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Abstract
We define a generic model for finite audio or symbolic musical patterns

that structurally encodes a rich and abstract synchronization mechanism.
This is achieved by distinguishing for each pattern a realization window,
describing what the pattern is, from a synchronization window, describing
how the pattern can be used. The sequential composition of patterns is
defined and studied. An algebra of musical patterns is introduced in
a mathematically well-founded approach. We propose several high level
operators that can be used either in audio processing or in musical analysis
and composition. Practical uses and experiments conducted in both fields
are described.

1 Introduction
The last decades have seen the development of various software programs for
Computer Assisted Music either used on stage for live performances or in-
tegral to multimedia applications for rich interactive audio supports. These
software solutions range from low level sound synthesis and control tools such
as Faust [10] or Max/MSP [5], to high level composition assistants such as
Elody [18] or OpenMusic [1] to name but a few.

In some rough dichotomy, low level (audio) software applications manage the
nature of sounds: at any time quantum, they provide its value. On the opposite
side, high level (music) applications manage the structure of music: it is defined
as some combination of notes, motives, movements, etc., each with a specific
duration, dynamics, usage, etc. As there is an increasing need of mixed usage of
both software types, there is also an increasing need of structuring sounds in such
a way that high-level compositions of musical patterns can be translated into
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low-level partial superimpositions of audio patterns. This becomes especially
crucial when interactive musical pieces are to be defined and performed [6, 12].

In this paper, we consider the problems of synchronizing musical patterns,
in either the audio or symbolic case. By discriminating between the definition
of the pattern (what music is to be played) and its usage (when music is to
be played), we define an advanced synchronization mechanism. It essentially
consists in distinguishing, for every pattern, a realization window from a syn-
chronization window. Sequentially combining two audio or symbolic patterns
then amounts to sequentially combining their synchronization windows. As a
result, realization windows may overlap. The handling of overlapping patterns,
which is critical for a practical use of advanced synchronization, is defined ac-
cording to the application.

In other words, we introduce a kind of musical pattern algebra, deeply well-
founded from a mathematical point of view. Once presented this algebra (Sec-
tions 2 and 3), we illustrate its relevance for musical applications by means of
two case studies: automatic audio recomposition (Section 4) and live looping
performance (Section 5).

2 The advanced synchronization model
In this section, we define our generic model of musical patterns with advanced
synchronization information.

2.1 Basic pattern model
In both signal processing or computational music, an audio or symbolic pattern
can be abstracted as the mapping

S : [0, d]→ A ∪ {⊥},

such that [0, d] ⊆ R is the time interval on which S is defined, A is the (finite)
set of values this pattern may take at a given time and ⊥ corresponds to an
undefined value.

For convenience, we represent S on a relative time scale, hence starting at
date 0 and lasting d ∈ R. When modeling digital audio patterns, A is the set
of possible sample values, depending on the audio quantization used. When
modeling symbolic music, A is the set of all sets of control events that may be
played at the same time.

One may remark that in both audio and symbolic cases, the definition do-
main dom(S) is, a priori, a finite subset of [0, d] either defined by the sample
rate of the audio pattern, or defined by the event dates of the control pattern.
In other words, a pattern S is a partial function from [0, d] to A. To make S
total on [0, d], we introduce the additional undefined value ⊥ that is assigned
for every t ∈ [0, d] where S(t) is undefined.
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This simple definition enables considering basic operators acting on such
patterns. For instance, two musical patterns S1 and S2 with domains dom(S1) =
[0, d1] and dom(S2) = [0, d2] can be combined one after the other, in a simple
sequential fashion, into a pattern S1 ·S2 with domain dom(S1 ·S2) = [0, d1 +d2]
by taking, for all t ∈ [0, d1 + d2],

(S1 · S2)(t) =
{
S1(t) when 0 ≤ t < d1
S2(t− d1) when d1 ≤ t ≤ d1 + d2

,

where, for convenience, we assume that S1(d1) = ⊥.
The simplicity of this basic composition operator makes it appealing for

modeling purpose. It can be seen as a timed extension of the well-known con-
catenation product of strings, and its formal study already led to the rich theory
of timed languages [3].

2.2 Towards an extended model
It may be argued that this concatenation product is not usable by itself for prac-
tical musical applications. In audio processing, for instance, signal continuity is
crucial for combining patterns, in order to avoid unwanted artifacts; thus, over-
lapping patterns to produce smooth cross-fading transitions is highly desirable.
In symbolic music modeling, time signatures and associated notions of weak and
strong beats (or related notions in non-Western music) may induce constraints
on the occurrence dates of musical events. Hence, the arbitrary sequential com-
position of musical patterns is very likely to lack musical consistency.

Therefore, in both audio and symbolic cases, the sequential composition of
patterns generally requires additional parameters that accurately encode how
such patterns should be combined one with the other. The basic pattern model
introduced so far seems incomplete. It does indicate what musical patterns are
but it does not indicate how such patterns can be used.

One may observe that, in music writing, this problem is often solved by
the addition of bars. Indeed, in musical scores, musical patterns are not only
described as sequences of notes. Bars are added to describe how these musi-
cal sequences are to be played (or synchronized) one with the other. As an
example, the notion of musical anacrusis refers to a few notes that are to be
played before the first logical beat of a musical sequence. Inspired by this
synchronization mechanism encoded in music scores, we propose to enhance
the aforementioned basic composition of musical patterns in order to allow our
model to be practically meaningful. A former study of rhythm structures and
rhythm compositions [15] suggests that one may distinguish in every rhythmic
pattern a realization window, where the pattern is defined, from a synchroniza-
tion interval, that describes the usage of that pattern. This model, adapted to
musical patterns, is presented here.
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2.3 Realization and synchronization windows
In a first approach, the time structure of a musical pattern can be described by
the schema illustrated on Figure 1. The musical pattern starts at a given date
s1 and ends at a given date s4. Some subinterval described by two other dates
s2 and s3 indicates, when involved in sequential composition, how this pattern
must be combined with others. This situation is depicted on Figure 1.

s1 s4d1 s2 d3s3d2

Synchronisation Window

Realization Window

entry

exit

Figure 1: Realization vs synchronisation windows: basic case

Formally, abstracting from the date the pattern is actually fired, the time
structure of a pattern S is modeled as a triple of durations

W (S) = (d1, d2, d3) ∈ R× R+ × R,

respectively describing durations of what can be called, following the presen-
tation given in [15], the introduction, development and conclusion of pattern
S.

In this model, as soon as the above dates s1, s2, s3 and s4 are given, the
pattern durations d1, d2, d3 are defined such that:

(1) d1 = s2 − s1, with [s1, s2[ defining the introduction section,

(2) d2 = s3 − s2, with [s2, s3] defining the development section,

(3) d3 = s4 − s3, with ]s3, s4] defining the conclusion section.

The triple comprising these three specific durations is called time structure of
pattern S, and denoted by W (S). Time interval [s1, s4] is the pattern’s realiza-
tion window, and time interval [s2, s3] is the pattern’s synchronization window.

The effective duration d(S) of (the realization window of) a musical pattern
S is defined by d(S) = s4 − s1 or, equivalently, d(S) = d1 + d2 + d3. It
must not be confused with the length of the synchronization window itself,
the synchronization duration s(S), defined by s(S) = d2.

The model still makes sense when d1 and/or d3 are negative. For instance,
when both d1 and d3 are negative, introduction and conclusion of S actually
correspond to silent sections. In such a case, the induced dates of S are such
that s2 ≤ s1 ≤ s4 ≤ s3, and the resulting pattern only produces sound from s1
to s4. The induced time structure is illustrated on Figure 2, with the associated
constraint that d(S) = d1 + d2 + d3 ≥ 0, i.e. the duration of the realization
window remains positive. In that case, we have s(S) ≥ d(S).
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s1 s4d1s2 d3 s3d1+d2+d3

Realization Window

Synchronization Window

entry

exit

Figure 2: Realization vs synchronisation windows: advanced case

In all cases, the beginning of the synchronization window, at date s2, is
called entry point of pattern S, and the end of the synchronization window, at
date s3, is called exit point of S. Moreover, from now on we define the pattern
S with its associated time structure W (S) = (d1, d2, d3) on the domain

dom(S) = [−d1, d2 + d3],

where the date 0 always stands for the date of the entry point. Such a definition
turns out to be convenient for combining patterns.

When introducing the synchronization window of S, we assume that s(S) =
d2 ≥ 0. This constraint ensures that the synchronization is defined in a past-
to-future manner only. However, one might want to relax such a condition and
allow negative synchronization windows. Such a consideration would be helpful
from a mathematical point of view: it would result in manipulating a particular
monoid structure, namely an inverse monoid [17], in which, by switching the
entry and exit points of a given pattern S, one could associate the so-called
pseudo-inverse of S in inverse monoid theory.

Nevertheless, negative synchronization windows do not yet appear to be
relevant for application purpose. In all considered applications, synchronization
mechanisms are practically performed from past to future. In the absence of
negative synchronization windows, we still obtain concrete instances of monoid
structures that have been recently investigated in computer science [16, 14, 13].

2.4 Sequential composition
The purpose of distinguishing synchronization from realization is revealed when
defining sequential compositions of musical patterns. This product is defined
in two stages as a kind of concatenation of structured patterns. We first show
how time structures are combined. Then, from that combination, the effective
composition of patterns, possibly with overlaps, is described in detail.

Let S1 and S2 be two musical patterns with respective time structures
W (S1) = (x1, x2, x3) and W (S2) = (y1, y2, y3). The proposed sequential com-
position S1 · S2 of patterns S1 and S2 consists in placing the synchronization
window of S2 right after the synchronization window of S1. As a result, the
two musical patterns are positioned as described on Figure 3. The associated
patterns are then assigned the resulting time structure described on Figure 4
with x = max(x1, y2 − x2) and y = max(y3, x3 − y2).

7



y2

1 4
x1

2
x3

3x2

entry

sync. point1 4
y1

2
y3

3
exit

Figure 3: Sequential synchronization of patterns

1 4x 2 x3x2 + y2

entry
exit

Figure 4: Resulting time structure

Formally, we define W (S1 · S2) by taking

W (S1 · S2) = (max(x1, y1 − x2), x2 + y2,max(y3, x3 − y2))

In this composition, the resulting realization window of the product S1 ·S2 is de-
fined as the union of realization windows of both S1 and S2. It may be the case
that one pattern is completely included into the other; thus, durations of intro-
ductory and concluding sections in the resulting time structure are computed
by means of a max.

The value of the composition of patterns S1 and S2 with respective time
structures (x1, x2, x3) and (y1, y2, y3) is defined as follows: for all t ∈ dom(S1 ·
S2),

(S1 · S2)(t) =



S1(t)⊕ S2(t− x2) when t ∈ dom(S1) and
t− x2 ∈ dom(S2),

S1(t) when t ∈ dom(S1) and
t− x2 /∈ dom(S2),

S2(t− x2) when t /∈ dom(S1) and
t− x2 ∈ dom(S2),

⊥ otherwise

.

Note that the sum ⊕ of pattern values depends on the type of data to be
handled, and the precise semantics of that sum need to be adequately defined
depending on the application.

Observe that the hereby defined product is associative w.r.t. the underlying
time structures. More precisely, given three musical patterns S1, S2 and S3,
we have W ((S1 · S2) · S3) = W (S1 · (S2 · S3)). From a mathematical point of
view, the resulting algebraic structure is a semigroup. It should be clear that
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the associativity property is expected in order to achieve a computationally
robust formalism. Is the resulting product associative on the music patterns
themselves ? This depends on the associativity of the operator ⊕ henceforth on
the application field.

In the symbolic case, operator ⊕ can be conveniently defined as the union
of the sets of events to be performed at a given time. Associativity can thus
be guaranteed. In the audio case, operator ⊕ is often defined as the average
of sample values. In that case, the resulting product is no longer associative.
This drawback is however not a surprise as it is commonly encountered in audio
signal processing: mixing audio signal is most generally performed by means of
some weighted sum of pattern values.

A related logical formalism, based on some interval algebra, was already in-
troduced by Allen [2]. However, in the case of accurate synchronization of music
material, interval algebra fails to distinguish temporal issues, e.g. patterns’ real-
ization windows may overlap, from logical issues, e.g. patterns’ synchronization
windows must come one after the other.

Building a logical formalism based on the synchronization algebra presented
here may thus refine Allen’s logical approach. However, such a logical, hence
language theoretical, approach is not presented in this paper. Here, we only pro-
vide an algebra for generating musical patterns. The extension of our proposal
towards an algebra that generates sets -consequently properties- of patterns, an
extension that could then (and only then) be related precisely with Allen’s logic,
remains to be done.

2.5 Resynchronization operator
Given a pattern S with W (S) = (x1, x2, x3), given d(S) and s(S) the respective
realization and synchronization durations of pattern S, and given two reals a and
b such that (a− b)d(S) ≤ s(S), we define the resynchronized pattern S[a, b] by
S[a, b](t) = S(t+ a.d) for every t ∈ dom(S[a, b]). This construction, illustrated
on Figure 5 where d stands for d(S), is formally defined as follows.

s1 s4x1 s2 x3s3x2

s'1 s'4x1 + a.d s'2 x3 - b.ds'3x2 +(b-a)d

a.d b.d
S

S[a,b]

Figure 5: Pattern resynchronization

Keeping 0 as the entry point of S[a, b], we define dom(S[a, b]) from dom(S)
by a translation of −a.d. Reals a and b are respectively called the left offset and
the right offset resynchronization ratios of S. The underlying time structure is
assigned as W (S[a, b]) = (x1 + a.d(S), x2 + (b− a)d(S), x3 − bd(S)). Doing so,
we have d(S[a, b]) = d(S).

9



In other words, the resynchronization operator does not change the realiza-
tion of the pattern it is applied to, it only modifies its synchronization offsets.

3 Derived and additional operators
In this section, we review additional properties of our model. Resynchroniza-
tion and sequential composition, combined with a new expansion/contraction
operator lead to the definition of many practically useful derived operators.

3.1 Context patterns and left and right shifts
Patterns S such that s(S) = 0 are called context patterns. One can check
that, provided that ⊕ is commutative, then for every context patterns S and
T we have S · T = T · S, i.e. sequential product on context patterns commute.
Observing that the resynchronization pattern S[a, b] of pattern S is a context
pattern when a − b = s(S)/d(S), this leads us to define two special context
patterns associated to S.

The synchronization structure of these new patterns is depicted on Figure 6.

s1 s4d1 s2 d3s3d2
S

s1 s4d1 s2 d3s3d2

LS

s1 s4d1 s2 d3s3d2
SR

Figure 6: Canonical left and right resynchronizations

When a = 0 and b = −s(S)/d(S), we call the context pattern S[a, b] the
right shift of S, and write SR = S[0,−s(S)/d(S)]. Practically, SR is obtained
from S by shifting its exit point to its entry point, i.e. the sub-pattern in the
sync window of S is shifted to the right.

When a = s(S)/d(S) and b = 0, we call the context pattern S[a, b] the left
shift of S, and write SL = S[s(S)/d(S), 0]. Practically, SL is obtained from
S by shifting its entry point to its exit point, i.e. the sub-pattern in the sync
window of S is shifted to the left.

If we assume - as aften in the symbolic case - that the sum ⊕ involved in
the definition of the sequential composition is such that, for all pattern value v,
v ⊕ v = v, then the following properties are satisfied:

(1) for all context patterns S and T , S · S = S and S · T = T · S,
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(2) for all patterns S, S · SL = SR · S = S.

Many more properties are actually satisfied. In fact, the set of patterns equipped
with such a sequential composition turns out to be a monoid that is quasi-inverse
in some sense [13].

3.2 Fork and join
Let S and T be two patterns with respective time structuresW (S) = (x1, x2, x3)
and W (T ) = (y1, y2, y3). The fork composition of S and T is defined as the
sequential composition SR · T . It consists in synchronizing S and T at their
entry points, with the resulting synchronization window taken to be that of T .
This construction is depicted on Figure 7. Similarly, the join composition of S

1 4
y1

2
y3

3y2

1 4
x1

2
x3

3x2

entry
exit

Figure 7: Derived operator: fork

and T is defined as the sequential composition S ·TL. It consists in synchronizing
S and T at their exit points, with the resulting synchronization windows taken
to be that of S. This construction is depicted on Figure 8.

1 4y1 2 y33y2

1 4
x1

2
x3

3x2

entry
exit

Figure 8: Derived operator: join

Observe that, in general, S and T do not have sync windows of same dura-
tion. Since s(SR · T ) = s(T ) and s(S · TL) = s(S), the join and fork operators
defined here are not commutative in general.

3.3 Expansion/contraction operator
Given a pattern S and a positive real k such that k ≥ 1 (respectively k < 1),
we define the expanded pattern (resp. contracted pattern) kS as the pattern
obtained from S by realizing it k times faster (resp. slower). Formally, with
W (S) = (x1, x2, x3), thenW (kS) = (k ·x1, k ·x2, k ·x3) and, for all t ∈ dom(kS),
(kS)(t) = S(t/k).
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Note that the practical use of this operator may require an additional application-
dependent definition that describes how to modify the realization duration.

By combining resynchronization and expansion/contraction operators on a
pattern S, we obtain an extended resynchronization operator (or X-resync for
short) that modifies the realization of S but preserves the duration of its syn-
chronization window.

More precisely, for every pattern S with W (S) = (x1, x2, x3), every a and
b such that (a − b)d(S) < s(S) (for a non empty resulting sync window), the
X-resync operator S[[a, b]] is defined by

S[[a, b]] = s(S)
s(S)− (a− b)d(S)S[a, b].

By construction, s(S) = s(S[[a, b]]). This operator is particularly useful for
musical performance applications, as described in Section 5. This operator is
illustrated on Figure 9 with a < 0, 0 < b, where v1, v2, . . . , v11, stand for
pattern values.

S

S[[a,b]]

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11
s1 s2 s3 s4

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11
s2 s3 s4s1

Figure 9: Derived operator: extended resync

3.4 Parallel and extended parallel products
When two patterns S and T have sync windows of equal size, i.e. when s(S) =
s(T ), then not only both SR · T = TR · S and S · TL = T · SL, i.e. fork and
join arguments commute, but we also have SR · T = S · TL, i.e. fork and join
coincide. This leads us to define, when s(S) = s(T ), the parallel composition of
patterns S and T as:

S||T = SR · T = S · TL.

Combined with expansion/contraction, this product can be generalized. In-
deed, provided s(T ) 6= 0 when s(S) 6= 0, we define the asymmetric parallel
product S[[T by

S[[T = S||kT,

with k = s(S)/s(T ). In this case, T is expanded or contracted so that its sync
window fits the size of the sync window of pattern S. In particular, s(S[[T ) =
s(S).
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By symmetry, provided s(S) 6= 0 when s(T ) 6= 0, we define the asymmetric
parallel product S]]T by

S]]T = kS||T,

with k = s(T )/s(S). In this case, S is expanded or contracted so to fit the
synchronization window of T . In particular, s(S]]T ) = s(T ).

These extended parallel products are particularly useful for audio pattern
synchronization and reconstruction, as explained in Section 4.

4 Application to audio patterns: advanced re-
composition

Audio synchronization usually refers to syncing audio patterns to metadata,
such as musical scores, lyrics, etc., or to possibly multi-modal syncing, with
audio or video material for instance. In this section, we focus on the audio-
to-audio syncing problem, referred to as audio pattern synchronization. This
particular problem has been of major concern over the last decades either for
signal processing or music information researchers [21]. Indeed, any system
related to the arrangement and organization of several audio patterns must cope
with pattern synchronization problems. Applications range from alignment of
music data [22, 8] to automatic mixing of audio playlists [11], for instance.

This section investigates the use of advanced synchronization in the case
of audio pattern handling. Although most of previous works on audio syn-
chronization focus on the accurate syncing of two audio patterns, the formal
approach introduced in this paper enables the synchronization of any number
of patterns using the aforementioned advanced operators. Moreover, the distinc-
tion between synchronization and realization windows turns out to have major
practical benefits.

4.1 Audio advanced synchronization
Synchronizing audio patterns brings several specific issues that need to be ad-
dressed in order to enable a practical use. First, re-synchronization employed
with contraction/expansion operators may change the duration of audio pat-
terns. In such cases, most audio applications require expanding or contracting
sounds while keeping the original pitch content. Thus, contrastingly to symbolic
applications (Section 5), a particular time-stretching function has to be defined.
Classical examples of such functions include time-domain signal processing such
as Pitch Synchronous Overlap and Add (PSOLA) [20] inspired methods, or fre-
quency domain processing such as advanced phase vocoder techniques (see [9]
and references therein).

Another specificity of audio patterns lies in their digital representation,
that restricts their codomain to some quantized, finite subset. Let A be this
codomain. Due to the digital audio representation, the sum of digital audio
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patterns must be defined as follows: ⊕A : A × A → A. Moreover, when con-
sidering audio patterns, the sum of any number of signals must be continuous
in order to avoid any audio artifact. An adequate summing function respecting
these two criteria may be obtained by multiplying patterns by amplitude masks,
and computing the mean of resulting signals. Formally, for an audio pattern S1
with time structure W (S1) = (x1, x2, x3) and for all t ∈ dom(S1), we define the
masked pattern M(S1) : dom(S1)→ A with the same time structure as follows:

M(S1)(t) =



t+ x1

x1
S1(t) when − x1 ≤ t < 0

S1(t) when 0 ≤ t ≤ x2

x2 + x3 − t
x2 + x3

S1(t) when x2 < t ≤ x2 + x3

.

We also define the inverse mask pattern M(S1) : dom(S1) → A as the dual
of M(S1): M(S1) = S1 −M(S1).

The sum of two audio patterns is then defined as the arithmetic mean of
masked patterns, i.e. for all t ∈ dom(S1) ∩ dom(S2),

S1(t)⊕A S2(t) = 1
2(M(S1)(t) +M(S2)(t)).

More generally, the sum of k ∈ N overlapping audio patterns is defined, for all
t ∈ dom(S1) ∩ dom(S2) ∩ · · · ∩ dom(Sk), as

k
⊕A
i=1

Si(t) = 1
k

k∑
i=1

M(Si)(t).

It is worth noting that with such a definition, which ensures that signal con-
tinuity is respected, sequentially composing audio patterns may no longer be
associative. In sequences where at most two patterns overlap, associativity is
respected. However, if three or more patterns overlap each other at some point
in their combination, the order in which they are summed may change the re-
sulting pattern. This non-associative property makes real-time audio handling
challenging with the present model, in which situation patterns can be expected
to be combined in an iterative manner. In such a case, another definition should
be considered. For offline applications, on the other hand, this associative prop-
erty can be relaxed: the overall synchronization structure is established before
composing patterns, and the composition may then be realized in an arbitrary
order.

4.2 Application to audio recomposition
As a practical use of the synchronization theory, we propose to extend the au-
tomatic audio assignment method proposed in [19]. The solution proposed in

14



that paper is to select one or several parts in an audio recording to reconstruct
a missing section. The detection algorithm is based on string alignment meth-
ods [7] in order to accurately detect musical repetitions. Although the algorithm
is successful in identifying relevant parts, the accurate, possibly iterative, syn-
chronization of reconstructed patterns was left as a perspective. This section is
dedicated to using our synchronization model to explicit these advanced signal
reconstruction operations.

Let S be an audio piece, and P its missing part. As explained in [19], the
section that best fits P can be infered by analysing local information around P .
The pattern P ′, composed as a development section containing P surrounded
by an introduction and a conclusion, has to be synchronized with another pat-
tern R within S that plays the role of replacement pattern. The durations of
introductory and concluding parts of P ′ as well as the replacement pattern R
are determined by the alignment algorithm [19]. With a properly defined syn-
chronization between P ′ and R, one should be able to switch from P ′ to R in
order to fill-in the missing part P .
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Figure 10: Synchronization structure for re-assigning a missing part P with one
pattern. Dashed lines correspond to synchronization points, while dotted lines
show audio masks applied to the composition.

Formally, let δ be the duration of local search contexts around P (see [19]).
We denote by tl the beginning time of P in S, and tr the ending time of P in S.
The beginning date of P ′ is denoted by s1 = tl − δ. Similarly, the ending date
of P ′ is denoted by s4 = tr + δ. As explained above, the alignment algorithm
identifies the synchronization points between P ′ and R, denoted by s2 ∈ [s1, tl]
and s3 ∈ [tr, s4] in P ′ and by s′

2 and s′
4 in R. Finally, the introduction and

conclusion of pattern R are attributed the same durations as those of pattern
P ′, hence the realization times of R are defined as s′

1 = s′
2 − (s2 − s1) and

s′
4 = s′

3 + (s4 − s3).
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Figure 10 gives an overview of the synchronization structure involved. Syn-
chronization and realization times are provided for both identified patterns P ′

and R. Masks are represented as dotted lines.
The overlapping introductions and conclusions in P ′ and R are intended

to enable a seamless transition. Therefore, the parallel composition of these
patterns must be realized between the inverse mask of P ′ (fading-out, then in),
and the mask of R (fading-in, then out). Finally, the reconstructed pattern
r(P ) is defined as follows:

r(P ) = M(P ′)[[M(R).

The synchronization operators defined in this paper enables us to bring the
reconstruction model one step further. As suggested in [19], a major improve-
ment of the reconstruction method would consist in combining a set of parts
that locally fit the the missing data section P , especially when P is large. This
problem can easily be addressed as a sequential composition of reconstruction
sections. Let k ∈ N be the number of locally similar parts analysed by an
alignment method, and denoted by R1, R2 · · ·Rk. The reconstruction consists
in sequentially combining the k distinct parts (adequately masked), and syn-
chronizing the resulting pattern to P ′.
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Figure 11: Synchronization structure for re-assigning a missing part P with 3
patterns employed for reconstruction. Dashed lines correspond to synchroniza-
tion points, while dotted lines show audio masks applied to the composition.

Figure 11 depicts the applied synchronization for k = 3. The reconstructed
pattern rk(P ) is hence defined as follows:

rk(P ) = M(P ′)[[(M(R1) ·M(R2) · . . . ·M(Rk)).
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5 Application to musical performance: Advanced
Live-Looping

Live-looping is a musical technique that consists in recording loops of data
coming from a live musical input. These loops are then synchronized with a
pulse, whose period often corresponds to the length of one of the loops.

When looped data is symbolic, consisting of notes for instance, we talk about
control live-looping. Various live-looping interfaces exist, such as effects pedals,
racks and software applications. New musical instruments such as Fijuu [23] or
Drile [4] also rely on this technique and even improve it. For instance, in Drile,
this technique is expanded with the creation of live-looping trees, which provide
new possibilities in terms of musical structures and loops manipulations.

5.1 Model of control live-looping
Live-looping can easily be conceptualized using the model and operators defined
in previous sections. For this application, patterns are describing symbolic
musical pieces. Each element of the codomain A of a pattern S thus describes
a set of control events that have to be triggered simultaneously. The sum ⊕ of
two elements of A is then defined as the union of sets.

Modeling control live-looping amounts to defining, from each pattern S, the
pattern loop(S) that models the infinite sequential product of S with itself. In
our formalism, this can be done as follows.

Given such a pattern S with non empty sync window, i.e. s(S) > 0, we first
define the pattern D(S) from pattern S by delaying S by the size s(S) of its
sync window. Formally:

D(S) = S[−s(S)/d(S),−s(S)/d(S)].

Figuring (sets of simultaneous) events by vertical bars, such a self-delay operator
is illustrated on Figure 12. By iterating this construction, we define, for every

S

D(S)

Figure 12: Derived operator: self delay

k, Dk+1(S) = D(Dk(S)) = S[−k.s(S)/d(S),−k.s(S)/d(S)]. Since all delayed
patterns have sync windows of same length, the parallel composition defined in
Section 3.4 can be applied.

Formally, we then define the pattern loop(S) resulting from a looping exe-
cution of pattern S as the infinite parallel composition:

loop(S) = S||D(S)||D2(S)|| · · · ||Dk(S)||Dk+1(S)|| · · ·

17



This construction is illustrated on Figure 13. Note that in practice, since

D1(S)

S

D2(S)

D3(S)

D4(S)

Figure 13: Derived operator: loop

d(S) is finite and s(S) > 0, (loop(S))(t) is finitely defined since, at a given date
t, only finitely many delayed copy of S are defined, i.e. Dk(S)(t) 6= ⊥ for finitely
many k.

5.2 Recalage: an advanced control live-looper
Combining the above loop operator with the extended resync operator defined
in Section 3.3, we eventually define a versatile technique for musical performance
which gives a way to generate new musical patterns from previously recorded
ones. We implement these ideas in a instrument called Recalage.

Recalage allows one to record and play loops of midi events. When recording
a loop, it is automatically synchronized with a multiple of the first previously
recorded loop currently playing. Recalage provides controls for triggering loops,
i.e. recording them if they are empty, toggling them otherwise, as well as for
erasing them. Recalage, as depicted on Figure 14, is currently used with two
loops, each represented by a specific widget, although stacking more loops only
amounts to adding more loop widgets. For each loop, the current instance of the
pattern is drawn in the middle of the widget. The timeline is horizontal; thus,
previous and next instances of a loop, which may overlap with the current one,
are displayed respectively above and below the current instance. The begin-
ning and ending cues of the realization window are represented by white circles
which can be moved in real-time to control the extended resynchonization of
the pattern. A white rectangle is added to the middle of the realization win-
dow, allowing users to simultaneously modify the begin and end offsets without
changing the length of the realization window. For the current instance, the
offset control elements (white circles and square) are larger and thicker and can
be moved by clicking and dragging them. Recorded events are drawn as black
lines. The beginning and end of the synchronization windows, for all instances,
are represented by white vertical lines. The part with a lighter background
emphasizes the fixed synchronization window of the current instance, played in
loop. Finally, a vertical cursor provides a visual feedback on the playback of
the loop. In the example depicted on Figure 14, one loop (top) is expanded and
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playing and one (bottom) is contracted and stopped. Observe that at any time,
one only need to visualize which events occur in a single sync window. All the
available controls on the graphical user interface can also receive MIDI Control
Change and MIDI Note messages, so that all the looping and resynchronization
operations can be done with an external hardware controller.

Figure 14: Recalage looper with two loops

Thanks to Recalage, one may notably create complex rhythmic structures out
of much simpler ones by applying graphically straightforward transformations.
Figure 15 depicts typical musical examples created using Recalage from a simple
4 notes pattern.

Figure 15: Example manipulations of a 4/4 pattern with Recalage

These examples of musical sequences are created from manipulating a simple
4/4 pattern S made of four quarter notes. From left to right, they can be
described as follows.

On the first line, the left expansion S[[−1/8, 0]] creates a slight shift in the
basic 4/4 rhythm that is typically found as anticipation pattern in electronic
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music. The left expansion S[[−1/4, 0]] echoes a typical salsa bass rhythm : the
Tumbao. The left expansion S[[−1/3, 0]] creates a triplet pattern with the for-
merly first and fourth beats played together. On the second line, S[[−3/4, 1/2]]
sounds like a rather unbalanced pulse. The left contraction S[[5/8, 0]] emphasize
the expectation of the next strong beat as all played notes are pushed to the
right. Finally, the left shift S[[−1/8,−1/8]] moves the whole pattern to the left
by half a beat. Instead of having to erase his rhythmic loop and record a new
one, a musician using Recalage may therefore easily change rhythmic signature
for example between two parts of a melodic improvisation. For every derived
looping pattern, the underlying pulse remains the same since the length of sync
windows remains equal to the original. Therefore the superimposition of various
patterns allows for the creation of many musical contrasts. For instance, the
4/4 pattern S played with the triplet pattern S[[−1/3, 0]] creates a typical 3 on
4 poly-rhythm.

6 Conclusion
In this paper, we propose a rich algebra for manipulating and synchronizing
musical patterns. From a generic model for representing musical events, we dis-
tinguish the notions of realization and synchronization of a pattern. We then
define several meaningful advanced synchronization operators and emphasize
their practical relevance. A case study for a concrete audio application is pre-
sented, in which the model is employed to explicit the re-assignment of missing
audio parts. The practical use of our model is also presented in a particular
application of symbolic pattern manipulation, namely control live-looping. The
introduced live-looper Recalage allows musicians to obtain rich rhythmic struc-
tures out of re-synchronizing simpler ones, and to combine them in a versatile
graphical interface. For both symbolic and audio applications, our model is suc-
cessful in formally describing and expliciting complex synchronization problems.
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