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We study the non-linear minimization problem on H 1 0 (Ω) ⊂ L q with q = 2n n-2 :

We show that minimizers exist only in the range β < kn/q which corresponds to a dominant nonlinear term. On the contrary, the linear influence for β ≥ kn/q prevents their existence.

and p(x, y) = 1 + |x| β |y| k . Here q = 2n n-2 denotes the critical exponent of the Sobolev injection H 1 0 (Ω) ⊂ L q (Ω). We restrict ourselves to the case β ≥ 0 and 0 ≤ k ≤ q. The Sobolev injection H s+1 (Ω) into H s (Ω) gives :

I Ω;β,k (u) ≤ u 2 H 1 0 (Ω) + C s sup x∈Ω |x| β u 2 H s+1 (Ω)
for s ≥ kn q(k + 2) so I Ω;β,k (u) < ∞ on a dense subset of H 1 0 (Ω). Note in particular that one can have I Ω;β,k (u) < ∞ without having u ∈ L ∞ loc (Ω). If 0 / ∈ Ω, the problem is essentially equivalent to the case β = 0 thus one will also assume from now on that 0 ∈ Ω. The case 0 ∈ ∂Ω is interesting but will not be addressed in this paper.

For any u ∈ H 1 0 (Ω), one has

I Ω;β,k (u) = I Ω;β,k (|u|) (2) 
thus, when dealing with [START_REF] Aubin | Equations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire[END_REF], one can assume without loss of generality that u ≥ 0.

The Euler-Lagrange equation formally associated to [START_REF] Aubin | Equations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire[END_REF] is

     -div p(x, u(x))∇u + Q(x, u(x))|∇u(x)| 2 = µ|u(x)| q-2 u(x) in Ω u ≥ 0 u = 0 on ∂Ω (3) 
with Q(x, y) = k 2 |x| β |y| k-2 y and µ is a Lagrange multiplier. However, the logical relation between ( 1) and ( 3) is subtle : I Ω;β,k is not Gateaux differentiable on H 1 0 (Ω) because one can only expect I Ω;β,k (u) = +∞ for a general function u ∈ H 1 0 (Ω). However, if a minimizer u of (1) belongs to H 1 0 ∩ L ∞ (Ω) then, without restriction, one can assume u ≥ 0 and for any test-function φ ∈ H 1 0 ∩ L ∞ (Ω), one has ∀t ∈ R,

I Ω;β,k u + tφ u + tφ L q < ∞.
A finite expansion around t = 0 then gives [START_REF] Brezis | A relation between pointwise convergence of functions and convergence of functionals[END_REF] in the weak sense, with the test-function φ.

The following generalization of (1) will be adressed in a subsequent paper :

S Ω (λ; β, k) = inf u∈H 1 0 (Ω) u L q (Ω) =1 J Ω;β,k (λ, u) with J Ω;β,k (λ, u) = I Ω;β,k (u) -λ Ω |u| 2 . ( 4 
)
for λ > 0, which is a compact perturbation of the case λ = 0.

A first motivation can be found in the line of [START_REF] Cordero-Erausquin | A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities[END_REF] for the study of sharp Sobolev and Gagliardo-Nirenberg inequalities. For example, among other striking results it is shown that, for an arbitrary norm

• on R n : inf u L q =1 R n ∇u(x) 2 dx = ∇h L 2 with h(x) = 1 (c + x 2 ) n-2 2
and a constant c such that h L q = 1. The problem (1) can be seen as a quasi-linear generalisation where the norm • measuring ∇u is allowed to depend on u itself.

This type of problem is also a toy model for the Yamabe problem which has been the source of a large literature. The Yamabe invariant of a compact Riemannian manifold (M, g) is :

Y(M ) = inf φ∈C ∞ (M ;R + ) φ L q (M ) =1 M 4 n-1 n-2 |∇φ| 2 + σφ 2 dV g
where ∇ denotes the covariant derivative with respect to g and σ is the scalar curvature of g ; Y(M ) is an invariant of the conformal class C of (M, g). One can check easily that Y(M ) ≤ Y(S n ). The so called Yamabe problem which is the question of finding a manifold in C with constant scalar curvature can be solved if Y(M ) < Y(S n ). (see for example [START_REF] Lee | The Yamabe problem[END_REF] for an in-depth review of this historical problem and more precise statements). Even though problems (1) and (4) seem of much less geometric nature, they should be considered as a toy model of the Yamabe problem that can be played with in R n . As it will be shown in this paper, those toy models retain some interesting properties from their geometrical counterpart : the functions u ε that realise the infimum Y(S n ) still play a crucial role in (1) and ( 4) and the existence of a solution is an exclusively non-linear effect. Problems that resemble to (1) have an extensive literature and we refer to papers [START_REF] Aubin | Equations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire[END_REF], [START_REF] Brezis | Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[END_REF], [START_REF] Coron | Topologie et cas limite des injections de Sobolev[END_REF], [START_REF] Hadiji | Localization of solutions for nonlinear elliptic problems with critical growth[END_REF] and references therein.

Bibliographical notes

The case β = k = 0 i.e. a constant weight p(x, y) = 1 has been addressed in the celebrated [START_REF] Brezis | Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[END_REF] where it is shown in particular that the equation

-∆u = u q-1 + λu, u > 0 (5) has a solution u ∈ H 1 0 (Ω) if n ≥ 4 and 0 < λ < λ 1 (Ω) = inf u∈H 1 0 (Ω)\{0}
I Ω;0,0 (u)

Ω |u| 2 dx

•

On the contrary, for λ = 0, the problem (5) has no solution if Ω is star-shaped around the origin. In dimension n = 3, the situation is more subtle. For example, if Ω = {x ∈ R 3 ; |x| < 1}, then (5) admits solutions for λ ∈] π 2 4 , π 2 [ but has none if λ ∈]0, π 2 4 [. See also [START_REF] Crouau | Critical Sobolev exponent and the dimension three[END_REF] for the behavior of solutions when λ → (π 2 /4) + and for generalizations to general domains.

A first attempt to the case β = 0 but with k = 0 (i.e. a weight that does not depend on u, which is the semi-linear case) was achieved in [START_REF] Hadiji | Problem with critical Sobolev exponent and with weight[END_REF]. More precisely, [START_REF] Hadiji | Problem with critical Sobolev exponent and with weight[END_REF] deals with a weight p ∈ H 1 (Ω) ∩ C( Ω) that admits a global minimum of the form

p(x) = p 0 + c|x -a| β + o |x -a| β , c > 0.
They show that for n ≥ 3 and β > 0, there exists λ 0 ≥ 0 such that (4) admits a solution for any λ ∈]λ 0 , λ 1 [ where λ 1 is the first eigenvalue of the operator -div (p(x)∇•) in Ω, with Dirichlet boundary conditions (and for n ≥ 4 and β > 2, one can check that λ 0 = 0). On the contrary, the problem (4) admits no solution if λ ≤ λ ′ 0 for some λ ′ 0 ∈ [0; λ 0 ] or for λ ≥ λ 1 . See [START_REF] Hadiji | Problem with critical Sobolev exponent and with weight[END_REF] for more precise statements. Similarly, the semi-linear case in which the minimum value of the weight is achieved in more than one point was studied in [START_REF] Hadiji | Localization of solutions for nonlinear elliptic problems with critical growth[END_REF] ; namely in dimension n ≥ 4 if

p -1 inf x∈Ω p(x) = {a 0 , a 1 , . . . , a N }
then multiple solutions that concentrate around each of the a j can be found for λ > 0 small enough.

For λ = 0 and a star-shaped domain, it is well known (see [START_REF] Brezis | Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[END_REF]) that the linear problem β = k = 0 has no solution. However, when the topology of the domain is not trivial, the problem (3) has at least one solution (see [START_REF] Coron | Topologie et cas limite des injections de Sobolev[END_REF] for β = k = 0 ; [START_REF] Hadiji | Localization of solutions for nonlinear elliptic problems with critical growth[END_REF] and [START_REF] Hadiji | Problem with critical Sobolev exponent and with weight[END_REF] for k = 0, β = 0).

Ideas and main results

In this article, the introduction of the fully non-linear term |x| β |u| k in (1) provides a more unified approach and generates a sharp contrast between sub-and super-critical cases. Moreover, the existence of minimizers will be shown to occur exactly in the sub-cases where the nonlinearity is dominant.

The critical value for (1) can be found by the following scaling argument. As 0 ∈ Ω, the non-linear term tends to concentrate minimizing sequences around x = 0. Let us therefore consider the blow-up of u ∈ H 1 0 (Ω) around x = 0. This means one looks at the function v ε defined by :

∀ε > 0, u(x) = ε -n/q v ε (x/ε). ( 6 
) One has v ε ∈ H 1 0 (Ω ε ) with Ω ε = {ε -1 y ; y ∈ Ω} and v ε L q (Ωε) = u L q (Ω)
. Moreover, the definition of q ensures that 2 -n + 2n q = 0, thus :

I Ω;β,k (u) = Ωε 1 + ε β-kn q |y| β |v ε (y)| k |∇v ε (y)| 2 dy. (7) 
Depending on the ratio β/k, different situations occur.

• If β k < n q leading term of the blow-up around x = 0 is

I Ω;β,k (u) ∼ ε→0 ε -kn q -β Ωε |y| β |v ε (y)| k |∇v ε (y)| 2 dy.
One can expect the effect of the non-linearity to be dominant and one will show in this paper that (1) admits indeed minimizers in this case.

• If β k = n q both terms have the same weight and ∀ε > 0,

I Ω;β,k (u) = I Ωε;β,k (v ε ).
One will show that, similarly to the classical case β = k = 0, the corresponding infimum S(β, k) does not depends on Ω and that (1) admits no smooth minimizer.

• If β k > n q , the blow-up around 0 gives

I Ω;β,k (u) ∼ ε→0 Ωε |∇v ε (y)| 2 dy.
In this case, one can show that the linear behavior is dominant and that (1) admits no minimizer. Moreover, one can find a common minimizing sequences for both the linear and the non-linear problem. A cheap way to justify this is as follows. The problem (1) tends to concentrate u as a radial decreasing function around the origin. Thus, when β/k > n/q, one can expect |u(x)| q ≪ 1/|x| βq/k because the right-hand side would not be locally integrable while the lefthand side is required to. In turn, this inequality reads |x| β |u(x)| k ≪ 1 which eliminates the non-linear contribution in the minimizing problem [START_REF] Aubin | Equations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire[END_REF].

The infimum for the classical problem with β = k = 0 is (see e.g. [START_REF] Brezis | Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[END_REF]) :

S = inf w∈H 1 0 (Ω) w L q =1 Ω |∇w| 2 (8) 
which does not depend on Ω. Let us now state the main Theorem concerning (1).

Theorem 1 Let Ω ⊂ R n a smooth bounded domain with n ≥ 3 and q = 2n n-2 the critical exponent for the Sobolev injection H 1 0 (Ω) ⊂ L q (Ω).

1. If 0 ≤ β < kn/q then S Ω (β, k) > S and the infimum for S Ω (β, k) is achieved.

2. If β = kn/q then S Ω (β, k) does not depend on Ω and S Ω (β, k) ≥ S. Moreover, if Ω is star-shaped around x = 0, then the minimizing problem (1) admits no minimizers in the class :

H 1 0 ∩ H 3/2 ∩ L ∞ (Ω).
If k < 1, the negative result holds, provided additionally u k-1 ∈ L n (Ω).

3. If β > kn/q then S Ω (β, k) = S and the infimum for S Ω (β, k) is not achieved in H 1 0 (Ω).

Remarks.

1. In the first case, one has k > 0, thus results concerning k = 0 (such as those of e.g. [START_REF] Hadiji | Localization of solutions for nonlinear elliptic problems with critical growth[END_REF] and [START_REF] Hadiji | Problem with critical Sobolev exponent and with weight[END_REF]) are included either in our second or third case.

2. If the minimizing problem (1) is achieved for u ∈ H 1 0 (Ω), then |u| is a positive minimizer. In particular, if β < kn/q, the problem always admits positive minimizers.

3. In the critical case β = kn/q, it is not known wether a non-smooth minimizer could exist in

H 1 0 \(H 3/2 ∩ L ∞
). Such a minimizer could have a non-constant sign. This paper is organized as follows. In section 2 we establish existence of minimizers of (1) for the subcritical case. Section 3 and Section 4 are devoted to study respectively the case β > kn/q and the critical case.

2 Subcritical case (0 ≤ β < kn/q) : existence of minimizers

The case β < kn/q is especially interesting because it reveals that the non-linear weight |u| k helps for the existence of a minimizer. Note that k > 0 throughout this section.

Proposition 2 If 0 ≤ β k < n q , the minimization problem (1) has at least one solution u ∈ H 1 0 (Ω). Moreover, one has

S Ω (β, k) > S ( 9 
)
where S is defined by [START_REF] Hadiji | Solutions positives de l'équation -∆u = u p + µu q dans un domaine à trou[END_REF].

Proof. Let us prove first that the existence of a solution implies the strict inequality in [START_REF] Hadiji | Localization of solutions for nonlinear elliptic problems with critical growth[END_REF]. By contradiction, if S Ω (β, k) = S and if u is a minimizer for (1) thus u ≡ 0, one has

S = Ω (1 + |x| β |u(x)| k )|∇u(x)| 2 dx > Ω |∇u(x)| 2 dx
which contradicts the definition of S. Thus, if the minimization problem has a solution, the strict inequality (9) must hold.

Let us prove now that (1) has at least one solution u ∈ H 1 0 (Ω). Let (u j ) j∈N ∈ H 1 0 (Ω) be a minimizing sequence for (1), i.e. :

I Ω;β,k (u j ) = S Ω (β, k) + o(1), and 
u j L q = 1.
As noticed in the introduction, one can assume without restriction that u j ≥ 0. Up to a subsequence, still denoted by u j , there exists u ∈ H 1 0 (Ω) such that u j (x) → u(x) for almost every x ∈ Ω and such that :

u j ⇀ u weakly in H 1 0 ∩ L q (Ω), u j → u strongly in L ℓ (Ω) for any ℓ < q.
The idea of the proof is to introduce v j = u k 2 +1 j and prove that v j is a bounded sequence in W 1,r 0 ⊂ L p for indices r and p such that

p k 2 + 1 ≥ q.
The key point is the formula :

I Ω;β,k (u j ) = Ω |∇u j | 2 + k 2 + 1 -2 Ω |x| β |∇v j | 2 (10) 
which gives "almost" an H 1 0 bound on v j (and does indeed if β = 0). For r ∈ [1, 2[, one has :

Ω |∇v j | r ≤ Ω |x| β |∇v j | 2 dx r/2 Ω |x| -βr 2-r dx 1-r/2
The integral in the right-hand side is bounded provided βr 2-r < n. All the previous conditions are satisfied if one can find r such that :

1 ≤ r < 2, β < n 2 r -1 , k 2 + 1 > q p 0 = q 1 r - 1 n .
This system of inequalities boils down to :

1 ≤ r < 2, β n < 2 r -1 < 2 q k 2 + 1 + q n - 1 
which is finally equivalent to β < kn/q provided k ≤ q. Using the compacity of the inclusion W 1,r 0 ⊂ L p for p < p 0 and up to a subsequence, one has v j → v = u k 2 +1 strongly in L p (in particular for p = q k/2+1 ). Finally, as u j ≥ 0 and u ≥ 0, one has :

|u j -u| q ≤ C u q j -u q = C v q/(k/2+1) j -v q/(k/2+1)
and thus u j → u strongly in L q . One gets u L q = 1. The following compacity result then implies that u is a minimizer for (1).

Proposition 3 If u j ∈ H 1 0 (Ω) is a minimizing sequence for (1) with u j L q (Ω) = 1 and such that

u j → u in L 2 (Ω)
, and ∇u j ⇀ ∇u weakly in L 2 (Ω), the weak limit u ∈ H 1 0 (Ω) is a minimizer of the problem (1) if and only if u L q (Ω) = 1.

Proof. It is an consequence of the main Theorem of [7, p. 77] (see also [START_REF] Struwe | Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems[END_REF]) applied to the function :

f (x, z, p) = (1 + |x| β |z| k )|p| 2
which is positive, measurable on Ω × R × R n , continuous with respect to z, convex with respect to p.

Then I(u) = Ω f (x, u, ∇u) ≤ lim inf j→∞ Ω f (x, u j , ∇u j ) = lim inf j→∞ I(u j ).
If u j is a minimizing sequence, then I(u) = S Ω (β, k) and u is a minimizer if and only if u L q = 1.

Remarks

• The sequence u j converges strongly in H 1 0 (Ω) towards u because ∇u j ⇀ ∇u weakly in L 2 (Ω) and :

Ω |∇u j | 2 - Ω |∇u| 2 = I(u j ) -I(u) + Ω |x| β u k |∇u| 2 - Ω |x| β u k j |∇u j | 2 .
Using again Theorem of [7, p. 77] with f (x, z, p)

= |x| β |z| k |p| 2 provides ∀j ∈ N, Ω |∇u j | 2 ≤ Ω |∇u| 2 + o(1)
and Fatou's lemma provides the converse inequality.

• This proof implies also that S Ω (β, k) is continuous with respect to (β, k) in the range 0 ≤ β < kn/q and that the corresponding minimizer depends continuously on (β, k) in L q (Ω) and H 1 0 (Ω).

3 Semi-linear case (β > kn/q) : non-compact minimizing sequence

When β > kn/q, the problem ( 1) is under the total influence of the linear problem [START_REF] Hadiji | Solutions positives de l'équation -∆u = u p + µu q dans un domaine à trou[END_REF]. Let us recall that its minimizer S is independent of the smooth bounded domain Ω ⊂ R n (n ≥ 3) and that this minimizing problem has no solution. According to [START_REF] Brezis | Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[END_REF], a minimizing sequence of ( 8) is given by u ε -1 L q u ε where :

u ε (x) = ε n-2 4 ζ(x) (ε + |x| 2 ) n-2 2 (11) with ζ ∈ C ∞ ( Ω; [0, 1]
) is a smooth compactly supported cutoff function that satisfy ζ(x) = 1 in a small neighborhood of the origin in Ω. Recall that n-2 2 = n/q. Recall that (k + 1)(n -2) > kn/q for any k ≥ 0. We know from [START_REF] Brezis | Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[END_REF] that

∇u ε 2 L 2 = K 1 + O(ε n-2 2 ), u ε 2 L q = K 2 + o(ε n-2 2 )
and that

S = K 1 /K 2 .
The goal of this section is the proof of the following Proposition.

Proposition 4 If β k > n q , one has S Ω (β, k) = S ( 12 
)
and the problem (1) admits no minimizer in H 1 0 (Ω). Moreover, the sequence u ε -1

L q u ε defined by ( 11) is a minimizing sequence for both (1) and the linear problem [START_REF] Hadiji | Solutions positives de l'équation -∆u = u p + µu q dans un domaine à trou[END_REF].

Proof. Suppose by contradiction that ( 1) is achieved by u ∈ H 1 0 (Ω). Then u = 0 and therefore the following strict inequality holds :

S ≤ Ω |∇u| 2 < I Ω;β,k (u) = S Ω (β, k).
Therefore the identity [START_REF] Lions | The concentrationcompactness principle in the calculus of variations. The limit case[END_REF] implies that (1) has no minimizer. To prove [START_REF] Lions | The concentrationcompactness principle in the calculus of variations. The limit case[END_REF] and the rest of the statement, it is sufficient to show that

I Ω;β,k u ε -1 L q u ε = S + o(1) (13) 
in the limit ε → 0, because one obviously has S ≤ S Ω (β, k) ≤ I Ω;β,k ( u ε -1

L q u ε ). The limit (13) will follow immediately from the next result.

Proposition 5 With the previous notations, (13) holds and more precisely, as ε → 0, one has :

Ω |x| β |u ε | k |∇u ε | 2 dx =            Cε 2β-k(n-2) 4 + o ε 2β-k(n-2) 4 if kn q < β < (k + 1)(n -2) O ε (k+2)(n-2) 4 | log ε| if β = (k + 1)(n -2) O ε (k+2)(n-2) 4 if β > (k + 1)(n -2) ( 14 
)
with C = R n |x| β+2 (1 + |x| 2 ) kn-2 2 +n
dx and thus :

I Ω;β,k u ε u ε L q = S +          C K k/2+1 2 ε 2β-k(n-2) 4 + o(ε 2β-k(n-2) 4 ) if kn q < β < (k + 1)(n -2) O(ε (k+2)(n-2) 4 | log ε|) if β = (k + 1)(n -2) O(ε (k+2)(n-2) 4 ) if β > (k + 1)(n -2). (15) 
Proof. The only verification is that of [START_REF] Struwe | Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems[END_REF].

Ω |x| β |u ε | k |∇u ε | 2 dx = (n -2) 2 ε (k+2)(n-2) 4 Ω |ζ(x)| k+2 |x| β+2 (ε + |x| 2 ) k(n-2) 2 +n dx + ε (k+2)(n-2) 4 Ω |ζ(x)| k |∇ζ(x)| 2 |x| β (ε + |x| 2 ) (k+2)(n-2) 2 dx -2(n -2)ε (k+2)(n-2) 4 Ω |ζ(x)| k+1 |x| β ∇ζ(x).x (ε + |x| 2 ) k(n-2) 2
+n-1 dx.

Since ζ ≡ 1 on a neighborhood of 0 and using the Dominated Convergence Theorem, a direct computation gives

Ω |x| β |u ε | k |∇u ε | 2 dx = (n -2) 2 ε (k+2)(n-2) 4 Ω |ζ(x)| k+2 |x| β+2 (ε + |x| 2 ) k(n-2) 2 +n dx + O(ε (k+2)(n-2) 4
).

Here we will consider the following three subcases.

1. Case β < (k + 1)(n -2) ε (k+2)(n-2) 4 Ω |ζ(x)| k+2 |x| β+2 (ε + |x| 2 ) k(n-2) 2 +n dx = R n ε (k+2)(n-2) 4 |x| β+2 (ε + |x| 2 ) k(n-2) 2 +n dx - R n \Ω ε (k+2)(n-2) 4 |x| β+2 (ε + |x| 2 ) k(n-2) 2 +n dx + Ω ε (k+2)(n-2) 4 (|ζ(x)| k+2 -1)|x| β+2 (ε + |x| 2 ) k(n-2) 2 +n dx.
Using the Dominated Convergence Theorem, and the fact that ζ ≡ 1 on a neighborhood of 0, one obtains

ε (k+2)(n-2) 4 Ω |ζ(x)| k+2 |x| β+2 (ε + |x| 2 ) k(n-2) 2 +n dx = R n ε (k+2)(n-2) 4 |x| β+2 (ε + |x| 2 ) k(n-2) 2 +n dx + O(ε (k+2)(n-2) 4
).

By a simple change of variable, one gets

ε (k+2)(n-2) 4 Ω |ζ(x)| k+2 |x| β+2 (ε + |x| 2 ) k(n-2) 2 +n dx = ε 2β-k(n-2) 4 R n |y| β+2 (1 + |y| 2 ) k(n-2) 2 +n dy + o(ε 2β-k(n-2) 4
) which gives ( 14) in this case.

2. Case β = (k + 1)(n -2) Ω |x| β |u ε | k |∇u ε | 2 dx = (n -2) 2 ε (k+2)(n-2) 4 Ω |ζ(x)| k+2 |x| k(n-2)+n (ε + |x| 2 ) k(n-2) 2 +n dx + O(ε (k+2)(n-2) 4 ) = (n -2) 2 ε (k+2)(n-2) 4 Ω (|ζ(x)| k+2 -1)|x| k(n-2)+n (ε + |x| 2 ) k(n-2) 2 +n dx +(n -2) 2 ε (k+2)(n-2) 4 Ω |x| k(n-2)+n (ε + |x| 2 ) k(n-2) 2 +n dx + O(ε (k+2)(n-2) 4 ) = (n -2) 2 ε (k+2)(n-2) 4 Ω |x| k(n-2)+n (ε + |x| 2 ) k(n-2) 2 +n dx + O(ε (k+2)(n-2) 4
)

One has, for some constants R 1 < R 2 :

B(0,R 1 )
|x| k(n-2)+n

(ε + |x| 2 ) k(n-2) 2 +n dx ≤ Ω |x| k(n-2)+n (ε + |x| 2 ) k(n-2) 2 +n dx ≤ B(0,R 2 ) |x| k(n-2)+n (ε + |x| 2 ) k(n-2) 2 +n dx with B(0,R) |x| k(n-2)+n (ε + |x| 2 ) k(n-2) 2 +n dx = ω n R 0 r k(n-2)+2n-1 (ε + r 2 ) k (n-2) 2 +n dr = 1 2 ω n | log ε| + O(1).
Consequently, one has :

Ω |x| β |u ε | k |∇u ε | 2 dx = O ε (k+2)(n-2) 4
| log ε| .

Case

β > (k + 1)(n -2) Ω |x| β |u ε | k |∇u ε | 2 dx = (n -2) 2 ε (k+2)(n-2) 4 Ω |ζ(x)| k+2 |x| β+2 (ε + |x| 2 ) k(n-2) 2 +n dx + O(ε (k+2)(n-2) 4
).

One can apply the Dominated Convergence Theorem :

|ζ(x)| k+2 |x| β+2 (ε + |x| 2 ) k(n-2) 2 +n -→ |ζ(x)| k+2 |x| β-(k(n-2)+2n-2) when ε → 0 and |ζ(x)| k+2 |x| β+2 (ε + |x| 2 ) k(n-2) 2 +n ≤ |ζ(x)| k+2 |x| β-(k(n-2)+2n-2) ∈ L 1 (Ω).
So, it follows that

Ω |x| β |u ε | k |∇u ε | 2 dx = O(ε (k+2)(n-2) 4
) which again is [START_REF] Struwe | Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems[END_REF].

In the following argument, inspired by [START_REF] Pohozaev | On the eigenfunctions of the equation ∆u + λf (u) = 0[END_REF], one will use (x • ∇)u and u as test functions. The later is fine but the former must be checked out carefully. A brutal assumption like (x

• ∇)u ∈ H 1 0 ∩ L ∞ (Ω) is much too restrictive. Let us assume instead that u ∈ H 1 0 ∩ H 3/2 ∩ L ∞ and (if k < 1) u k-1 ∈ L n (Ω). ( 17 
)
Note that if v ∈ H 3/2 then |v| ∈ H 3/2 thus the assumption u ≥ 0 still holds without loss of generality.

Then one can find a sequence

φ n ∈ H 1 0 ∩ L ∞ (Ω) such that φ n → φ = (x • ∇)u in H 1/2
(Ω) and almost everywhere and such that each sequence of integrals converges to the expected limit :

(-∆u|φ n ) → (-∆u|φ), (u k |φ n ) → (u k |φ) (u k-1 ∇u|φ n ) → (u k-1 ∇u|φ) and (u q-1 |φ n ) → (u q-1 |φ).
Indeed, each integral satisfies a domination assumption :

|(-∆u|φ n -φ)| ≤ u H 3/2 φ n -φ H 1/2 , |(u k |φ n -φ)| ≤ u k L 2n/(n+1) φ n -φ L 2n/(n-1) ≤ C Ω u k L ∞ φ n -φ H 1/2 , |(u k-1 ∇u|φ n -φ)| ≤        u k-1 L ∞ ∇u L 2 φ n -φ L 2 if k ≥ 1, u k-1 L n ∇u L 2n/(n-1) φ n -φ L 2n/(n-1) ≤ C Ω u k-1 L n u H 3/2 φ n -φ H 1/2 if k < 1, |(u q-1 |φ n -φ)| ≤ u q-1 L 2n/(n+1) φ n -φ L 2n/(n-1) ≤ C Ω u q-1 L ∞ φ n -φ H 1/2 .
Thus, the Euler-Lagrange is also satisfied in the weak sense for the test-function φ = (x • ∇)u.

Let us multiply by (x • ∇)u and integrate by parts :

-

Ω div (p(x, u)∇u) × (x • ∇)u + k 2 Ω |x| β |u| k-2 |∇u| 2 u(x • ∇)u = µ Ω |u| q-2 u(x • ∇)u.
An integration by part in the right-hand side and the condition u ∈ H 1 0 (Ω) provide :

µ Ω |u| q-2 u(x • ∇)u = -µ n -2 2 Ω |u| q = - n q µ.
The first term of the left-hand side is :

-

Ω div (p(x, u)∇u) × (x • ∇)u = B(u) + Ω p(x, u)|∇u| 2 - ∂Ω p(x, u) (x • ∇)u ∂u ∂ν
with B(u) define as follows and dealt with by a second integration by part

B(u) = i,j Ω x j 1 + |x| β |u| k (∂ i u)(∂ i ∂ j u) = -B(u) -n Ω p(x, u)|∇u| 2 -β Ω |x| β |u| k |∇u| 2 -k Ω |x| β |u| k-2 |∇u| 2 u(x • ∇)u + ∂Ω p(x, u)|∇u| 2 (x • n).
On the boundary, p(x, u) = 1 and as u ∈ H 1 0 (Ω), one has also ∇u = ∂u ∂ν n where n denotes the normal unit vector to ∂Ω and in particular |∇u| = | ∂u ∂ν |, thus

B(u) = - n 2 Ω p(x, u)|∇u| 2 - β 2 Ω |x| β |u| k |∇u| 2 - k 2 Ω |x| β |u| k-2 |∇u| 2 u(x • ∇)u + 1 2 ∂Ω ∂u ∂ν 2 (x • n).
The whole energy estimate with (x • ∇)u boils down to :

n -2 2 Ω p(x, u)|∇u| 2 + β 2 Ω |x| β |u| k |∇u| 2 + 1 2 ∂Ω ∂u ∂ν 2 (x • n) = n q µ.
Finally, to deal with the first term, let us multiply (3) by u and integrate by parts ; one gets : Combining both estimates provides :

1 2 β - kn q Ω |x| β |u| k |∇u| 2 + 1 2 ∂Ω ∂u ∂ν 2 (x • n) = 0. ( 18 
)
As β = kn/q and x • n > 0 (Ω is star-shaped), one gets ∂u ∂ν = 0 on ∂Ω.

The Euler-Lagrange equation ( 3) now reads :

-p(x, u)∆u = k 2 |x| β |u| k-2 u|∇u| 2 + β|x| β-2 |u| k (x • ∇)u + µ|u| q-2 u which for u ≥ 0 boils down to As u ∈ L ∞ , one can chose t > C 2 |x| β u k L ∞ . Then f (t, x) ≥ 0 and the maximum principle implies that either u = 0 or ∂u ∂n < 0 on ∂Ω. In particular, only the solution u = 0 satisfies simultaneously Dirichlet and Neumann boundary conditions, which leads to a contradiction because u L q = 1.

-p(x, u)∆u = |x| β-2 u k-1 k 2 |x| 2 |∇u| 2 + u(x • ∇)u + µu q-1 = |x| β-2 u k-1 k 2 |x|∇u + Cux

Remarks

1. Note that Pohozaev identity (18) prevents the existence of minimizers when β ≥ kn/q. However, the technique we used in §3 (when β > kn/q) enlightens the leading term of the problem and avoids dealing with artificial regularity assumptions.

2. Similarly, one could check that the computation is also correct if 

u ∈ H 1 0 ∩ H 2 ∩ L ∞ (Ω) and (if k < 1) u k-1 ∈ L n/

1 Introduction

 1 Given a smooth bounded open subset Ω ⊂ R n with n ≥ 3, let us consider the minimizing problemS Ω (β, k) = inf u∈H 1 0 (Ω) u L q (Ω) =1 I Ω;β,k (u) with I Ω;β,k (u) = Ω p(x, u(x))|∇u(x)| 2 dx(1)

( 1 + 2 Ω

 12 |x| β |u| k )|∇u| 2 = -k |x| β |u| k |∇u| 2 + µ.

2 -C 2 2 |x|∇u + Cux 2 +

 2222 |x| β u k+1 + µu q-1 with 2 k/2C = β. For any t ∈ R, one has therefore :-∆u + tu = |x| β-2 u k-1 p(x, u) k µu q-1 p(x, u) + tu -C 2 |x| β u k+1 p(x, u) = f (t, x).

  2 . (19) Assumption (19) is only preferable over (17) for k < 1. But it requires additional regularity in the interior of Ω and would not allow to assume u ≥ 0 without loss of generality because in general, v ∈ H 2 ⇒ |v| ∈ H 2 .

 [START_REF] Cordero-Erausquin | A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities[END_REF]The critical case (β = kn/q) : non-existence of smooth minimizers

The critical case is a natural generalization of the well known problem with β = k = 0. In this section, the following result will be established.

Proposition 6 If β = kn/q, one has

for any two smooth neighborhoods Ω, Ω ⊂ R n of the origin. Moreover, if Ω is star-shaped around x = 0, the minimization problem (1) admits no solution in the class :

If k < 1, the negative result holds, provided additionally u k-1 ∈ L n (Ω).

The rest of this section is devoted to the proof of this statement. Note that if the minimization problem (1) had a minimizer u with non constant sign in this class of regularity, then |u| would be a positive minimizer in the same class, thus it is sufficient to show that there are no positive minimizers.

S Ω (β, k) does not depend on the domain

If Ω ⊂ Ω ′ , there is a natural injection i :

and therefore

Conversely, let us now consider the scaling transformation (6) which, in the case of β k = n q , leaves both u L q (Ω) and I Ω;β,k (u) invariant. If u j is a minimizing sequence on Ω then v j = u j,λ -1 is an admissible sequence on Ω λ thus :

Conversely, if v j is a minimizing sequence on Ω λ then u j = v j,λ is an admissible sequence on Ω and :

This ensures that S Ω λ (β, k) = S Ω (β, k) for any λ > 0.

Finally, given two smooth bounded open subsets Ω and Ω of R n that both contain 0, one can find λ, µ > 0 such that Ω λ ⊂ Ω ⊂ Ω µ and the previous inequalities read

Pohozaev identity and the non-existence of smooth minimizers

Suppose by contradiction that a bounded minimizer u of (1) exists for some star-shaped domain Ω with β = kn/q, i.e. u ∈ H 1 0 ∩ L ∞ (Ω). As mentioned in the introduction |u| is also a minimizer thus, without loss of generality, one can also assume that u ≥ 0. Moreover, u will satisfy the Euler-Lagrange equation (3) in the weak sense, for any test-function in H 1 0 ∩ L ∞ (Ω).

Corollary 7 (Thanks to the referee) Let Ω ⊂ R n , n ≥ 3, be a smooth bounded open set containing 0. If β = kn/q then the minimization problem (1) admits no solution in the class

Proof. Take R > 0 such that Ω ⊂ B(0, R). Suppose by contradiction that u is a minimizing solution of (1) such that u ∈ H 1 (Ω)∩H 3/2 0 (Ω)∩L ∞ (Ω). Extend u by 0 to B(0, R), we obtain a minimizing solution of (1) such that u ∈ H 1 (B(0, R)) ∩ H 3/2 0 (B(0, R)) ∩ L ∞ (B(0, R)). Now, arguing as in the proof of Proposition 6, we obtain a contradicition.