but it is
still not robust to noise interference. The Covariance Matrix Fitting (CMF) method [17] can estimate the noise power
and improve the robustness of SC-DAMAS, but it is not feasible to use for high resolution imaging, since CMF has
huge dimensionality of variables in covariance matrix. The `1 norm is used for enforcing sparsity [18, 19]. And
paper [20] proposed to use the `1 norm with Iteratively Re-weighted Least Square methods for coherent/incoherent,
distributed/multipole sources imaging. However, some of `1 methods have to know source number beforehand, or
make necessary approximation. Recently, the authors have proposed the Robust DAMAS with Sparse Constraint
(SC-RDAMAS) [21], which achieves higher resolution and background noise estimation, but the parameter of spar-
sity constraint still depends on source number estimation. Recently, the Bayesian framework has been successfully
applied in acoustic imaging [22, 23] and overcome the drawbacks of deconvolution and regularization methods.

To summarize, all the above methods have excellent performances on some focused aspects, but there is no one-
fits-all methods, and most of them suffer one of the following drawbacks: poor spatial resolution, sensitivity to
background noises, narrow dynamic range and high computational cost. In addition, most of them need to set some
important parameters that must be tuned accurately for each case to obtain good performance.

In this paper, our main motivation is to investigate a robust approach with high spatial resolution and wide dynamic
range. In order to overcome most of the drawbacks of existing methods, we propose a robust Bayesian super-resolution
approach via sparsity enforcing a priori. In proposed approach, we reconstruct source powers and positions from
strong noise interference, and jointly estimate the hyperparameters of the forward and prior models.

The novelties in this paper are 1) to improve the robustness of forward model of aeroacoustic power propagation,
we take account for the background noises and forward model uncertainty (the unpredictable parts in aeroacoustic
propagation); 2) to obtain the robust and high resolution solutions for the improved forward model, proposed Bayesian
inference approach applies the Double Exponential (DE) prior model to enforce the sparsity of source power distribu-
tion, and promote large dynamic range of estimated powers; 3) instead of empirically tuning the parameters, proposed
approach automatically rebuilds source positions and powers, and alternatively estimates hyperparameters, such as
the variance of background noises, the power of forward model uncertainty and other parameters in prior model.

The advantages of the proposed Bayesian approach are super spatial resolution, robustness to background noises,
wide dynamic range of power estimations and the non-necessity of priors like source number or SNR. It can be applied
for the near-field monopole and extended aeroacoustic source imaging on the surface of the static object in wind tunnel
test based on the 2D NUA array.

This paper is organized as follows: Section 2 briefly introduces the forward model of near-field aeroacoustic signal
propagation. In Section 3, we present classical beamforming and deconvolution methods for aeroacoustic imaging.
Then we improve the forward model of aeroacoustic power propagation in Section 4. And our proposed Bayesian
inference approach is presented in Section 5. On simulations, Section 6 demonstrates performance comparisons of the
proposed approach with state-of-the-art methods for the monopole and extended source imaging. Results of the real
data in wind tunnel experiments are illustrated in Section 7. In order to further prove the effectiveness of proposed
Bayesian approach, Section 8 demonstrates its performances on hybrid data, in which some known synthetic sources
are added to the real data. Finally the conclusions and perspectives of the paper are summarized in Section 9.
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2. Forward model of aeroacoustic signal propagation in the near-field

(a) (b)

Figure 1: Illustration of open wind tunnel tests: (a) wind refraction effect and (b) ground reflection effect.

For aeroacoustic imaging, a source is supposed to be a monopole source, since this assumption is widely used by
many researchers [10, 12–14, 16]. An extended source can be modeled by several uncorrelated monopole sources, and
extended sources are used to represent the sources with different directivity patterns as discussed in [14, 24]. In this
paper, we suppose the monopole model in order to simplify the physical process and explicitly build up the forward
model of aeroacoustic signal propagation. In order to fit the physical source, we explore the extended source imaging
in simulated and hybrid data.

2.1. Assumptions

Before modeling, we make three necessary assumptions on sources, background noises and sensors:

• Aeroacoustic sources are spatially punctual and uncorrelated monopoles, and they locate on the same plane;

• Background noises are the Additive Gaussian White Noise (AGWN) with variance σ2, mutually independent
and identically distributed (i.i.d), and also independent to aeroacoustic sources;

• Microphone sensors are omnidirectional with unitary gain.

• Reverberations could be negligible in the anechoic wind tunnel.

2.2. Forward model of aeroacoustic signal propagation

Figure 1 illustrates near-field aeroacoustic imaging based on 2D NUA array in the open wind tunnel, where
sensor array locates outside the wind flow. We consider M sensors and K near-field source signals s∗ at positions
P∗ = [p∗1, · · · ,p

∗
K]T with p∗k being 3D coordinate of kth modeled source. For each microphone sensor, aeroacoustic

signals are sampled, then divided into I blocks with L samplings in each block; thus the total samplings are T = IL.
Since the discrete signals are usually wide-band, we apply the Discrete Fourier Transform (DFT) in time domain of
each block in order to obtain L narrow frequency bins. Therefore the measured signals zi( fl) = [zi,1( fl), · · · , zi,M( fl)]T

at frequency fl (l∈[1,L]) in the sampling block i (i ∈ [1, I]) can be modeled as [13]:

zi( fl) = A∗(P∗, fl) s∗i ( fl) + ei( fl) , (1)

where ei( fl) = [ei,1( fl), · · · , ei,M( fl)]T , ei( fl) ∈ CM denotes i.i.d AGWN noise; s∗i ( fl) = [s∗i,1( fl), · · · , s∗i,K( fl)]T , s∗i ( fl) ∈
CK denotes the DFT of the source signals, A∗(P∗, fl) = [a∗(p∗1, fl), · · · , a∗(p∗K , fl)], A∗(P∗, fl) ∈ CM×K denotes the
near-field steering matrix. Therefore we get the forward model of aeroacoustic signal propagation in Eq.(1).
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Unlike [13], we account for the ground reflection effect as shown in Fig.1b, since the object vehicle is near to the
ground, the ground reflection can not be negligible in wind tunnel experiments. Therefore steering vector a∗(p∗k, fl) is
composed by the direct propagation vector a∗d(p∗k, fl) and the ground reflection vector a∗r (p∗

−k, fl):

a∗(p∗k, fl) = a∗d(p∗k, fl) + ρ a∗r (p∗−k, fl) , (2)

where ρ denotes the reflecting coefficient (0 ≤ ρ ≤ 1), whose value mainly depends on ground conditions (material,
temperature, humidity, etc.). For the real data used in this paper, ρ = 0.8 is used in wind tunnel S2A experiments [25],
thanks to the contribution of researchers in Renault Lab.

In Eq.(2), the direct propagation vector a∗d(p∗k, fl) is defined as:

a∗d(p∗k, fl) =

{
1

rk,1
exp

{
− j2π flτk,1

}
, · · · ,

1
rk,m

exp
{
− j2π flτk,m

}
, · · · ,

1
rk,M

exp
{
− j2π flτk,M

}}T

, (3)

where τk,m is the propagation time from s∗k to sensor m, and rk,m is the propagation distance during τk,m.
Moreover, in Eq.(2), the ground reflection vector a∗r (p∗

−k, fl) is defined as:

a∗r (p∗−k, fl) =

{
1

r−k,1
exp

{
− j2π fl τ−k,1

}
, · · · ,

1
r−k,m

exp
{
− j2π fl τ−k,m

}
, · · · ,

1
r−k,M

exp
{
− j2π fl τ−k,M

}}T

, (4)

where p∗
−k denotes mirror positions of s∗k, thus p∗

−k and p∗k are symmetric to the ground.
Since the sensor array locates outside the wind flow, the medium for aeroacoustic propagation is not uniform, thus

the refraction will happen on the interface between the common air and wind flow. In Appendix C and Appendix D,
the actual rk,m, r−k,m and τk,m, τ−k,m are formulated in details: we apply the concepts of equivalent sources and mirror
sources to deal with the wind refraction and ground reflection respectively.

3. Classical inverse solutions

In Eq.(1), since source positions P∗ and source signals s∗ are both unknown, it is thus a nonlinear system of
equations. In order to transform Eq.(1) into a linear system, the classical inverse problem is based on the discretization
of the source plane, as illustrated in Fig.1a. The scanning plane is equally discretized into N scanning points at
positions P, satisfying N>M>K and P∗ ⊂ P. These scanning points are thus regarded as the potential source signals
s at positions P. in the following, the term source n means the source on the position pn. Therefore source positions
P are known after discretizing the source plane, and P∗ can be estimated as the positions, where the corresponding
source signals are non-trivial values. The smaller grid is discretized, the higher spatial resolution can be achieved.
Each scanning point sn could be regarded as a potential source signal, then in the space domain we have{

sn = s∗k for pn = p∗k
sn = 0 for pn , p∗k

. (5)

From Eq.(5), si ∈ CN in the i sampling block can be also expressed as

si =
[
0, · · · , s∗i1, 0, · · · , s

∗
ik, 0, · · · , s

∗
iK , 0, · · ·

]
N×1

. (6)

Since the number K of modeled source signals s∗ is limited, and the number N of source signals s is much larger
(K<N), so that s is a sparse signal with K sparsity in the space domain. Thus the estimation of s∗ is transferred to
estimate s. After DFT transformation in time domain, si( fl) still maintain the sparsity in space domain. The signal
processing will be made independently for each frequency bin, thus in the following, we omit the frequency notation
fl for simplicity.

In Eq.(1), replacing P∗ by P and s∗i by si, we get the forward model of signal propagation based on the discretized
source plane as follows:

zi = A(P) si + ei , (7)
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Remark that i = 1, · · · , I denotes the index of sampling blocks; and A(P) ∈ CM×N consists of N steering vectors a(pn),
which is similarly defined from Eq.(2) as follows:

a(pn) = ad(pn) + ρ ar(p−n) , (8)

where ad(pn) and ar(p−n) are similarly defined from Eq.(3) and Eq.(4).
Therefore the forward model of Eq.(7) is the linear system of equations for source signals s. And we remark that

source positions P∗ can be estimated as the ones where the corresponding s are non-trivial values. However, since the
source number N is usually larger than the sensor number M, equation (7) thus is underdetermined, and some extra
constraints should be involved in order to obtain stable and unique solutions of s.

3.1. Near-field beamforming
Aeroacoustic imaging is actually focused on the source power estimation and location, rather than the source

signal reconstruction. According to Eq.(7), the source powers can be obtained directly from the signals measured at
sensors. Conventional beamforming (spatial filtering) is a signal processing technique used in phased sensor arrays
for directional signal transmission or reception [7]. For the given location pn, the steering vector a(pn) of Eq.(8)
is shortened to an. Let ỹn denote the power estimation of the source signal sn, thus ỹn can be expressed by the
conventional beamforming method [4] as:

ỹn =
ãH

n R̂ãn

‖ãn‖
2
2

, (9)

where ãn = an

||an ||
2
2

denotes the near-field beamforming coefficient; and R̂ denotes the estimation of pressure cross

variance matrix R. In practice, R̂ is estimated by:

R̂ =
1
I

I∑
i=1

ẑiẑH
i , (10)

where ẑi denotes the measured signals at the sensor array in the ith sampling block, and I denotes the number of
samplings blocks.

3.2. Deconvolution method
According to the discretized forward model of signal propagation in Eq.(7) and the independence assumptions in

subsection 2.1, thus R is modeled by
R = E{zizH

i } = AXAH + σ2IM , (11)

where σ2 denotes the variance of the i.i.d AGWN noise; IM denotes the M × M identity matrix; and X denotes the
cross spectrum matrix of the source signals, which is defined as X = E{sisH

i }. The estimation of X has been directly
solved by CMF method proposed in reference [17], in which, X can be reconstructed from Eq.(11), even if X is a
non-diagonal matrix for the correlated sources. For uncorrelated source signals, X is a diagonal matrix. Let x denote
the diagonal items of X, defined as x = diag [X], thus x stands for the source powers, which is the final object for
aeroacoustic imaging. For uncorrelated sources, we then get:

R =

N∑
q=1

xq aqaH
q + σ2IM , (12)

where aq is the steering vector of A, defined in Eq.(8), and xq ∈ x denotes the power at position pq, with q = 1, · · · ,N.
Based on the near-field beamforming of Eq.(9), R̂ of Eq.(10) is known to converge to R of Eq.(11), as long as the

sampling block number I is large enough, namely R̂ ≈ R for I>>1. Then introducing Eq.(12) into Eq.(9) and, match
the following conditions: I>>1, X is diagonal and particularly σ2 = 0, we then obtain the Deconvolution Approach
for Mapping of Acoustic Source (DAMAS) method (see [14] for details):

ỹn =
ãH

n R̂ãn

‖ãn‖
2
2

=

N∑
q=1

cn,q xq , (13)
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where cn,q is known and it depends on the array geometry as follows:

cn,q =
‖ãH

n aq‖
2
2

‖ãn‖
2
2

. (14)

In Eq.(13), the beamforming estimated power ỹn for xn depends on all powers of vector x, except when the microphone
array aperture is large enough, the array response thus approximates the Dirac function. Namely, xn = ỹn under
condition of cn,q ≈ δn,q with δn,q = 1 for n = q; δn,q = 0 for n , q. In practice, however, this condition is not verified.
For vector x = [x1, · · · , xN]T , Eq.(13) can be written in vectorial form as:

ỹ ≈ Cx , (15)

where ỹ = [ỹ1, · · · , ỹN]T , ỹ ∈ RN , which are derived by the beamforming in Eq.(9); and the power propagation matrix
C ∈ RN×N has the coefficient cn,q of Eq.(14). Since both x and ỹ denote the powers, equation (15) could be regarded
as the forward model of aeroacoustic power propagation.

Comparing to underdetermined Eq.(7) for source signals s, equation (15) becomes a determined linear system of
equations for source power x. But N×N matrix C is often singular as discussed in [14, 26], therefore DAMAS method
has been proposed to iteratively solve Eq.(15) under non-negative constraint (x ≥ 0). And it has been proved to obtain
much higher spatial resolution than the beamforming method, however, DAMAS is not robust to the background
noises due to assuming σ2 = 0 in Eq.(12). The Diagonal Removal (DR) DAMAS [14] is thus proposed to set
diag [R] = 0 for noise suppression, but DR technique inevitably harms weak source powers which are lower than the
noise.

4. Proposed forward model of aeroacoustic power propagation

Recently, the Spectral Estimation Method (SEM) [24, 27] has been proposed to improve the robustness in aeroa-
coustic imaging,. SEM takes a known background noises as the reference, then subtracts the noise power from the
measured data. And this reference noise could be estimated by measuring the observed signals without any object in
wind tunnel. However, the estimated noise power might not be the same one when the object exists in the wind tunnel.

4.1. Improved forward model
In this paper, we intend to simultaneously estimate the source powers, background noise powers. Moreover, we

consider the forward model uncertainty which can be caused by the acoustic multipath propagations in wind tunnel
experiments, such as the reverberations, the reflections on the ground, as well as the refractions on the interface be-
tween wind and common air etc. Even though both reflections and refractions could be reduced to some extent, as
discussed in Appendix C and Appendix D, forward model uncertainty could hardly be exactly modeled and com-
pletely removed off. Therefore it is necessary to consider the forward model uncertainty to be a random variable
vector. Compared to forward model uncertainty, background noises naturally exist at the sensors due to antenna prop-
erties, and are supposed as i.i.d AGWN in Assumptions of Section 2.1. And we also assume the mutual independence
among the sources, background noises and forward model uncertainty. For the uncorrelated sources, we introduce
Eq.(12) into Eq.(9), then we obtain the improved forward model of aeroacoustic power propagation as follows:

y = Cx + ξ + σ21N , (16)

where y denotes the modeled output powers at sensor array; σ2 denotes the variance of the i.i.d. AGWN noises at
the sensor array; and ξ = [ξ1, · · · , ξN]T denotes the forward model uncertainty caused by multipath propagations; and
1N = [1, · · · , 1]T

N .

4.2. Classical regularization methods
For the inverse solution of Eq.(16), a classical approach can introduce the regularization part to improve the reso-

lution and robustness, then the criterion can be to minimize both the regularization part and forward model uncertainty
ξ : {

(x̂, σ̂2) = arg min(x,σ2)

{
||y − Cx − σ21N ||

2
2 + αF (x)

}
s.t. x � 0, σ2 � 0

. (17)
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where the first term || · ||2 represents the data fitting part, which aims to minimize the power of forward model uncer-
tainty. In practice, the modeled output powers y are known as the measured beamforming powers ỹ from Eq.(9).

The second term F (·) usually takes the following forms: 1) F (x) = ||x||0 refers to the number of non-zero elements
of x, which can give the sparsest solution; unfortunately, ||x||0 is impossible to find stable solutions for large dimension
x , even if the Iterative Hard Thresholding (IHT) method have been proposed recently [28]; 2) F (x) = ||x||1 involves
the `1 regularization, which can enforce sparse solution; and `1 regularization can be solved by the LASSO in [29] and
atomic decomposition by basis pursuit in [30]; 3) F (x) = ||x||l with 0 < l < 1 corresponds to the Iterative Reweighed
algorithm [31], which obtains sparser reconstruction of source powers than the `1 regularization does, but 0 < l < 1
involves the non-convex optimization problem; 4) F (x) = ||Dx||22 refers to the Tikhonov regularization [32], where
the operator D can suppress the noise interference, but || · ||22 can not offer as high resolution as the `1 regularization
does.

The third term α denotes regularization parameter. Tuning α is an important issue, and various empirical ap-
proaches [30, 32, 33] have been proposed. For example, optimal Tikhonov regularization parameter is selected via
generalized cross validation and L-curve method in paper [32]. However, we expect that α should be automatically
determined through the estimations in order to insure the global optimization.

5. Proposed Robust Bayesian super-resolution approach via sparsity enforcing a priori

In order to adaptively find a sparse and robust solution for improved forward model of power propagation in
Eq.(16), we propose a robust Bayesian super-resolution approach via sparsity enforcing a priori by jointly estimating
the source powers and positions, as well as background noises and hyperparameters of prior models.

Bayesian inference [34, 35] is a powerful methodology for solving ill-posed inverse problem. It aims to estimate
the unknown variables by applying the Bayes’ rule to update the probability law: an a posteriori probability law is
obtained based on both the likelihood and a priori, in which, the previous one can be derived from the known data
and forward model, and the latter one can be imposed to unknown variables. Comparing to determined methods, the
priors in statistics can bring in novel information on the natural characteristics of unknown variables, which can also
reduce the uncertainty of ill-posed inverse problem.

Starting with our improved forward model of Eq.(16), we can assign the likelihood p(y|x) based on the basic
information of forward model uncertainty ξ. Generally, ξ is supposed to be Gaussian distribution as ξ ∼ N(0, σ2

ξ),
where σ2

ξ represents the power of forward model uncertainty. Thus the likelihood p(y|x, θ1) is obtained as:

p(y|x, θ1) =
1

(2πσ2
ξ)

N/2
exp

−‖y − Cx − σ21N‖
2

2σ2
ξ

 . (18)

where unknown parameters θ1 = [σ2, σ2
ξ]

T denotes the hyperparameters of the above likelihood, and θ1 are inde-
pendent to source powers x; and p(·) denotes the probability density function (PDF). In practice, y are known as the
measured beamforming powers ỹ from Eq.(9).

Let θ = [θ1, θ2]T denote the hyperparameters to be estimated, with θ1 being likelihood hyperparameters and θ2
being the prior hyperparameters. And assume θ = [θ1, θ2]T and source powers x are mutually independent to each
other. Now if we can assign a prior law p(x|θ2) on x, we can obtain p(x|y, θ) ∝ p(y|x, θ1) p(x|θ2) using the Bayes’ rule
p(x|y, θ) = p(y|x, θ1) p(x|θ2)/p(y) with p(y) being a constant for the observed data y. Then if we apply the Maximum
a Posteriori (MAP) criterion, we can obtain x̂ = arg max(x) {p(x|y, θ)} = arg min(x) {−ln p(y|x, θ1) − ln p(x|θ2)}, where
ln denotes Logarithm operator. Then if θ is unknown, we can also consider it as an extra unknown variable and try
to estimate it by defining the joint posterior: p(x, θ|y) ∝ p(y|x, θ1) p(x, θ); since x and θ are mutually independent to
each other as p(x, θ) = p(x|θ2)p(θ2)p(θ1), the proposed joint MAP criterion is thus given as follows:{

p(x, θ|y) ∝ p(y|x, θ1) p(x, θ) = p(y|x, θ1) p(x|θ2) p(θ2) p(θ1)
(x̂, θ̂) = arg max(x,θ) {p(x, θ|y)} = arg min(x,θ) {−ln p(y|x, θ1) − ln p(x|θ2) − ln p(θ2) − ln p(θ1)} , (19)

where −ln p(x|θ2) can be interpreted as the regularization form F (·) in Eq.(17), and hyperparameter θ2 takes the
similar effect as the regularization parameter does in Eq.(17). Indeed, one of the advantages of Bayesian inference
approach is that hyperparameters θ = [θ1, θ2]T can be jointly estimated by joint MAP in equation (19).
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For the prior p(x|θ2) on source powers x, we reconsider the sparsity fact that aeroacoustic sources sparsely lay
on the surface of the object, and the source number K is relatively much smaller with respect to the total scanning
points N on the source plane. Taking the vehicle in the wind tunnel test as shown in Fig.1a and 2a for example, most
of sources mainly locate on the particular parts the rearview mirrors and wheels, whereas for the rest parts, there are
few sources existing. And such a sparse distribution can be represented by a centralized PDF function that has a very
high value around the original zero (sparsity) and a long heavy tail (dynamic range of source powers). This kind of
centralized PDF function can be selected among the Generalized Gaussian family, see Appendix A for details. At
last, we take the Double ExponentialDE(x) model as the sparse a priori as follows:

p(x|θ2) =

N∏
n=1

DE(xn|γ) =

(
γ

2

)N
exp

{
−γ‖x‖β=1

}
, (20)

where θ2 = γ is the scale parameter, which controls the dynamic range of x, and ‖x‖β=1 represents the l1 norm, which
can promote the sparsity of x.

For hyperparameters θ = [θ1, θ2]T in Eq.(19), we have θ1 = [σ2, σ2
ξ]

T , θ2 = γ. Assuming the independence among
hyperparameters, we have p(θ) = p(σ2)p(σ2

ξ)p(γ). Since these parameters are non-negative, we take Jeffreys priors
[36] for simplicity as follows:

p(σ2) ∼
1
σ2 , p(σ2

ξ) ∼
1
σ2
ξ

, p(γ) ∼
1
γ
. (21)

Here we mark one of the advantages of Jeffreys priors, take p(γ) ∼ 1
γ

for instance, Jeffreys prior model does not bring
in the extra hyperparameters which have to be selected carefully to describe the scale parameter γ.

5.1. Hyperparameter estimations by using Bayesian inference approach

There are several classical methods [37–40] to solve the joint posterior probability in Eq.(19). Here we choose
the joint MAP [40] optimization, since joint MAP can build up a relationship with the classical regularization method
in Eq.(17). Based on the selections of prior models in the above, we take the followings into the Eq.(19): the likeli-
hood p(y|x, θ1) in Eq.(18), the sparsity enforcing a priori p(x|θ2) in Eq.(20), and Jeffreys priors p(θ) of parameters in
Eq.(21). By omitting trivial value terms and considering the non-negative constraints of source powers and hyperpa-
rameters, our proposed Bayesian approach is obtained as follows:

(x̂, θ̂) = arg min(x,θ) {J(x, θ)}
J(x, θ) = 1

2σ2
ξ

‖y − Cx − σ21N‖
2 + γ ‖x‖1 + N

2 lnσ2
ξ − N ln γ

s.t. x � 0, σ2 � 0, σ2
ξ � 0, γ � 0

. (22)

where hyperparameters θ = [σ2, σ2
ξ , γ]T ; y are known as the measured beamforming powers ỹ from Eq.(9); In the

cost function J(x, θ), the first term represents the data fitting; the second term represents the `1 sparse regularization,
and γ performs as the regularization parameter; the rest terms are derived from the priors p(ξ), as well as the sparse
prior p(x|γ); Particularly, the joint MAP optimization in Eq.(22) reveals that γ should not be neither too big nor too
small, and its proper value can not only enforce the sparsity of source power distributions, but also can promote
the dynamic range of estimated source powers. For hyperparameter estimations in Eq.(22), we use an alternative
optimization procedure as discussed in Appendix B: we firstly initialize x, then at any iteration k+1, we obtain a new
value for θ by minimizing J(x̂(k), θ) with respect to θ; At the next iteration we alternatively update x by minimizing
J(x, θ̂(k)

) with respect to x; Finally we repeat this alternative optimization procedure until J(x, θ) converges.
We have to point out 4 advantages with respect to classical methods: 1) estimation of σ2

ξ and σ2 improves the
robustness to the forward model uncertainty and noise interference; 2) applying `1 norm of ‖x‖1 enforces sparsity of
x, and achieve a super spatial resolution of power distributions; 3) estimation of γ provides a wide dynamic range
of source powers, moreover, γ takes the similar effect as the regularization parameter α does in Eq.(17); 4) x and
hyperparameters are alternatively estimated without knowing the source number or SNR.
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5.2. Relation with regularization approach
Furthermore, comparing to the classical methods of Eq.(17), the regularization parameter can be expressed in

function of hyperparameters in the proposed Bayesian approach of Eq.(22) as follows:

α = 2σ2
ξγ , (23)

where we can see that α is proportional to σ2
ξ and γ. Particularly when Gaussian prior in Eq.(A.3) in Appendix A

is used (γ = 1
2σ2

x
) on source powers, α =

σ2
ξ

σ2
x

means the inverse of signal-to-uncertainty ratio. Since we can take the
forward model uncertainty as the background noises to some extent, α equals the inverse of SNR. Our conclusion
agrees with the argument in paper [30]. Comparing to the classical regularization methods in Eq.(17), our proposed
Bayesian approach has the advantage of automatically estimating the regularization parameter.

5.3. Estimation of wideband aeroacoustic powers
In wind tunnel experiments, aeroacoustic sources are generated by the friction between the car and wind flow.

Physically, different car parts produce the vibrations with different frequencies. Therefore aeroacoustic sources are
of wide-band signals. We now consider the frequency range [ fmin, fmax] consisting of L frequency bins. Let x̂( fl)
be the estimation of x( fl) in lth frequency bin. Then total power xwb over the band [ fmin, fmax] can be estimated by
x̂wb =

∑ fmax
fl= fmin

x̂( fl), where x̂( fl) denotes the estimated power at frequency fl, and x̂( fl) can be estimated from our
proposed Bayesian approach in Eq.(22). We remark that in the beginning of the section 2.2, we have taken DFT
transformation in time domain and made analysis at the single frequency.

6. Simulated data of monopole and extended sources

This section demonstrates the performances of the proposed Bayesian approach for near-field aeroacoustic imag-
ing in the poor SNR cases. The proposed Bayesian approach is compared with 6 classical methods mentioned in the
above. Reconstruction results are presented on images which will directly demonstrate the estimated source positions,
and the estimated source powers (dB). The dynamic range of estimated powers is presented by the colormap with 15dB
span. In addition, section profiles are shown on the edge of the images, which are used to show the estimated positions
of particular sources. Then we use two criteria ∆x∗ and δi to quantitatively evaluate the precision of source powers and
positions estimation. One is the averaged estimation error of modeled source power, defined by ∆x∗ = 1

K
∑K

k=1 |x̂
∗
k−x∗k |.

And we remark that modeled source powers x∗ = [x∗1, · · · , x
∗
K]T are obtained by x∗ = diag

[
E{s∗s∗H}

]
. The other is the

relative error of power image reconstruction, defined by δi =
‖x̂−x‖ii
‖x‖ii

, with i = 1, 2. Compared to ∆x∗, the value of δi

not only depends on the estimated positions and powers, but also relies on the estimation of background noises.

6.1. Simulation configurations
In order to well fit for the conditions of wind tunnel S2A in Fig.2, the configurations of simulations are the same

as the those in the wind tunnel experiments carried out by Renault SAS [41]. For example, D = 4.50m is the distance
between the sensor plane and source plane. There are M= 64 non-uniform sensors locating on the 2 × 4 m2 vertical
plane. The NUA array has the longer horizontal aperture than the vertical one, as shown in Fig.2a. The advantage
of NUA array is that with fewer sensors, NUA array yields almost the same performance as the uniform array with
larger number of sensors, and this advantage can lower computation burden as discussed in [42]. And d = 2m is the
average aperture of sensor array. c0 ≈ 340m/s is the aeroacoustic propagation speed in the open air. T = 10000 is the
total number of samplings, which is large enough to fit for the important condition in Eq.(13).

For the simulated sources in Fig.3a, we have simulated 4 monopole sources and 5 extended sources with different
patterns, and the source number of total monopoles is K=23; their powers x are within [0.08,2] ([-10.3,3.7]dB) with
14dB dynamic range. We mark that there are 4 parts on Fig.3a: The center image shows the source positions, patterns
and powers. On its right, the colormap shows the power level by using different colors, in which, the darker red colors
represent stronger powers, and lighter white colors represent weak powers. On its left and bottom, 2 profile figures
show the powers of the 4 monopole sources and one of the extended sources. To simulate the very noisy background,
we take σ2 = 0.86 (-0.7dB) as the noise power, then the average SNR is 0dB.
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(a) (b)

Figure 2: Configurations of wind tunnel S2A: (a) wind tunnel S2A [41] and (b) overlook and wind refraction.

In order to well compare with other classical methods, some simulation parameters should be selected carefully.
Near-field condition is guaranteed by D < d2/(4λ) for any f > 1500Hz. Since the spatial resolution of beamforming
at f=2500Hz is ∆B ≈ λR/d = 31cm, the selected scanning step ∆p = 5cm satisfies ∆p/∆B < 0.2 for any f < 3500Hz,
which can avoid the spatial aliasing problem as discussed in the DAMAS [14]. For the region of 1 × 1.5 m2, the
scanning image is of 21 × 31 pixels. Since the scanning point number N = 651 is much more larger than source
number K = 23, the simulated source signals s and source powers x in Fig.3a are both K-sparsity signals.

6.2. Method comparisons

In this part, we firstly show the reconstruction results of source power images. Then we make quantitative com-
parisons of different methods. Finally we further validate our proposed Bayesian approach by simulations in the cases
of various noise levels and different frequency bins.

Figure 3 shows the reconstruction results of simulated data at f=2500Hz and SNR=0dB. In Fig.3b, the beam-
forming [4] method merely gives a very fussy result of strong sources due to its low spatial resolution (∆B ≈ 31cm
at 2500Hz). In Fig.3c and d, both the DAMAS [14] with 5000 iterations (5000i) and CLEAN [13] could not pro-
vide reliable reconstructions in strong background noises. This can be explained by the fact that DAMAS omits the
background noises as discussed in Eq.(15); As for CLEAN, it iteratively subtracts the maximal source power from
the original beamforming result in Fig.3b, but CLEAN might not easily detect the weak sources whose powers are
lower than the noise, moreover, some important parameters such as the attenuation factor and iteration number have
to be selected carefully by CLEAN. In Fig.3e, DR-DAMAS [14] removes the noise influence, and roughly estimates
the extended source, but it loses some of weak sources, this is because the diagonal removal operation distracts both
the noise and weak sources. The CMF [17] aims to reconstruct both the spectrum covariance matrix R and the noise
power in Eq.(11) under the sparsity constraint. In Fig.3f, CMF well estimates the noise power and distinguishes most
of the sources, however, it also fails to find weak sources, the reason might be that the adaptiveness of CMF method
depends on an important parameter of the sparsity constraint. Comparing to CMF, the SC-RDAMAS [21] in Fig.3g
achieves better reconstructions, since SC-RDAMAS directly estimates the source powers and background noises, and
it also adaptively estimates the sparsity parameter according to the noise level. But the performance of SC-RDAMAS
still relies on the source number estimation. In order to make a fair comparison, both CMF and SC-RDAMAS are
realized by the MATLAB toolbox SeMuDi [43].

In Fig.3h, the proposed Bayesian inference approach works much better than the above methods regardless of
source patterns and positions. For the monopole sources, proposed approach not only accurately estimate their posi-
tions, but also detects the weak sources as well as strong sources; for the extended sources, it successfully reconstructs
both source powers and different patterns. The dynamic range of estimated powers is achieved as large as 14dB. Com-
paring to the beamforming resolution (31cm) [4], proposed approach achieves the 5cm super-resolution, thanks to
the contribution of applying DE(x) sparse prior in Eq.(20). In addition, proposed approach is more robust to noise
interference than the deconvolution methods (DAMAS, DR-DAMAS [14] and CLEAN [12]). This is owing to the
simultaneous estimation of the background noises σ2 and forward model uncertainty σ2

ξ , as well as source powers x.
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Figure 3: Simulation on extended sources with 14dB power dynamic range at 2500Hz, real σ2 = 0.86, SNR=0dB and 15dB display : (a) 5
extended sources and 4 monopoles (b) Beamforming (c) DAMAS with 5000 iterations (5000i) (d) CLEAN. (e) DR-DAMAS (5000i) (f) CMF (g)
SC-RDAMAS and (h) Proposed Bayesian MAP approach
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These two important parameters are estimated as the hyperparameters in the joint MAP criterion of Eq.(22). Com-
paring to the adaptiveness of sparse regularization methods (CMF [17] and SC-RDAMAS [21]), the scale parameter
γ in proposed approach has the similar effect as the sparsity parameter. Since proposed Bayesian inference approach
adaptively estimates γ from the the hyperparameter estimations, we provide a high resolution reconstruction with
large dynamic range of estimated powers, even in the low SNR case.

The hyperparameter (θ = [σ2, σ2
ξ , γ]T ) estimations offer the following results: the estimated variance of back-

ground noises is σ̂2 = 0.86, almost the same as the simulated σ2 = 0.86; and σ̂2
ξ = 0.69 is the estimated power

of forward model uncertainty; this estimated result means that the propagation uncertainty is not very obvious, but
indeed, σ̂2

ξ = 0.69 can not be negligible with respect to the noise σ2 = 0.86; the scale parameter γ̂ in the sparse prior
is the estimated as γ̂ = 0.72; As illustrated in Fig.A.1 of Appendix A, parameter 0 < γ̂ < 1 makes DE(x) model to
have a much sparser distribution with a longer and heavier tail among the generated Gaussian distribution families, so
that our proposed Bayesian inference approach manages to obtain both the sparse reconstructions of source powers x
and the wide dynamic ranges of the estimated x at the same time.

To quantitatively validate our proposed Bayesian approach, table 1 and table 2 show the power estimations for
monopole and extended sources, as well as the average estimation error ∆x∗, and the relative error of power image re-
construction δi. According to ∆x∗ and δi, it is seen that our proposed method not only successfully detects each pattern
of extended sources, but also better estimates source powers and background noises in very poor SNR situations.

Table 1: Power estimations of 4 monopole sources by average power estimation error ∆x∗, relative errors of power image reconstruction δ1, δ2 and
estimated noise covariance σ̂2 at 2500Hz, SNR=0dB, dynamic range 14dB, a cell containing ’-’ means unavailable.

Source powers 0.08 0.18 0.98 0.50 ∆x∗ δ1 δ2 σ̂2 (σ2 = 0.86)
Beamforming 1.57 11.28 3.51 2.02 4.16 69.64 121.93 -
DAMAS - - - 0.44 0.33 3.14 1.33 -
CLEAN - 0.25 0.44 0.28 0.23 0.87 0.67 -
DR-DAMAS - - 0.77 0.23 0.19 0.30 0.08 -
CMF 0.09 - 0.80 0.40 0.12 0.31 0.10 0.89
SC-RDAMAS 0.09 0.10 1.05 0.43 0.06 0.21 0.06 0.85
Proposed 0.08 0.13 0.94 0.45 0.04 0.17 0.02 0.86

Table 2: Power estimations of the extended source on the center of image by power estimation error ∆x∗ at 2500Hz, SNR=0dB, a cell containing
’-’ means unavailable.

Source powers 2.00 2.00 2.00 2.00 2.00 2.00 ∆x∗

Beamforming 2.64 9.60 9.70 9.64 11.34 9.77 6.78
DAMAS 4.50 1.25 0.48 2.54 0.49 1.88 1.15
CLEAN 2.29 0.37 1.69 - 0.27 0.34 1.27
DR-DAMAS 2.15 2.05 1.82 1.83 2.50 1.45 0.27
CMF 1.36 2.86 2.07 2.09 1.92 1.05 0.45
SC-RDAMAS 1.83 2.00 2.05 1.72 2.16 1.95 0.12
Proposed 1.94 1.99 1.98 1.76 2.10 1.91 0.09

Figure 4 and 5 show the simulations in the cases of various noise levels and different frequency bins. Each point
on the curves is the averaged result based on 15 simulations. Firstly we fix the f=2500Hz. In Fig.4, the power
image reconstruction errors δi with i = 1, 2 are plotted versus the SNR∈ [−6, 18]dB, and it shows the robustness to
background noises of the mentioned methods. As we can see, the proposed Bayesian approach are very robust to
background noises, and outperforms the other methods in the cases from -6dB to 18dB. Particularly in very poor SNR
cases, it still achieves very small δ1 and δ2. Then we fix the SNR=3dB. In Fig.5, δi are plotted versus frequencies
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Figure 4: Performance comparison for relative errors of power image reconstruction δ1 and δ2 versus SNR [-6,18]dB on simulations at f=2500Hz
(a) δ1 VS SNR (dB) and (b) δ2 VS SNR (dB).
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Figure 5: Performance comparison for relative errors of power image reconstruction δ1 and δ2 versus [1600,2600]Hz on simulations at SNR=3dB:
(a) δ1 (dB) VS f (Hz) and (b) δ2 (dB) VS f (Hz).

f ∈ [1600, 2600]Hz. With higher frequencies, all the methods obtain better spatial resolution, indeed, our proposed
method exceeds the others over the entire working frequency range.

7. Real data of wind tunnel experiments

The wind tunnel experiments have been carried out by Renault SAS [41] as shown in Fig.2a. This wind tunnel is
designed to measure the aeroacoustic source powers and their localization on the car surface, and it can simulate the
situation when Renault cars travel fast on the high-way.

7.1. Wind tunnel experiment configurations

Figure 2 shows the configurations of the wind tunnel S2A [41], object vehicle, NUA array and wind refraction.
We suppose that all aeroacoustic sources locate on the same plane. This assumption is almost satisfied, because the
curvature of the car side is relatively small compared to the distance D=4.5m between the car and array plane. Since
the scanning step is set by ∆p = 5cm, the source plane of car side is of 1.5× 5 m2 (31×101 pixels), and we also focus
on a small region of the rearview mirror: 1×1.5 m2 (21×31 pixels). On the real data, there are T=524288 samplings
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with the sampling frequency fs=2.56×104 Hz. As discussed in Section 2.2, we separate these samplings into I=204
blocks with L=2560 samplings in each bloc. The working frequency band is chosen as [2400,2600]Hz, which is
sensitive to human being. The image results are shown by normalized dB images with 10dB span.

For the actual propagation time τn,m and distance rn,m in Eq.(3) in Section 2.2, we apply equivalent source to make
refraction correction. As shown in Fig.2b, for sensor m, it seems to receive the signal from equivalent source signal
sn′ , instead of original source signal sn, along a direct path rn′,m during the same propagation time τn′,m, as if there is
no wind influence in the wind tunnel. For τ−n,m and r−n,m in Eq.(3), we use the mirror source signal s−n to correct the
ground reflection as shown in Fig.1b. The details of the propagation corrections are discussed in Appendix C and
Appendix D.

7.2. Results of single frequency at 2500Hz

The proposed Bayesian approach provide the following hyperparameter estimations: the variance of background
noises is σ̂2 = 25; forward model uncertainty is as small as σ2

ξ = 0.83, thanks to propagation corrections in the wind
tunnel, such as refraction and reflection as discussed in Appendix C and Appendix D; and the scale parameter γ in
DE(x) prior model is estimated as γ̂ = 0.33, and this small value can insure the sparse distribution of source power
with wide dynamic range, as discussed on the simulations in Section 6.

For aeroacoustic imaging on the car side in Fig.6a, the left side of Fig.6b-g illustrate the normalized estimated
power images of mentioned methods. In Fig.6b, the beamforming [4] hardly obtains a clear image of source powers,
it just gives a very fussy image of strong powers around the front wheel, the rearview mirror and the back wheel.
In Fig.6c, DAMAS [14] successfully deconvolves the beamforming image, and discovers weak sources in the front
light, front cover and side windows; however, DAMAS also gets many false targets outside the car surface. In Fig.6d,
the DR-DAMAS [14] eliminates most of the false targets outside the car, but it also removes the sources on the
rearview mirror and back wheel. Figure 6e shows that CLEAN [13] overcomes drawbacks of the DAMAS and DR-
DAMAS, but unexpected strong noises are detected on the ground; moreover, we have to set carefully the parameters
in CLEAN for each experiment. In Fig.6f, the SC-RDAMAS [21] obtains a slightly better result than the CLEAN,
but false alarms under the car body are still numerous. Finally, figure 6g reveals that proposed Bayesian approach
achieves the best performance of all, especially for noise suppression and source reconstructions on the two wheels
and the rearview mirror; it removes most of the false targets under the car and on the air. The reasons of these good
performance are mainly the same ones as discussed on the simulations in Section 6. The computational times of the
different methods are given in Table 3. Indeed, the hyperparameter estimations increase the computational cost, but
our proposed approach remains feasible to realize it.

Table 3: Computational cost for treating whole car: image 31×101 pixels, at 2500Hz, based on CPU:3.33GHz, ’-’ means unavailable.

Methods Beamforming DAMAS DR-DAMAS CLEAN SC-RDAMAS Proposed CMF
Time (s) 1 10 11 45 852 1012 -

Based on the results of the car side, we further investigate weak sources on the rearview mirror. In Fig.7, beam-
forming in Fig.7a mainly demonstrates 3 groups of sources: one on the corner of the front wheel, one on left of
the rearview mirror and the other on its right. DAMAS in Fig.7b improves the resolution of the beamforming, but
also gets many dirty spots outside the car. In Fig.7c, most of the false alarms are removed by DR-DAMAS, but the
vertical resolution is not high enough; CMF in Fig.7d obtains better results than DR-DAMAS; the SC-RDAMAS in
Fig.7e achieves a result as good as CMF does; but our proposed Bayesian approach in Fig.7f achieves more expected
estimations of source positions and powers around the mirror, on the front wheel and on the front corner. This result
is reasonable, since these car parts are highly probable to produce aeroacoustic sources in wind tunnel.

Above all, the two experiment results agree closely with the simulation results in Fig.3 at 2500Hz. The proposed
Bayesian approach is proved to achieve super-resolution, suppression of background noises and a wide dynamic range
of power estimations.
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Figure 6: Aeroacoustic imaging on the vehicle side at 2500Hz. Left: real data (a) vehicle surface (b) Beamforming (c) DAMAS (5000i) (d) DR-
DAMAS (5000i) (e) CLEAN (f) SC-RDAMAS and (g) Proposed approach. Right: hybrid data (a’) 5 simulated extended sources (b’) Beamforming
(c’) DAMAS (5000i) (d’) DR-DAMAS (5000i) (e’) CLEAN (f’) SC-RDAMAS and (g’) Proposed approach.

7.3. Results of wide-band data

Based on the effectiveness and feasibility at single frequency, we show the performance comparisons for wide-
band data of [2400,2600]Hz, as illustrated in Fig.8. Each method obtains a better result than the corresponding one
at 2500Hz in Fig.6. That is because the SNR is increased by averaging results over the working frequency band, and
the flashing false alarms are suppressed over the wide-band average. The estimations of the DR-DAMAS in Fig.8a
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Figure 7: Aeroacoustic imaging of real data on rearview mirror part at 2500Hz: (a) Beamforming (b)DAMAS (5000i) (c) DR-DAMAS (5000i) (d)
CMF (e) SC-RDAMAS and (f) Proposed

are reasonable and acceptable, but the spatial resolution are not high enough on the front wheel and rearview mirror.
Fig.8b shows that the CLEAN greatly ameliorates the resolution, but it shows many unexpected spots under the car
body. The SC-RDAMAS in Fig.8c has the advantages of the CLEAN, and it gets wide dynamic range of source
powers around the front wheel, but it confront the same problem as CLEAN. Finally, our proposed approach in Fig.8d
successfully extracts more expected source positions and powers than the above methods, for the weak ones on the
mirror and back wheel, as well as the strong sources around the front wheel.

8. Hybrid data

Even though our proposed approach obtains good performance on real data from wind tunnel experiments, it
is not sufficient to validate our proposed methods. This is because the exact sources on the vehicle generated by
wind flow are not known beforehand. To further verify our methods, we propose to generate hybrid data by adding
synthetic sources to the real data. In order to avoid overlapping real sources, the synthetic sources are set on the
region where there are no obvious sources, as shown in Fig.6a’. We expect that our proposed approach could retrieve
both the synthetic and potential real sources respectively from the hybrid data. If these known synthetic sources are
successfully detected, the proposed approach can be proved to be able to effectively recover the real sources on the
vehicle surface.

8.1. The synthetic sources model
Based on the assumptions in Section 2.1, we suppose K’ Gaussian white variables w′(t) = {w′k(t), k = 1, · · · ,K′},

with w′k(t) ∼ N(0, σ2
k), and σ2

k is the variance of the variable w′k(t). In order to generate wide-band source signals
{s′k(t), k = 1, · · · ,K′}, w′k(t) is convoluted by the impulse response h(t) (for instance Blackman filter). Thus the
synthetic source signals are modeled by

s′k(t) = w′k(t) ∗ h(t), k = 1, · · · ,K′ , (24)

where ∗ denotes convolution operation. Since the positions P′ of synthetic s′ are set to be known, the measurements
z′ at the sensor array can be calculated by the forward model of aeroacoustic signal propagation in Eq.(7). Then we
generate the hybrid data by adding z′ to the real measured data z.

8.2. Results on hybrid data
Five synthetic extended sources with different patterns are generated as seen in Fig.6a’; their powers are among

[-4.5,0]dB. The working frequency is 2500Hz. The right side of Fig.6b-g gives the results of mentioned methods. In
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Figure 8: Wide-band data over [2400,2600]Hz: (a) DR-DAMAS (5000i) (b) CLEAN (c) SC-RDAMAS and (d) Proposed

fig.6b’, the beamforming mainly shows the strong source distributions, but it reveals that there is no apparent overlaps
of the measured powers between the synthetic sources and the potential ones in the real data, so that the synthetic
sources are reasonably positioned beforehand; in Fig.6c’ and d’, both the DAMAS and DR-DAMAS fails to provide
good reconstructions for the synthetic sources, due to their sensitiveness to the background noises; in Fig.6e’ and f’,
both the CLEAN and SC-RDAMAS offer better estimations for the most of synthetic sources, and they also obtain
comparable results on real data with respect to the left side of Fig.6e and f. However, CLEAN also detects many
artifacts under the car due to its parameter selection, and the performance of SC-RDAMAS depends on the estimation
of source number that is different between the real data and hybrid data.
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In Fig.6g’, the proposed Bayesian approach successfully detects almost all the synthetic sources, and it obtains
more precise estimations of their powers and patterns than the other classical methods. Meanwhile, for the other
sources in the real data, the proposed approach better reconstructs both the strong sources on the two wheels and
rearview mirror, and weak ones on the front cover and back window, and this result in Fig.6g’ is very close to
the reconstruction for the real data in Fig.6g. Moreover, proposed approach obtains simultaneously a better noise
suppression and larger dynamic range of estimated powers, compared to the mentioned state-of-the-art methods.

But comparing to the result on real data in Fig.6g, we notice the hybrid data in Fig.6g’, there are additional
sources except the synthetic ones, such as the ones between synthetic sources and the ones under the car body.
This phenomenon could be explained as follows: Firstly, comparing to the beamforming powers of real data in
Fig.6b, the beamforming of the hybrid data in Fig.6b’ have suffered the side effect of hybrid data, since some of
the sidelobes of the synthetic sources have been more or less overlapped with the mainlobes of real sources, or vice
versa; so that shadow sources are inevitably detected by proposed approach, especially for the sources on the vehicle
bottom; Secondly, since the aeroacoustic field is linear, the beamforming powers of hybrid data can be made as
the superpositions of the synthetic and real data, however, the proposed joint MAP inversion in Eq.(22) is no linear
estimator for source powers and hyperparameters, therefore small false detections would be made to some extent. But
proposed joint MAP approach still achieves the expected reconstructions for the synthetic sources in hybrid data, and
it is reasonable to accept the source power recovery on the real data.

9. Conclusion

In this paper, we have developed a robust Bayesian super-resolution approach via sparsity enforcing a priori for
source localization and power reconstruction, as well as the hyperparameter estimations. Our work has been motivated
to achieve the aeroacoustic imaging with super spatial resolution, large dynamic range and robustness to background
noises.

The main novelties are: 1) We have firstly proposed a robust forward model of aeroacoustic power propagation by
introducing the background noises at the sensor array and forward model uncertainty caused by aeroacoustic multipath
propagation. The latter one is often ignored by classical methods. 2) For the inverse problem, we have explored the
Bayesian inference approach via sparsity enforcing prior based on joint MAP optimization. 3) For the super resolution
and wide dynamic range of source powers, we have explored the double exponential model for the sparse distribution
of source powers, in which, β = 1 greatly improved the spatial resolution, and proper γ promoted the wide dynamic
range of source powers. 4) For the robust imaging in strong noises, we have jointly estimated γ, noise power and
forward model uncertainty, as well as the source powers via the joint MAP criterion.

The validation of proposed forward model and joint MAP inversion have been presented both on the simulated,
real data and hybrid data. Firstly, various simulations have shown that our proposed approach has obtained 5cm
(∆B = arg tan ∆p

D ≈ 0.6◦ ) super spatial resolution, 14dB wide dynamic range of power estimations in 0dB SNR cases
for monopole and extended source imaging. Then wind tunnel experiments have demonstrated that our approach has
effectively detected the expected strong sources on the front wheels and mirrors, as well as weak sources on the back
wheels. Finally, hybrid data have further confirmed that proposed approach not only has well reconstructed the known
synthetic sources, but also offered an expected results for real data. Moreover, proposed approach did not require the
source number or SNR beforehand. However, proposed Bayesian inference increased the computational cost, but it
still remained feasible to use.

For future work, we are investigating realtime implementation of proposed joint MAP approach by using the
Graphical Processor Unit (GPU), and we are also exploring the hierarchical Variational Bayesian Approximation
(VBA) via Student’s-t distributions for acoustic imaging in colored noise.
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Figure A.1: Generalized Gaussian family: (a) Probability density function GG(xn) and (b) − ln[GG(xn)] function.

Appendix A. Sparsity enforcing a priori of source power distribution

In Eq.(6), source signals s include just K non-zero signal s∗ in the space domain, which is rather small with
respect to N-K zero values (N>>K). Therefore, the source powers x defined in Eq.(11) are also of the K-sparsity
signals. For the PDF distribution of x, most of the high probability values should concentrate around the original zero
of x. Meanwhile, x contains different items, among which, the difference between the maximal and minimal powers
could be of 10dB dynamic range. This large dynamic range of powers can be represented by a PDF distribution with
a long heavy tail among the large values of x. The above sparse distribution can be defined from the Generalized
Gaussian GG(xn) family as discussed in [44, 45]. Mathematically, for the uncorrelated centralized x, the prior model
based on GG(xn) can be expressed as:

p(x|θ2) =

N∏
n=1

GG(xn|γ, β) =

[
βγ

2Γ(1/β)

]N

exp

−γ N∑
n=1

|xn|
β

 , (A.1)

where θ2 = [γ, β]T and

GG(xn|γ, β) =
βγ

2Γ(1/β)
exp

{
−γ|xn|

β
}
, (A.2)

where Γ(·) denotes the Gamma function, and shape parameter β reflects the degree of sparsity, it controls the con-
centration of p(x|θ2) at zero value; Thus the smaller β is, the sparser p(x|θ2) becomes. And parameter γ reflects the
inverse variance of xn, it controls the tail of p(x|θ2) and it affects the dynamic range of x. Thus the smaller γ is, the
longer and heavier the tail becomes.

In the case of β = 2, we get Gaussian N(0, 1
2γ ) model:

p(x|θ2) =

N∏
n=1

N(xn|0,
1

2γ
) =

(
γ

π

)N/2
exp

{
−γ‖x‖22

}
, (A.3)

where θ2 = γ, and γ = 1
2σ2

x
reflects the inverse variance of x, with σ2

x being the variance of x.
When β = 1, we get the Double ExponentialDE(x) model from Generalized Gaussian GG(xn) family as follows:

p(x|θ2) =

N∏
n=1

DE(xn|γ) =

(
γ

2

)N
exp {−γ‖x‖1} , (A.4)

where θ2 = γ.
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In Fig.A.1, four examples of GG(xn) family and their − ln[GG(xn)] functions are illustrated. When γ = 1 is fixed,
the smaller β is, the sparser p(xn) becomes. When β = 1 is set, the smaller γ is, the heavier tail of p(xn) becomes.
The proper values of β and γ can balance the sparsity and dynamic range. For cases 0 < β < 1, it is of great interest
to enforce sparsity, but unfortunately, its − ln[GG(xn)] function is not convex. For the case β = 1 and proper γ, the
Double Exponential DE(x) model can promote sparsity and obtain wide dynamic range, moreover, its − ln[GG(xn)]
function is convex as well.

In conclusion, we select the Double Exponential DE(x) model with β = 1 as the sparsity enforcing a prior. Here,
we have to confine the non-negative constraint on source powers x ≥ 0, since the DE(x) model is the symmetry
distribution.

Appendix B. Alternative estimation of hyperparameters

For the joint MAP criterion in Eq.(22), we alternatively estimate the source powers x and hyperparameters as
follows:  θ̂(k)

= arg min(θ){J(x̂(k), θ)}

x̂(k+1) = arg min(x){J(x, θ̂(k)
)}

, (B.1)

where hyperparameters are θ = [σ2, σ2
ξ , γ]T . The first iteration begins based on the simple initialization of x = 0.

Moreover, we can facilitate the estimation of σ2
ξ as follows:

σ̂2
ξ

(k)
= tr {R̂} − ‖x̂(k−1)‖1 − Mσ̂2

(k−1)
, (B.2)

where R̂ is estimated from Eq.(10), and tr (R̂) represents the total power of measured signals. According to power
conservation, the total measured power tr (R̂) consists of the source powers ‖x‖1, total noise powers Mσ2 at M sensors,
and the powers of forward model uncertainty σ2

ξ .
After hyperparameter estimation, x̂(k) are alternatively optimized by the steepest gradient algorithm based on the

estimated hyperparameters θ̂
(k)

= [σ̂2
(k)
, σ̂2

(k)
ξ , γ̂

(k)]T as follows:

x̂(k) = x̂(k−1) + µ∇J(x, θ̂(k)
) , (B.3)

where µ is the step size, which could be fixed as a small value, or optimally selected as discussed in paper [46]. Since
x ≥ 0, ‖x‖1 =

∑N
n=1 xn, the gradient ∇J(x, θ̂(k)

) is obtained as:

∇J(x, θ̂(k)
) = −

1

σ̂2
(k)
ξ

CH(y − Cx̂(k−1) − σ̂2
(k)

1N) + γ̂(k)1N . (B.4)

When θ̂
(k)

= [σ̂2
(k)
, σ̂2

(k)
ξ , γ̂

(k)]T is fixed, the joint MAP criterion in Eq. (22) is a convex quadratic minimization
under linear matrix constraints. This optimization can also be solved by interior point methods using MATLAB
toolbox SeMuDi [43].

Appendix C. Wind flow refraction

As shown in Fig.2b, for source n, we suppose the wind refraction takes place at point p on the interface between the
common air and wind flow. We firstly calculate the actual propagation path rn,m and then obtain the actual propagation
time τn,m.

When the medium is uniform, rn,m is of a geometric distance calculated as follows:

rn,m =

√
(pnx − p̄mx)2 + (pny − p̄my)2 + (pnz − p̄mz)2 , (C.1)

where P̄ = [p̄1, · · · , p̄M]T represents 3D coordinates of sensor array; and sensor m has p̄m = [ p̄mx, p̄my, p̄mz]T . The
corresponding propagation time is τn,m = rn,m/c0, with c0 being aeroacoustic speed in the common air.
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Figure C.1: Propagation corrections in wind tunnel: beamforming on the real data at 2500Hz: (a) without corrections and (b) with corrections

When the medium is not uniform due to the wind flow, rn,m is not a geometric distance, but composed of two
geometric parts as follows:

rn,m = dn,p + dp,m , (C.2)

Where dn,p is the geometric distance from source n to refraction point p, and dp,m is the one from point p to sensor m.
Therefore actual rn,m can be calculated by knowing the position of refraction point p.
τn,m subsequently is made up of two parts:

τn,m = τn,p + τp,m = dn,p/c1 + dp,m/c0 , (C.3)

where c1 = ||~c0 + ~v||, with ~v being the speed vector of the wind flow. Since it is complicated to obtain c1, we use the
equivalent source n’ to calculate the equivalent τn′,p. We suppose that the sensor m seems to receive the signal from
equivalent source n’, instead of the source n, as if there were no wind influence. This means τn,m = τn′,m = dn′,m/c0.
Taking the above equation into Eq.C.3, we get

τn,m = dn′,p/c0 + dp,m/c0 . (C.4)

Therefore, actual τn,m depends on the positions of the equivalent source n’ and refraction point p.
In Fig.2.b, when the positions of sensor m (p̄m = [ p̄mx, p̄my, p̄mz]T ) and source n (pn = [pnx, pny, pnz]T ) are given,

we firstly locate the equivalent source n’ (pn′ = [pn′x, pn′y, pn′z]T ) and then determine the refraction point p (pp =

[ppx, ppy, ppz]T ).
For equivalent source n’, since the wind direction is parallel to the ground, the displacement exists only in hori-

zontal direction. According to the coordinate in Fig.2.b, pn′ can be obtained as:

pn′x = pxn + dn,n′ , pn′y = pny , pn′z = pnz , (C.5)

where dn′,n denotes the horizontal displacement, it can be calculated as

dn′,n = dn′,p v/c0, (C.6)

where dn′,p can be calculated by solving the triangles ∆pnn′ and ∆mnn′ in Fig.2b:

dn′,p =

 v
c0

(pnx − ppx) +

√
v2

c2
0

(pnx − ppx)2 + d2
n,p(1 −

v2

c2
0

)

 /1 − v2

c2
0

, (C.7)

where the wind speed naturally satisfies v < c0. And we can get ppx by solving the triangle ∆mn′q on the horizontal
plane in Fig.2b, and similarly ppy on the vertical plane. Then pp is calculated by

ppx =
L1

L1 + L2
pn′x +

L2

L1 + L2
p̄mx , ppy =

L1

L1 + L2
pn′y +

L2

L1 + L2
p̄my , ppz = p̄mz + L1 , (C.8)

where L1 is the distance from the sensor plane to the wind interface, and L2 is the distance from the wind interface to
the vehicle plane as shown in Fig.2b. Let d′m,n′ denote the projection of dm,n′ on the ground. If d′m,n′ = L1 + L2, then
pp can be directly calculated by Eq.(C.8). If d′m,n′ > L1 + L2, we solve the the triangle ∆mn′q based on solid geometry
analysis, and finally we get the same solution as the Eq.(C.8). Above all, pn′ is obtained by substituting Eq.(C.8) into
Eq.(C.7).
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In conclusion, rn,m in Eq.(C.2) can be derived from the equivalent source n’, and τn,m in Eq.(C.4) can be calculated
from both equivalent source n’ and refraction point p. Therefore the steering vector a(pn, fl) in Eq.(8) can be corrected
as follow:

an,m =
1

rn,m
exp

{
− j2π flτn′,m

}
+ ρ

1
r−n,m

exp
{
− j2π fl τ−n′,m

}
, (C.9)

where an,m ∈ a(pn, fl) denotes the steering item from source n to sensor m, and time delay τ−n′,m of ground reflection
will be discussed in Appendix D.

Our refraction correction can be extended for the other cases:
Case 1: No wind. Since v = 0 and L2 = 0, we have dn′,p = dn,p from Eq.(C.7), and pp = pn′ from Eq.(C.8). That

means that both equivalent source n’ and refraction point p locate at the position of source n. This conclusion meets
the common sense.

Case 2: Wind everywhere. Since v , 0 and L1 = 0, we have pp = p̄m from Eq.(C.8); it means refraction point p is
the same one as the sensor m, but horizontal displacement dn′,n still takes place according to Eq.(C.7).

In Fig.C.1, we show the improvement of refraction correction. We use the real data in wind tunnel experiments,
and the working frequency is 2500Hz. Take the beamforming method for example, it is seen that without corrections,
all the sources are detected on the right side of their real positions, and there are the displacements along the wind
direction; after corrections, we get the expected results.

Appendix D. Ground reflection

In Fig.1b, we show the ground reflection in wind tunnel. For the sensor m, its measured signals consists of two
parts: the major one from the direct propagation, the other from the ground reflections. To correct ground reflection,
here we apply the mirror source -n which is symmetric to the ground for source n. For the sensor m, it seems to
receive the signal by way of the direct path r−n,m from the mirror source. Therefore, the steering vector ar(p−n, fl) of
the ground reflection depends on the positions p−n of mirror sources.

Considering pn = [pnx, pny, pnz]T are the coordinates of the source n, its mirror source n’ has the coordinates
pn′ = [pn′x, 2pny0 − pny, pn′z]T , where pny0 is the vertical coordinate of the ground as shown in Fig.1b. Since the
original O of coordinate system, we have pny0 = 0, thus the mirror position is p−n = [pnx,−pnx, pnx]T . Therefore the
steering vector of ground reflection ar(p−n, fl) in Eq.(8) can be calculated as similarly as the steering vector of direct
path ad(pn, fl) in Eq.(3). Then the correspond steering vector of wind refraction ad(p−n′ , fl) can be corrected according
to Appendix C.

Base on the analysis of ground reflection, we demonstrate the improvement of propagation corrections in Fig.C.1.
As we can see, without correcting the ground reflection (ρ = 0), the estimated sources could be involved with the
ghost sources outside and under the car; these ghosts are the influences of multipath propagation. After corrections
with ρ = 0.8, the beamforming result has much fewer ghosts in the air, on the center and rear of car body, and under
the car. Furthermore, the potential strong sources are more concentrated. All the other methods are as improved as is
the beamforming.
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