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Abstract

We study the non-linear minimization problem on H1
0 (Ω) ⊂ Lq with q = 2n

n−2
:

inf
‖u‖

Lq=1

∫

Ω

(1 + |x|β |u|k)|∇u|2.

We show that minimizers exist only in the range β < kn/q which corresponds to a dominant non-
linear term. On the contrary, the linear influence for β ≥ kn/q prevents their existence.

Keywords : Critical Sobolev exponent, Minimization problem, Non-linear effects.
AMS classification : 35A01, 35A15, 35J57, 35J62.

1 Introduction

Given a smooth bounded open subset Ω ⊂ R
n with n ≥ 3, let us consider the minimizing problem

SΩ(β, k) = inf
u∈H1

0 (Ω)
‖u‖Lq(Ω)=1

IΩ;β,k(u) with IΩ;β,k(u) =

∫

Ω
p(x, u(x))|∇u(x)|2 dx (1)

and p(x, y) = 1 + |x|β |y|k. Here q = 2n
n−2 denotes the critical exponent of the Sobolev injection

H1
0 (Ω) ⊂ Lq(Ω). We restrict ourselves to the case β ≥ 0 and 0 ≤ k ≤ q. The Sobolev injection

Hs+1(Ω) into Hs(Ω) gives :

IΩ;β,k(u) ≤ ‖u‖2H1
0 (Ω) + Cs

(
sup
x∈Ω

|x|β
)
‖u‖2Hs+1(Ω) for s ≥

kn

q(k + 2)

so IΩ;β,k(u) < ∞ on a dense subset of H1
0 (Ω). Note in particular that one can have IΩ;β,k(u) < ∞

without having u ∈ L∞
loc(Ω). If 0 /∈ Ω̄, the problem is essentially equivalent to the case β = 0 thus one

will also assume from now on that 0 ∈ Ω. The case 0 ∈ ∂Ω is interesting but will not be addressed in
this paper.

For any u ∈ H1
0 (Ω), one has

IΩ;β,k(u) = IΩ;β,k(|u|) (2)

thus, when dealing with (1), one can assume without loss of generality that u ≥ 0.
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The Euler-Lagrange equation formally associated to (1) is





− div
(
p(x, u(x))∇u

)
+Q(x, u(x))|∇u(x)|2 = µ|u(x)|q−2u(x)

in Ω
u ≥ 0

u = 0 on ∂Ω

(3)

with Q(x, y) = k
2 |x|

β |y|k−2y and µ is a Lagrange multiplier. However, the logical relation between (1)
and (3) is subtle : IΩ;β,k is not Gateaux differentiable onH1

0 (Ω) because one can only expect IΩ;β,k(u) =
+∞ for a general function u ∈ H1

0 (Ω). However, if a minimizer u of (1) belongs to H1
0 ∩L∞(Ω) then,

without restriction, one can assume u ≥ 0 and for any test-function φ ∈ H1
0 ∩ L∞(Ω), one has

∀t ∈ R, IΩ;β,k

(
u+ tφ

‖u+ tφ‖Lq

)
< ∞.

A finite expansion around t = 0 then gives (3) in the weak sense, with the test-function φ.

The following generalization of (1) will be adressed in a subsequent paper :

SΩ(λ;β, k) = inf
u∈H1

0 (Ω)
‖u‖Lq(Ω)=1

JΩ;β,k(λ, u) with JΩ;β,k(λ, u) = IΩ;β,k(u)− λ

∫

Ω
|u|2. (4)

for λ > 0, which is a compact perturbation of the case λ = 0.

A first motivation can be found in the line of [4] for the study of sharp Sobolev and Gagliardo-
Nirenberg inequalities. For example, among other striking results it is shown that, for an arbitrary
norm ‖·‖ on R

n :

inf
‖u‖Lq=1

∫

Rn

‖∇u(x)‖2 dx = ‖∇h‖L2 with h(x) =
1

(c+ ‖x‖2)
n−2
2

and a constant c such that ‖h‖Lq = 1. The problem (1) can be seen as a quasi-linear generalisation
where the norm ‖·‖ measuring ∇u is allowed to depend on u itself.

This type of problem is also a toy model for the Yamabe problem which has been the source of a
large literature. The Yamabe invariant of a compact Riemannian manifold (M,g) is :

Y(M) = inf
φ∈C∞(M ;R+)
‖φ‖Lq(M)=1

∫

M

(
4n−1
n−2 |∇φ|2 + σφ2

)
dVg

where ∇ denotes the covariant derivative with respect to g and σ is the scalar curvature of g ; Y(M)
is an invariant of the conformal class C of (M,g). One can check easily that Y(M) ≤ Y(Sn). The so
called Yamabe problem which is the question of finding a manifold in C with constant scalar curvature
can be solved if Y(M) < Y(Sn). (see for example [11] for an in-depth review of this historical problem
and more precise statements).

Even though problems (1) and (4) seem of much less geometric nature, they should be considered
as a toy model of the Yamabe problem that can be played with in R

n. As it will be shown in this
paper, those toy models retain some interesting properties from their geometrical counterpart : the
functions uε that realise the infimum Y(Sn) still play a crucial role in (1) and (4) and the existence of
a solution is an exclusively non-linear effect.
Problems that resemble to (1) have an extensive literature and we refer to papers [1], [2], [5], [9] and
references therein.
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1.1 Bibliographical notes

The case β = k = 0 i.e. a constant weight p(x, y) = 1 has been addressed in the celebrated [2]
where it is shown in particular that the equation

−∆u = uq−1 + λu, u > 0 (5)

has a solution u ∈ H1
0 (Ω) if n ≥ 4 and 0 < λ < λ1(Ω) = inf

u∈H1
0 (Ω)\{0}

IΩ;0,0(u)∫
Ω |u|2dx

·

On the contrary, for λ = 0, the problem (5) has no solution if Ω is star-shaped around the origin.
In dimension n = 3, the situation is more subtle. For example, if Ω = {x ∈ R

3 ; |x| < 1}, then (5)

admits solutions for λ ∈]π
2

4 , π2[ but has none if λ ∈]0, π
2

4 [. See also [6] for the behavior of solutions
when λ → (π2/4)+ and for generalizations to general domains.

A first attempt to the case β 6= 0 but with k = 0 (i.e. a weight that does not depend on u, which is
the semi-linear case) was achieved in [10]. More precisely, [10] deals with a weight p ∈ H1(Ω) ∩C(Ω̄)
that admits a global minimum of the form

p(x) = p0 + c|x− a|β + o
(
|x− a|β

)
, c > 0.

They show that for n ≥ 3 and β > 0, there exists λ0 ≥ 0 such that (4) admits a solution for any
λ ∈]λ0, λ1[ where λ1 is the first eigenvalue of the operator − div (p(x)∇·) in Ω, with Dirichlet boundary
conditions (and for n ≥ 4 and β > 2, one can check that λ0 = 0). On the contrary, the problem (4)
admits no solution if λ ≤ λ′

0 for some λ′
0 ∈ [0;λ0] or for λ ≥ λ1. See [10] for more precise statements.

Similarly, the semi-linear case in which the minimum value of the weight is achieved in more than
one point was studied in [9] ; namely in dimension n ≥ 4 if

p−1

(
inf
x∈Ω

p(x)

)
= {a0, a1, . . . , aN}

then multiple solutions that concentrate around each of the aj can be found for λ > 0 small enough.

For λ = 0 and a star-shaped domain, it is well known (see [2]) that the linear problem β = k = 0
has no solution. However, when the topology of the domain is not trivial, the problem (3) has at least
one solution (see [5] for β = k = 0 ; [9] and [10] for k = 0, β 6= 0).

1.2 Ideas and main results

In this article, the introduction of the fully non-linear term |x|β |u|k in (1) provides a more unified
approach and generates a sharp contrast between sub- and super-critical cases. Moreover, the existence
of minimizers will be shown to occur exactly in the sub-cases where the nonlinearity is dominant.

The critical value for (1) can be found by the following scaling argument. As 0 ∈ Ω, the non-linear
term tends to concentrate minimizing sequences around x = 0. Let us therefore consider the blow-up
of u ∈ H1

0 (Ω) around x = 0. This means one looks at the function vε defined by :

∀ε > 0, u(x) = ε−n/qvε(x/ε). (6)

One has vε ∈ H1
0 (Ωε) with Ωε = {ε−1y ; y ∈ Ω} and ‖vε‖Lq(Ωε)

= ‖u‖Lq(Ω). Moreover, the definition

of q ensures that 2− n+ 2n
q = 0, thus :

IΩ;β,k(u) =

∫

Ωε

(
1 + εβ−

kn
q |y|β |vε(y)|

k
)
|∇vε(y)|

2 dy. (7)

Depending on the ratio β/k, different situations occur.
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• If β
k < n

q leading term of the blow-up around x = 0 is

IΩ;β,k(u) ∼
ε→0

ε
−
(

kn
q
−β

) ∫

Ωε

|y|β|vε(y)|
k|∇vε(y)|

2dy.

One can expect the effect of the non-linearity to be dominant and one will show in this paper
that (1) admits indeed minimizers in this case.

• If β
k = n

q both terms have the same weight and

∀ε > 0, IΩ;β,k(u) = IΩε;β,k(vε).

One will show that, similarly to the classical case β = k = 0, the corresponding infimum S(β, k)
does not depends on Ω and that (1) admits no smooth minimizer.

• If β
k > n

q , the blow-up around 0 gives

IΩ;β,k(u) ∼
ε→0

∫

Ωε

|∇vε(y)|
2dy.

In this case, one can show that the linear behavior is dominant and that (1) admits no minimizer.
Moreover, one can find a common minimizing sequences for both the linear and the non-linear
problem. A cheap way to justify this is as follows. The problem (1) tends to concentrate u
as a radial decreasing function around the origin. Thus, when β/k > n/q, one can expect
|u(x)|q ≪ 1/|x|βq/k because the right-hand side would not be locally integrable while the left-
hand side is required to. In turn, this inequality reads |x|β |u(x)|k ≪ 1 which eliminates the
non-linear contribution in the minimizing problem (1).

The infimum for the classical problem with β = k = 0 is (see e.g. [2]) :

S = inf
w∈H1

0 (Ω)
‖w‖Lq=1

∫

Ω
|∇w|2 (8)

which does not depend on Ω. Let us now state the main Theorem concerning (1).

Theorem 1 Let Ω ⊂ R
n a smooth bounded domain with n ≥ 3 and q = 2n

n−2 the critical exponent

for the Sobolev injection H1
0 (Ω) ⊂ Lq(Ω).

1. If 0 ≤ β < kn/q then SΩ(β, k) > S and the infimum for SΩ(β, k) is achieved.

2. If β = kn/q then SΩ(β, k) does not depend on Ω and SΩ(β, k) ≥ S. Moreover, if Ω is star-shaped
around x = 0, then the minimizing problem (1) admits no minimizers in the class :

H1
0 ∩H3/2 ∩ L∞(Ω).

If k < 1, the negative result holds, provided additionally uk−1 ∈ Ln(Ω).

3. If β > kn/q then SΩ(β, k) = S and the infimum for SΩ(β, k) is not achieved in H1
0 (Ω).
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Remarks.

1. In the first case, one has k > 0, thus results concerning k = 0 (such as those of e.g. [9] and [10])
are included either in our second or third case.

2. If the minimizing problem (1) is achieved for u ∈ H1
0 (Ω), then |u| is a positive minimizer. In

particular, if β < kn/q, the problem always admits positive minimizers.

3. In the critical case β = kn/q, it is not known wether a non-smooth minimizer could exist in
H1

0\(H
3/2 ∩ L∞). Such a minimizer could have a non-constant sign.

This paper is organized as follows. In section 2 we establish existence of minimizers of (1) for the
subcritical case. Section 3 and Section 4 are devoted to study respectively the case β > kn/q and the
critical case.

2 Subcritical case (0 ≤ β < kn/q) : existence of minimizers

The case β < kn/q is especially interesting because it reveals that the non-linear weight |u|k helps
for the existence of a minimizer. Note that k > 0 throughout this section.

Proposition 2 If 0 ≤ β
k < n

q , the minimization problem (1) has at least one solution u ∈ H1
0 (Ω).

Moreover, one has
SΩ(β, k) > S (9)

where S is defined by (8).

Proof. Let us prove first that the existence of a solution implies the strict inequality in (9). By
contradiction, if SΩ(β, k) = S and if u is a minimizer for (1) thus u 6≡ 0, one has

S =

∫

Ω
(1 + |x|β |u(x)|k)|∇u(x)|2dx >

∫

Ω
|∇u(x)|2dx

which contradicts the definition of S. Thus, if the minimization problem has a solution, the strict
inequality (9) must hold.

Let us prove now that (1) has at least one solution u ∈ H1
0 (Ω). Let (uj)j∈N ∈ H1

0 (Ω) be a
minimizing sequence for (1), i.e. :

IΩ;β,k(uj) = SΩ(β, k) + o(1), and ‖uj‖Lq = 1.

As noticed in the introduction, one can assume without restriction that uj ≥ 0. Up to a subsequence,
still denoted by uj, there exists u ∈ H1

0 (Ω) such that uj(x) → u(x) for almost every x ∈ Ω and such
that :

uj ⇀ u weakly in H1
0 ∩ Lq(Ω),

uj → u strongly in Lℓ(Ω) for any ℓ < q.

The idea of the proof is to introduce vj = u
k
2
+1

j and prove that vj is a bounded sequence in W 1,r
0 ⊂ Lp

for indices r and p such that

p

(
k

2
+ 1

)
≥ q.

The key point is the formula :

IΩ;β,k(uj) =

∫

Ω
|∇uj|

2 +

(
k

2
+ 1

)−2 ∫

Ω
|x|β |∇vj|

2 (10)
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which gives “almost” an H1
0 bound on vj (and does indeed if β = 0). For r ∈ [1, 2[, one has :

∫

Ω
|∇vj|

r ≤

(∫

Ω
|x|β |∇vj|

2dx

)r/2(∫

Ω
|x|−

βr
2−r dx

)1−r/2

The integral in the right-hand side is bounded provided βr
2−r < n. All the previous conditions are

satisfied if one can find r such that :

1 ≤ r < 2, β < n

(
2

r
− 1

)
,

k

2
+ 1 >

q

p0
= q

(
1

r
−

1

n

)
.

This system of inequalities boils down to :

1 ≤ r < 2,
β

n
<

2

r
− 1 <

2

q

(
k

2
+ 1 +

q

n

)
− 1

which is finally equivalent to β < kn/q provided k ≤ q. Using the compacity of the inclusionW 1,r
0 ⊂ Lp

for p < p0 and up to a subsequence, one has vj → v = u
k
2
+1 strongly in Lp (in particular for p = q

k/2+1 ).
Finally, as uj ≥ 0 and u ≥ 0, one has :

|uj − u|q ≤ C
∣∣∣uqj − uq

∣∣∣ = C
∣∣∣vq/(k/2+1)

j − vq/(k/2+1)
∣∣∣

and thus uj → u strongly in Lq. One gets ‖u‖Lq = 1. The following compacity result then implies
that u is a minimizer for (1).

Proposition 3 If uj ∈ H1
0 (Ω) is a minimizing sequence for (1) with ‖uj‖Lq(Ω) = 1 and such that

uj → u in L2(Ω), and ∇uj ⇀ ∇u weakly in L2(Ω),

the weak limit u ∈ H1
0 (Ω) is a minimizer of the problem (1) if and only if ‖u‖Lq(Ω) = 1.

Proof. It is an consequence of the main Theorem of [7, p. 77] (see also [14]) applied to the function :

f(x, z, p) = (1 + |x|β|z|k)|p|2

which is positive, measurable on Ω× R× R
n, continuous with respect to z, convex with respect to p.

Then

I(u) =

∫

Ω
f(x, u,∇u) ≤ lim inf

j→∞

∫

Ω
f(x, uj ,∇uj) = lim inf

j→∞
I(uj).

If uj is a minimizing sequence, then I(u) = SΩ(β, k) and u is a minimizer if and only if ‖u‖Lq = 1.

Remarks

• The sequence uj converges strongly in H1
0 (Ω) towards u because ∇uj ⇀ ∇u weakly in L2(Ω)

and : ∫

Ω
|∇uj |

2 −

∫

Ω
|∇u|2 = I(uj)− I(u) +

∫

Ω
|x|βuk|∇u|2 −

∫

Ω
|x|βukj |∇uj|

2.

Using again Theorem of [7, p. 77] with f̃(x, z, p) = |x|β |z|k|p|2 provides

∀j ∈ N,

∫

Ω
|∇uj|

2 ≤

∫

Ω
|∇u|2 + o(1)

and Fatou’s lemma provides the converse inequality.

• This proof implies also that SΩ(β, k) is continuous with respect to (β, k) in the range 0 ≤ β <
kn/q and that the corresponding minimizer depends continuously on (β, k) in Lq(Ω) and H1

0 (Ω).
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3 Semi-linear case (β > kn/q) : non-compact minimizing sequence

When β > kn/q, the problem (1) is under the total influence of the linear problem (8). Let us
recall that its minimizer S is independent of the smooth bounded domain Ω ⊂ R

n (n ≥ 3) and that
this minimizing problem has no solution. According to [2], a minimizing sequence of (8) is given by
‖uε‖

−1
Lq uε where :

uε(x) =
ε

n−2
4 ζ(x)

(ε+ |x|2)
n−2
2

(11)

with ζ ∈ C∞(Ω̄; [0, 1]) is a smooth compactly supported cutoff function that satisfy ζ(x) = 1 in a
small neighborhood of the origin in Ω. Recall that n−2

2 = n/q. Recall that (k + 1)(n − 2) > kn/q for
any k ≥ 0. We know from [2] that

‖∇uε‖
2
L2 = K1 +O(ε

n−2
2 ), ‖uε‖

2
Lq = K2 + o(ε

n−2
2 )

and that S = K1/K2.

The goal of this section is the proof of the following Proposition.

Proposition 4 If β
k > n

q , one has
SΩ(β, k) = S (12)

and the problem (1) admits no minimizer in H1
0 (Ω). Moreover, the sequence ‖uε‖

−1
Lq uε defined by (11)

is a minimizing sequence for both (1) and the linear problem (8).

Proof. Suppose by contradiction that (1) is achieved by u ∈ H1
0 (Ω). Then u 6= 0 and therefore the

following strict inequality holds :

S ≤

∫

Ω
|∇u|2 < IΩ;β,k(u) = SΩ(β, k).

Therefore the identity (12) implies that (1) has no minimizer. To prove (12) and the rest of the
statement, it is sufficient to show that

IΩ;β,k

(
‖uε‖

−1
Lq uε

)
= S + o(1) (13)

in the limit ε → 0, because one obviously has S ≤ SΩ(β, k) ≤ IΩ;β,k(‖uε‖
−1
Lq uε). The limit (13) will

follow immediately from the next result.

Proposition 5 With the previous notations, (13) holds and more precisely, as ε → 0, one has :

∫

Ω
|x|β|uε|

k|∇uε|
2dx =





Cε
2β−k(n−2)

4 + o
(
ε

2β−k(n−2)
4

)
if kn

q < β < (k + 1)(n − 2)

O
(
ε

(k+2)(n−2)
4 | log ε|

)
if β = (k + 1)(n − 2)

O
(
ε

(k+2)(n−2)
4

)
if β > (k + 1)(n − 2)

(14)

with C =

∫

Rn

|x|β+2

(1 + |x|2)
kn−2

2
+n

dx and thus :

IΩ;β,k

(
uε

‖uε‖Lq

)
= S +





C

K
k/2+1
2

ε
2β−k(n−2)

4 + o(ε
2β−k(n−2)

4 ) if kn
q < β < (k + 1)(n − 2)

O(ε
(k+2)(n−2)

4 | log ε|) if β = (k + 1)(n − 2)

O(ε
(k+2)(n−2)

4 ) if β > (k + 1)(n − 2).

(15)
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Proof. The only verification is that of (14).

∫

Ω
|x|β|uε|

k|∇uε|
2dx = (n− 2)2ε

(k+2)(n−2)
4

∫

Ω

|ζ(x)|k+2|x|β+2

(ε+ |x|2)
k(n−2)

2
+n

dx

+ ε
(k+2)(n−2)

4

∫

Ω

|ζ(x)|k|∇ζ(x)|2|x|β

(ε+ |x|2)
(k+2)(n−2)

2

dx

− 2(n− 2)ε
(k+2)(n−2)

4

∫

Ω

|ζ(x)|k+1|x|β∇ζ(x).x

(ε+ |x|2)
k(n−2)

2
+n−1

dx.

Since ζ ≡ 1 on a neighborhood of 0 and using the Dominated Convergence Theorem, a direct compu-
tation gives

∫

Ω
|x|β |uε|

k|∇uε|
2dx = (n− 2)2ε

(k+2)(n−2)
4

∫

Ω

|ζ(x)|k+2|x|β+2

(ε+ |x|2)
k(n−2)

2
+n

dx

+ O(ε
(k+2)(n−2)

4 ).

Here we will consider the following three subcases.

1. Case β < (k + 1)(n − 2)

ε
(k+2)(n−2)

4

∫

Ω

|ζ(x)|k+2|x|β+2

(ε+ |x|2)
k(n−2)

2
+n

dx =

∫

Rn

ε
(k+2)(n−2)

4 |x|β+2

(ε+ |x|2)
k(n−2)

2
+n

dx−

∫

Rn\Ω

ε
(k+2)(n−2)

4 |x|β+2

(ε+ |x|2)
k(n−2)

2
+n

dx

+

∫

Ω

ε
(k+2)(n−2)

4 (|ζ(x)|k+2 − 1)|x|β+2

(ε+ |x|2)
k(n−2)

2
+n

dx.

Using the Dominated Convergence Theorem, and the fact that ζ ≡ 1 on a neighborhood of 0, one
obtains

ε
(k+2)(n−2)

4

∫

Ω

|ζ(x)|k+2|x|β+2

(ε+ |x|2)
k(n−2)

2
+n

dx =

∫

Rn

ε
(k+2)(n−2)

4 |x|β+2

(ε+ |x|2)
k(n−2)

2
+n

dx+O(ε
(k+2)(n−2)

4 ).

By a simple change of variable, one gets

ε
(k+2)(n−2)

4

∫

Ω

|ζ(x)|k+2|x|β+2

(ε+ |x|2)
k(n−2)

2
+n

dx = ε
2β−k(n−2)

4

∫

Rn

|y|β+2

(1 + |y|2)
k(n−2)

2
+n

dy + o(ε
2β−k(n−2)

4 )

which gives (14) in this case.
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2. Case β = (k + 1)(n − 2)

∫

Ω
|x|β |uε|

k|∇uε|
2dx = (n− 2)2ε

(k+2)(n−2)
4

∫

Ω

|ζ(x)|k+2|x|k(n−2)+n

(ε+ |x|2)
k(n−2)

2
+n

dx+O(ε
(k+2)(n−2)

4 )

= (n− 2)2ε
(k+2)(n−2)

4

∫

Ω

(|ζ(x)|k+2 − 1)|x|k(n−2)+n

(ε+ |x|2)
k(n−2)

2
+n

dx

+(n− 2)2ε
(k+2)(n−2)

4

∫

Ω

|x|k(n−2)+n

(ε+ |x|2)
k(n−2)

2
+n

dx+O(ε
(k+2)(n−2)

4 )

= (n− 2)2ε
(k+2)(n−2)

4

∫

Ω

|x|k(n−2)+n

(ε+ |x|2)
k(n−2)

2
+n

dx+O(ε
(k+2)(n−2)

4 )

One has, for some constants R1 < R2 :

∫

B(0,R1)

|x|k(n−2)+n

(ε+ |x|2)
k(n−2)

2
+n

dx ≤

∫

Ω

|x|k(n−2)+n

(ε+ |x|2)
k(n−2)

2
+n

dx ≤

∫

B(0,R2)

|x|k(n−2)+n

(ε+ |x|2)
k(n−2)

2
+n

dx

with

∫

B(0,R)

|x|k(n−2)+n

(ε+ |x|2)
k(n−2)

2
+n

dx = ωn

∫ R

0

rk(n−2)+2n−1

(ε+ r2)k
(n−2)

2
+n

dr

=
1

2
ωn| log ε|+O(1).

Consequently, one has :

∫

Ω
|x|β |uε|

k|∇uε|
2dx = O

(
ε

(k+2)(n−2)
4 | log ε|

)
.

3. Case β > (k + 1)(n − 2)

∫

Ω
|x|β |uε|

k|∇uε|
2dx = (n− 2)2ε

(k+2)(n−2)
4

∫

Ω

|ζ(x)|k+2|x|β+2

(ε+ |x|2)
k(n−2)

2
+n

dx+O(ε
(k+2)(n−2)

4 ).

One can apply the Dominated Convergence Theorem :

|ζ(x)|k+2|x|β+2

(ε+ |x|2)
k(n−2)

2
+n

−→ |ζ(x)|k+2|x|β−(k(n−2)+2n−2) when ε → 0

and

|ζ(x)|k+2|x|β+2

(ε+ |x|2)
k(n−2)

2
+n

≤ |ζ(x)|k+2|x|β−(k(n−2)+2n−2) ∈ L1(Ω).

So, it follows that

∫

Ω
|x|β |uε|

k|∇uε|
2dx = O(ε

(k+2)(n−2)
4 )

which again is (14).
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4 The critical case (β = kn/q) : non-existence of smooth minimizers

The critical case is a natural generalization of the well known problem with β = k = 0. In this
section, the following result will be established.

Proposition 6 If β = kn/q, one has

SΩ(β, k) = SΩ̃(β, k) (16)

for any two smooth neighborhoods Ω, Ω̃ ⊂ R
n of the origin. Moreover, if Ω is star-shaped around

x = 0, the minimization problem (1) admits no solution in the class :

H1
0 ∩H3/2 ∩ L∞(Ω).

If k < 1, the negative result holds, provided additionally uk−1 ∈ Ln(Ω).

The rest of this section is devoted to the proof of this statement. Note that if the minimization
problem (1) had a minimizer u with non constant sign in this class of regularity, then |u| would be a
positive minimizer in the same class, thus it is sufficient to show that there are no positive minimizers.

4.1 SΩ(β, k) does not depend on the domain

If Ω ⊂ Ω′, there is a natural injection i : H1
0 (Ω) →֒ H1

0 (Ω
′) that corresponds to the process of

extension by zero. Let uj ∈ H1
0 (Ω) be a minimizing sequence for SΩ(β, k). Then ‖i(uj)‖Lq(Ω′) = 1

thus
SΩ′(β, k) ≤ IΩ′;β,k(i(uj)) = IΩ;β,k(uj)

and therefore SΩ′(β, k) ≤ SΩ(β, k).

Conversely, let us now consider the scaling transformation (6) which, in the case of β
k = n

q , leaves
both ‖u‖Lq(Ω) and IΩ;β,k(u) invariant. If uj is a minimizing sequence on Ω then vj = uj,λ−1 is an
admissible sequence on Ωλ thus :

SΩλ
(β, k) ≤ IΩλ;β,k(vj) = IΩ;β,k(uj) → SΩ(β, k).

Conversely, if vj is a minimizing sequence on Ωλ then uj = vj,λ is an admissible sequence on Ω and :

SΩ(β, k) ≤ IΩ;β,k(uj) = IΩλ;β,k(vj) → SΩλ
(β, k).

This ensures that SΩλ
(β, k) = SΩ(β, k) for any λ > 0.

Finally, given two smooth bounded open subsets Ω and Ω̃ of Rn that both contain 0, one can find
λ, µ > 0 such that Ωλ ⊂ Ω̃ ⊂ Ωµ and the previous inequalities read

SΩµ(β, k) ≤ SΩ̃(β, k) ≤ SΩλ
(β, k) and SΩ(β, k) = SΩλ

(β, k) = SΩµ(β, k)

thus ensuring SΩ(β, k) = SΩ̃(β, k).

4.2 Pohozaev identity and the non-existence of smooth minimizers

Suppose by contradiction that a bounded minimizer u of (1) exists for some star-shaped domain Ω
with β = kn/q, i.e. u ∈ H1

0 ∩ L∞(Ω). As mentioned in the introduction |u| is also a minimizer thus,
without loss of generality, one can also assume that u ≥ 0. Moreover, u will satisfy the Euler-Lagrange
equation (3) in the weak sense, for any test-function in H1

0 ∩ L∞(Ω).
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In the following argument, inspired by [13], one will use (x ·∇)u and u as test functions. The later
is fine but the former must be checked out carefully. A brutal assumption like (x · ∇)u ∈ H1

0 ∩L∞(Ω)
is much too restrictive. Let us assume instead that

u ∈ H1
0 ∩H3/2 ∩ L∞ and (if k < 1) uk−1 ∈ Ln(Ω). (17)

Note that if v ∈ H3/2 then |v| ∈ H3/2 thus the assumption u ≥ 0 still holds without loss of generality.
Then one can find a sequence φn ∈ H1

0 ∩ L∞(Ω) such that φn → φ = (x · ∇)u in H1/2(Ω) and almost
everywhere and such that each sequence of integrals converges to the expected limit :

(−∆u|φn) → (−∆u|φ), (uk|φn) → (uk|φ)

(uk−1∇u|φn) → (uk−1∇u|φ) and (uq−1|φn) → (uq−1|φ).

Indeed, each integral satisfies a domination assumption :

|(−∆u|φn − φ)| ≤ ‖u‖H3/2 ‖φn − φ‖H1/2 ,

|(uk|φn − φ)| ≤ ‖uk‖L2n/(n+1) ‖φn − φ‖L2n/(n−1) ≤ CΩ ‖u‖kL∞ ‖φn − φ‖H1/2 ,

|(uk−1∇u|φn − φ)| ≤





‖u‖k−1
L∞ ‖∇u‖L2 ‖φn − φ‖L2 if k ≥ 1,

‖uk−1‖Ln ‖∇u‖L2n/(n−1) ‖φn − φ‖L2n/(n−1)

≤ CΩ‖u
k−1‖Ln ‖u‖H3/2 ‖φn − φ‖H1/2 if k < 1,

|(uq−1|φn − φ)| ≤ ‖uq−1‖L2n/(n+1) ‖φn − φ‖L2n/(n−1) ≤ CΩ ‖u‖q−1
L∞ ‖φn − φ‖H1/2 .

Thus, the Euler-Lagrange is also satisfied in the weak sense for the test-function φ = (x · ∇)u.

Let us multiply by (x · ∇)u and integrate by parts :

−

∫

Ω
div (p(x, u)∇u)× (x · ∇)u+

k

2

∫

Ω
|x|β |u|k−2|∇u|2u(x · ∇)u = µ

∫

Ω
|u|q−2u(x · ∇)u.

An integration by part in the right-hand side and the condition u ∈ H1
0 (Ω) provide :

µ

∫

Ω
|u|q−2u(x · ∇)u = −µ

n− 2

2

∫

Ω
|u|q = −

n

q
µ.

The first term of the left-hand side is :

−

∫

Ω
div (p(x, u)∇u)× (x · ∇)u = B(u) +

∫

Ω
p(x, u)|∇u|2 −

∫

∂Ω
p(x, u) (x · ∇)u

∂u

∂ν

with B(u) define as follows and dealt with by a second integration by part

B(u) =
∑

i,j

∫

Ω
xj

(
1 + |x|β|u|k

)
(∂iu)(∂i∂ju)

= −B(u)− n

∫

Ω
p(x, u)|∇u|2 − β

∫

Ω
|x|β |u|k|∇u|2

− k

∫

Ω
|x|β |u|k−2|∇u|2u(x · ∇)u+

∫

∂Ω
p(x, u)|∇u|2(x · n).

On the boundary, p(x, u) = 1 and as u ∈ H1
0 (Ω), one has also ∇u = ∂u

∂νn where n denotes the normal

unit vector to ∂Ω and in particular |∇u| = |∂u∂ν |, thus

B(u) = −
n

2

∫

Ω
p(x, u)|∇u|2 −

β

2

∫

Ω
|x|β|u|k|∇u|2 −

k

2

∫

Ω
|x|β |u|k−2|∇u|2u(x ·∇)u+

1

2

∫

∂Ω

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

(x ·n).
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The whole energy estimate with (x · ∇)u boils down to :

n− 2

2

∫

Ω
p(x, u)|∇u|2 +

β

2

∫

Ω
|x|β |u|k|∇u|2 +

1

2

∫

∂Ω

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

(x · n) =
n

q
µ.

Finally, to deal with the first term, let us multiply (3) by u and integrate by parts ; one gets :

∫

Ω
p(x, u)|∇u|2 =

∫

Ω
(1 + |x|β|u|k)|∇u|2 = −

k

2

∫

Ω
|x|β |u|k|∇u|2 + µ.

Combining both estimates provides :

1

2

(
β −

kn

q

)∫

Ω
|x|β |u|k|∇u|2 +

1

2

∫

∂Ω

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

(x · n) = 0. (18)

As β = kn/q and x · n > 0 (Ω is star-shaped), one gets ∂u
∂ν = 0 on ∂Ω.

The Euler-Lagrange equation (3) now reads :

−p(x, u)∆u =
k

2
|x|β|u|k−2u|∇u|2 + β|x|β−2|u|k(x · ∇)u+ µ|u|q−2u

which for u ≥ 0 boils down to

−p(x, u)∆u = |x|β−2uk−1

(
k

2
|x|2|∇u|2 + u(x · ∇)u

)
+ µuq−1

= |x|β−2uk−1

(√
k

2
|x|∇u+ Cux

)2

− C2|x|βuk+1 + µuq−1

with 2
√

k/2C = β. For any t ∈ R, one has therefore :

−∆u+ tu =
|x|β−2uk−1

p(x, u)

(√
k

2
|x|∇u+ Cux

)2

+
µuq−1

p(x, u)
+ tu−

C2|x|βuk+1

p(x, u)
= f(t, x).

As u ∈ L∞, one can chose t > C2|x|β ‖u‖kL∞ . Then f(t, x) ≥ 0 and the maximum principle implies
that either u = 0 or ∂u

∂n < 0 on ∂Ω. In particular, only the solution u = 0 satisfies simultaneously
Dirichlet and Neumann boundary conditions, which leads to a contradiction because ‖u‖Lq = 1.

Remarks

1. Note that Pohozaev identity (18) prevents the existence of minimizers when β ≥ kn/q. However,
the technique we used in §3 (when β > kn/q) enlightens the leading term of the problem and
avoids dealing with artificial regularity assumptions.

2. Similarly, one could check that the computation is also correct if

u ∈ H1
0 ∩H2 ∩ L∞(Ω) and (if k < 1) uk−1 ∈ Ln/2. (19)

Assumption (19) is only preferable over (17) for k < 1. But it requires additional regularity
in the interior of Ω and would not allow to assume u ≥ 0 without loss of generality because in
general, v ∈ H2 6⇒ |v| ∈ H2.
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Corollary 7 (Thanks to the referee)
Let Ω ⊂ R

n, n ≥ 3, be a smooth bounded open set containing 0.
If β = kn/q then the minimization problem (1) admits no solution in the class

H1 ∩H
3/2
0 ∩ L∞(Ω).

Proof. Take R > 0 such that Ω ⊂ B(0, R).

Suppose by contradiction that u is a minimizing solution of (1) such that u ∈ H1(Ω)∩H
3/2
0 (Ω)∩L∞(Ω).

Extend u by 0 to B(0, R), we obtain a minimizing solution of (1) such that u ∈ H1(B(0, R)) ∩

H
3/2
0 (B(0, R))∩L∞(B(0, R)). Now, arguing as in the proof of Proposition 6, we obtain a contradici-

tion.
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