
HAL Id: hal-00794173
https://hal.science/hal-00794173

Submitted on 27 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Self-stabilizing Distributed Data Fusion
B Ducourthial, Véronique Cherfaoui, Thierry Denoeux

To cite this version:
B Ducourthial, Véronique Cherfaoui, Thierry Denoeux. Self-stabilizing Distributed Data Fusion. 14th
International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2012),
Oct 2012, Toronto, Canada. pp.148-162, �10.1007/978-3-642-33536-5_15�. �hal-00794173�

https://hal.science/hal-00794173
https://hal.archives-ouvertes.fr

Self-stabilizing distributed data fusion

B. Ducourthial, V. Cherfaoui, and T. Denoeux

Lab. Heudiasyc UMR CNRS-UTC 7253
Université de Technologie de Compiègne

France
Corresponding author Bertrand.Ducourthial@utc.fr

Abstract. The Theory of Belief Functions is a formal framework for
reasoning with uncertainty that is well suited for representing unreliable
information and weak states of knowledge. In information fusion appli-
cations, it is mainly used in a centralized way, by gathering the data on
a single node before computation.
In this paper, a distributed algorithm is proposed to compute the neigh-
borhood confidence of each node, by combining all the data of its neigh-
bors using an adaptation of the well known Dempster’s rule. Moreover,
a distributed algorithm is proposed to compute the distributed confi-
dence of each node, by combining all the data of the network using an
adaptation of the cautious operator. Then, it is shown that when adding
a discounting to the cautious operator, it becomes an r-operator and
the distributed algorithm becomes self-stabilizing. This means that it
converges in finite time despite transient faults.
Using this approach, uncertain and imprecise distributed data can be
processed over a network without gathering them on a central node,
even on a network subject to failures, saving important computing and
networking resources. Moreover, our algorithms converge in finite time
whatever is the initialization of the system and for any unknown topol-
ogy.
This contribution leads to new interesting distributed applications deal-
ing with uncertain and imprecise data. This is illustrated in the paper:
an application for sensors networks is detailed all along the paper to ease
the understanding of the formal approach and to show its interest.

1 Introduction

Algorithms for gathering data spread out over a network of communicating pro-
cess units are well known [17, 25, 7]. However, in the real world, information is
almost always tainted with various kinds of imperfection, such as imprecision,
uncertainty, ambiguity, etc. Following [10], if a variable X takes its values in Ω
(domain or frame of discernment), an item of information about X could be
represented as a pair (value, confidence). The value component corresponds to
a subset of Ω while the confidence component is an indication on the reliability
of the item of information. Imprecision is related to the value, uncertainty is
related to the confidence. For instance, when using the output of any disposal
(sensor, algorithm, model, expert...), it would be preferable to distinguish be-
tween the following pieces of information: “the value is between 15 and 25”, “the
value is probably 20”, “the value is probably between 15 and 25”. The first one
is imprecise but certain, the second is precise but uncertain while the last is
both imprecise and uncertain. The Set-Membership approach can represent the
imprecision but lacks robustness while the Probability theory models aleatory
uncertainty but does not express any notion of imprecision. The Theory of Be-
lief Functions has been introduced by Dempster (1968) [5] and Shafer (1976)
[18], and has been further developed by Smets (Transferable Belief Model) in
the 1990’s [23]. It is also known as Dempster-Shafer theory or Evidence. It is
a formal framework for representing and reasoning from partial (uncertain, im-
precise) information, by generalizing both the Set-Membership approach and
the Probability Theory. Many applications in the field of data fusion are devel-
oped through belief functions framework [21]. However, even if the sources of
data are distributed in space or in time, the proposed approaches are variant of
centralized fusion methods [16].

As more and more sensors are present in our life (in smart-phones, vehicles,
clothes, body, etc.), and as more and more networking connections appear be-
tween all these devices, a distributed approach for computing belief functions
appear useful and is promising to many applications. In fact, such an approach
would not be limited to information produced by sensors but could be applied to
any imprecise and uncertain information, even on the distributed system itself.
Recent works have been done in [3, 2] where each node discounts information
according to the distance and the age of the received message before to combine
it with a local knowledge. The notion a data contamination due to the vehicular
network context was taken into account for the choice of the combination rules.
This work has been extended in [26]. In [15], a spanning tree is used for dealing
with the loops of the network. In all these works, the network is supposed to be
reliable.

Instead of gathering the information and then processing it in a central node,
it would be very advantageous in terms of networking and computing resources
to compute locally the belief functions. Generally, every node produces locally
an information and then a local belief function (called in the following direct
confidence). It would be very interesting to enrich such a confidence with infor-
mation from other nodes. However in many cases, the result will depend on the

position of the node and it is expected that node u should have a different result
as compared to that of node v. In this (very common) case, computing the belief
function locally using a distributed algorithm appears to be the best approach.

Nevertheless, distributed algorithms are subject to faults, especially when the
devices are cheap and the underlying network opportunistic. We present in this
paper algorithms able to compute a belief function on every node of a network
subject to crash and transient faults. Our first algorithm computes on every
node its neighborhood confidence relying on the direct confidences of neighbors.
The second algorithm builds on every node its distributed confidence, taken into
account all the direct confidences produced in the network, while favoring the
closest ones. Our algorithms are self-stabilizing, so that they recover correct
behavior after finite time starting from an arbitrary global state caused by a
transient fault [8, 9]. All these results are given for a simplified communication
model relying on a simple push action, periodically called by the nodes. This can
be implemented in an idealized WiFi network or in the classical shared-register
model. The correctness of the algorithms is shown thanks to previous works on
r-operators [12]. By modeling local algorithms with operators, global properties
(termination, self-stabilization in different communication model) can be inferred
by checking the algebraic properties of the operators [14, 13, 4]. However, for
applying such a general scheme (and reusing generic proofs), the problem to be
solved has to be modeled as an algebraic operator.

The contributions of our paper are threefold. First we explain how the pro-
cessing of uncertain and imprecise data in a distributed system can be modeled
by algebraic operators over a specific finite set, namely vectors of discretized
weights. Second we propose two distributed algorithms for computing data fusion
over distributed data in a network of unknown topology, the first one combining
close information, the second one combining also remote information. Finally,
we show that this second algorithm can be modeled as an r-operator (namely
discounted cautious over the vectors of discretized weights), that satisfies the
requirements for ensuring the self-stabilization of the distributed system.

Such contributions allows to process uncertain and imprecise distributed data
without gathering them on a central node, even on a network subject to failures,
saving important computing and networking resources. Moreover, our algorithms
converge in finite time whatever is the initialization of the system and for any
unknown topology. We believe that many applications can take benefit of this
approach; we detail an application for sensors networks all along the paper to
ease the understanding of the formal approach and to show its interest.

In Section 2, we present the distributed system we consider. Then, in Sec-
tion 3, we explain how to model the processing of uncertain and imprecise data
using local computations based on an adaptation of the Dempster’rule over a
specific set (the vectors of discretized weights), and we present an algorithm for
neighborhood confidence computation. In Section 4, we extend these results by
presenting a distributed algorithm able to process all the uncertain and imprecise
data of the distributed system. We show that such algorithm can be modeled as
an r-operator (discounted cautious) and is self-stabilizing.

2 Self-stabilizing Distributed Systems

System. We consider a distributed system S composed of communicating com-
puting nodes. Each node owns a local memory and a sequential computing unit
so that it is able to run a local algorithm. Nodes are not synchronized. The local
memory of node v is composed by its private memory PRIVv, an incoming mem-
ory INv and an output memory OUTv. The private memory of v contains its direct
confidence and is regularly updated thanks to an external local disposal (eg. a
sensor). The output memory will store the result of the local computation on
v, namely its neighborhood confidence (Algorithm 1, Section 3) or its distributed
confidence (Algorithm 2, Section 4). Communications are done through a simple
atomic action called push: when a sender node u executes push(m), the value m
stored in its output memory is copied into the input memories of some receiver
nodes v1, v2, . . . , vk.

We assume transient faults sometimes occur at the memories. To circumvent
this problem, we will introduce self-stabilization.

Moving topology. The receivers of a push action on v are not known from the
sender v and do not know v. They are determined by the current topology of S
and could be different from those of a previous push on the same node v. There
is a link (u, v) between u and v if a data m pushed by u is received by v. Such
a link disappears when a data m′ pushed by u is not received by v. A link (u, v)
may exist while the link (v, u) does not exist. The channel capacity is a single
message.

In order our algorithms stabilizes, it is required that the topology remains
stable for a period longer than the stabilization phase. We say that the topology
of S stabilizes if it remains the same for further push actions (same links, that is,
same receivers for a given sender). Such a topology is modeled by a directed graph
G(V,E) where V is the set of nodes and E is the set of current links. We denote
by Γ 01

v the set of ancestors of v included v itself: Γ 01
v = {v}∪{u ∈ V, (u, v) ∈ E}

and by Γv the set of all ancestors of v included v itself: Γv = {v} ∪ {u ∈
V,∃u1, . . . , uk ∈ V s.t. (u, u1), (u1, u2), . . . , (uk, v) ∈ E}.

Example. This communication scheme can be implemented on a wireless network
with a link capacity of a single message: a push is implemented using a local
broadcast followed by an idle period longer than the maximal communication
duration (which is bounded in wireless protocols such as IEEE 802.11). Nodes
moves and collisions add/delete links according to the communication range.

When the topology remains stable, this communication model can also be
implemented through shared registers: a push by a writer u is simply a write
into the register it shares with some readers v1, . . . , vn. Then transformers can
be used to extend this model to other communication models [1, 11].

In the rest of this paper, we develop an example in the context of wireless
sensor networks, where each node regularly push its result to potential neighbors.
Nodes only own a local clock and may push their results at different frequencies.

Self-stabilization. A configuration of a distributed system S is an instance of the
states of its processors and links. The set of configurations of S is denoted as C. A
distributed algorithm is a collection of local algorithms running on every node of
S. Processors actions change the global system configuration. An execution e is a
sequence of configurations c1, c2, Configuration c1 is the initial configuration
of execution e.

A specification is a predicate on executions that are admissible for a dis-
tributed system. A system matches its specification if all its possible executions
match the specification. This paper considers problems whose solutions consist
in computing a global result (static task); the specification can then be given in
terms of a set of configurations. The set of configurations that matches the spec-
ification of static problems is called the set of legitimate configurations (denoted
as L).

Self-stabilization is defined through the concept of closed attractor.

Definition 1 (Closed Attractor). Let Ca and Cb be subsets of C. Cb is an
attractor for Ca if and only if for any initial configuration c1 ∈ Ca, for any
execution e = c1, c2, . . ., there exists i ≥ 1 such that ci ∈ Cb. It is closed if for
any j ≥ i, cj ∈ Cb.

In the usual (non-stabilizing) distributed systems, possible executions can
be restricted by allowing the system to start only from some well-defined initial
configurations. In stabilizing systems, problems cannot be solved using this con-
venience, since all possible configurations are admissible initial configurations.

Definition 2 (Self-stabilization). A system S is called self-stabilizing if and
only if there exists a non-empty subset L ⊂ C of legitimate configurations such
that L is a closed attractor for C.

3 Neighborhood Confidence Algorithm

In this section, we consider a network where each node owns a private data and
we propose a distributed algorithm for computing a neighborhood confidence.
After summarizing our approach, we explain how to build the domain of our
variables (vectors of discretized weights). Next we introduce an adaptation of
the Dempster operator for data combination. We then present our algorithm
and its properties. We terminate by explaining how to exploit its outputs.

3.1 Neighborhood confidence principle

We consider a network where each node owns a private data. Such an information
is regularly updated using a local external disposal (sensor, other algorithm...).
As the data are uncertain and imprecise, instead of collecting on each node the
data of its neighbors, the purpose of our algorithm is to evaluate a neighborhood
confidence using the direct confidences, these lasts being computed by each node
starting from their private data and their local external disposal.

Our scheme is general enough for covering many applications but to fix ideas,
we illustrate it all along the paper using an example (marked with a vertical
rule): a very simple weather forecast application. We assume that each node is
able to measure the local atmospheric pressure and to determine whether it is
decreasing, stable or increasing, allowing us to deduce a weather forecast. As
the accuracy of the measurement is not perfect, we consider intervals instead
of reals: each pressure measurement is an interval I ⊂ R+ and the pressure
gradient∆I computed with the two last measures Ik and Ik−1 is then an interval
of R. Moreover, the sensor is not totally trusted because it could be damaged.
Hence, we consider a confidence in the information, by affecting so-called masses
to the sets ∆I and R in such a way that the sums of the masses is 1. The mass
on R corresponds to the proportion of time when the sensor is not working
correctly; the more the sensor is reliable, the lower is the mass on R. Hence,
thanks to its disposal, each node v obtains a result which can be interpreted as
follows: “I have a confidence of 80% that the atmospheric pressure is increasing
or stable, announcing a good weather”. This is the direct confidence of node v.

The direct confidences are the local inputs of our algorithms. Starting from
them, our first algorithm builds on each node v its Neighborhood Confidence
by combining the direct confidence of v with those it receives from its direct
ancestors. For this purpose, the confidences are stored as vectors of discretized
weights; they are combined using an adaptation of the Dempster’rule.

3.2 Domain K: vectors of discretized weights

In this section, the domain on which operate our algorithms is introduced.
The state of belief of a node is expressed on a frame of discernment Θ us-

ing a basic belief assignment (BBA for short). Such a BBA can be represented
by several means, the most common one being with a mass function. A mass
function mΘ is a mapping from the set of subsets of Θ, denoted P(Θ), to the
set of masses [0, 1] ⊂ R such that

∑
X⊂Θm

Θ(X) = 1. A set X ⊂ Θ such that
m(X) > 0 is called focal set. If every focal set X satisfies |X| = 1, m is said
to be Bayesian and it corresponds to a probability mass function. However, the
main interest of the Theory of Belief Functions is to consider every subset X of
Θ. The more a node is confident in X, the higher is mΘ(X). If the empty set
∅ is not a focal set, the mass is normal. A mass on ∅ is used to model conflict
between pieces of evidence on which m is based. If Θ is not a focal set, the
mass is dogmatic. A mass on Θ is used to model lack of knowledge. The higher
mΘ(Θ) is, the less the mass function mΘ is informative. If mΘ(Θ) = 1, the mass
function is vacuous. Finally, a mass function is simple if it admits at most two
focal sets including Θ.

In our example, the pressure gradient interval ∆I belongs to Θ = R. Each
node then determines a simple mass function mΘ such that mΘ(∆I) = 1 − α
and mΘ(Θ) = α. The size of pressure measure interval (and then the size of ∆I)
is related to the accuracy of the measure, while α is related to the reliability of
the measure disposal (sensor).

Starting from a mass function mΘ on the frame of discernment Θ, it is con-
venient to build another mass function on a coarser, finite frame of discernment
Ω. Such a coarsening allows us to work on a finite set with simple interpretation.
It will also limit the amount of data exchanged between nodes.

For our simple weather forecast example, we consider Ω = {wet, cloud, sun}.
Each node determines a simple mass function mΩ depending on the position of
∆I ∈ R regarding 0. If ∆I << 0 (case a in Fig. 1), then mΩ({wet}) = 1 − α
while if ∆I >> 0 (case d), then mΩ({sun}) = 1 − α. When ∆I is close to 0,
there are some uncertainties: if 0 ∈ ∆I (case e in Fig. 1), then mΩ(Ω) = 1
because a node cannot determine whether the pressure increase or not; if 0 <
∆I (case c) then mΩ({cloud, sun}) = 1 − α, while if ∆I < 0 (case b), then
mΩ({wet, cloud}) = 1− α.

0

a b c d

e

wet cloud sun

Fig. 1. Determining mΩ from the comparison of ∆I with 0.

Besides classical mass functions, a basic belief assignment can be represented
by other functions, such as commonality and weights functions. Our algorithms
work with weights, which are obtained from masses using commonalities [20] [6],
as summarized in the following table.

mass function commonality function weight function
m : P(Ω)→ [0, 1]

A 7→ m(A)
q : P(Ω)→ [0, 1]

A 7→ q(A)
µ : P(Ω) \Ω → R+

A 7→ w(A)∑
A⊂Ωm(A) = 1 q(A) =

∑
B⊂Ω,A⊆Bm(B) µ(A) = ΠB⊂Ω,A⊆Bq(B)(−1)

|B|−|A|+1

In our example, we considered simple mass functions mΩ defined by
mΩ(X) = 1 − α for a single subset X ⊂ Ω and mΩ(Ω) = α. We then ob-
tain qΩ(∅) = qΩ(X) = 1 and qΩ(Y) = α for any other subset Y of Ω not
included in X. Regarding the weight functions, we obtain µΩ(X) = α and
µΩ(Y) = 1 for any other Y (Ω (our approach works also with more complex
mass functions).

Whenever the mass functions are not dogmatic (m(Ω) > 0), the weights are
strictly positive. Moreover, any separable mass function ensures that the weights
are smaller than or equal to 1 and reciprocally. A mass function m is separable
([18] Chapter 4) if it admits a canonical decomposition in simple mass functions
mi so that the conjunctive combination of these simple mass functions is equal
to the mass function itself: m = ©∩mi. We introduce the conjunctive operator
#∩ hereafter. Hence, by restricting the considered mass functions to the set of
separable non dogmatic normalized mass functions, we can represent them as
weight functions from P(Ω) \ {Ω, ∅} to the interval (0, 1] ⊂ R. The data set we
consider is then a set of values in (0, 1], one per subset of Ω except ∅ and Ω.

However, to ensure convergence in finite time, finite memory consumption
and finite message size, we consider a discretization of (0, 1], denoted by W:

W ⊂ (0, 1] with |W| ∈ N and 1 ∈W. We denote by ε ∈W the smallest element
of W.

As a conclusion, the data set of our algorithms is W2|Ω|−2, that is vectors
of 2|Ω| − 2 values taken into W, which is a discretization of the weights that
represent a BBA expressing a state of knowledge over a frame of discernment
Ω. We call this set vectors of discretized weights and we denote it K. Any vector
of weights w in K can be coded with (2|Ω| − 2) ln(|W|) bits. We denote by w⊥
(resp. w>) the element of K composed only with weights ε (resp. 1).

In our example, supposing we discretize (0, 1] up to the thousandth, as
|Ω| = 3, the vectors of weights require a size of 60 bits.

3.3 Operations on K: discretized Dempster operator

The BBAs can be combined using some operators in the aim of forging a better
knowledge from several sources of information. Given two mass functions m1 and
m2 over the same discernment set Ω, the conjunctive operator #∩ builds a new
mass function denoted m1#∩ 2 by emphasizing the agreement between the sources
that induced the BBAs, providing they are reliable [19]. The sources should be
independent, that is, they provide distinct, non overlapping pieces of evidence
[18]. The conflict between two BBAs m1 and m2 is given by m1#∩ 2(∅). It can
be spread over other sets when the conflict is ignored. The resulting operator is
called Dempster ’s rule, denoted by ⊕. Operators #∩ and ⊕ are commutative and
associative and admit the vacuous mass function as neutral element.

Conjunctive operator Dempster operator

m1#∩ 2(A) =
∑
B∩C=Am1(B) ·m2(B) m1⊕2(A) = m1#∩ 2(A)/

(
1−m1#∩ 2(∅)

)
A 6= ∅

0 A = ∅
In our example, supposes that node u determines its direct confidence as

a mass function mdu such that mdu({cloud, sun}) = 0.8 and mdu(Ω) = 0.2
(hence its disposal is reliable at 80% but the pressure gradient ∆I was close
above 0). Supposes that a neighbor v of u determines its direct confidence as
a mass function mdv such that mdv({sun}) = 0.7 and mdv(Ω) = 0.3 (v trusts
its disposal at 70% only but the pressure gradient is clearly above 0). Then,
by combining these two BBAs, we find: mdu⊕dv({sun}) = 0.7. Now, if another
neighbor w determines its direct confidence as a mass function mdw such that
mdw({wet, cloud}) = 0.9 and mdw(Ω) = 0.1, the belief in ”sun” decreases to
0.538, but is not null because w does not fully trust its disposal.

When the BBAs are expressed with weight functions, the Dempster operator
becomes a product: if µ1 and µ2 are two weight functions expressing BBAs on
the same discernment frame Ω, then µ1⊕2 = µ1 ⊕ µ2 is defined by: µ1⊕2(A) =
µ1(A)× µ2(A). Nevertheless, as the weights we manipulate belong to the finite
set W, we need to introduce a product operation on W, that we denote by ∗.
We then obtain a discretized Dempster-like operator denoted � on K as follows.
For any vector w1 and w2 belonging to K, w1�2 = w1 � w2 is defined by:
w1�2(A) = w1(A) ∗ w2(A) for any subset A of Ω except Ω and ∅. By lack of
place, the “discrete multiplication” ∗ is not defined here.

As a conclusion, in our first algorithm, the direct confidence expressed as vec-
tors of K will be combined using the operator �, an adaptation of the Dempster
operator using the operator ∗ for multiplying the weights of W.

3.4 Algorithm 1: Neighborhood Confidence computation

Now that we have defined the data set and the operator used to combine the data,
the algorithm is simply described as follows. The direct confidence of each node
is regularly updated by an external mean, as explained previously, and stored
in the private memory PRIVv. It is coded (as all other variables) by a vector of
discretized weights belonging to the finite set K. The incoming memory INv on
node v stores all data pushed by some ancestors since the last timer expiration.
The output memory OUTv contains the neighborhood confidence computed by v.

Nodes are not synchronized. Timers are given by local clocks and may have an
unbounded drift. Upon timer expiration, each node computes its neighborhood
confidence by combining its own direct confidence with those it has received since
the last timer expiration, using operator �. It also pushes its direct confidence.

Algorithm 1: Neighborhood Confidence, node v

1 Upon timer expiration:
2 PRIVv ← current direct confidence
3 OUTv ← PRIVv . Initializing the iterative computation
4 for each entry u in INv do . Iterative computation of the output
5 OUTv ← OUTv � INv[u]
6 end for
7 push(PRIVv) . Sending the direct confidence to neighbors
8 Reset INv

9 Restart the timer

The legitimate configurations of Algorithm 1 can only be defined when the
topology is stable as well as the direct confidences stabilized. Indeed, in case the
direct ancestors or their direct confidences vary, no stabilization of the outputs
can be obtained. Assuming these conditions are fulfilled, the set of legitimate
configurations L1 of Algorithm 1 is defined by:

∀c ∈ L1, ∀v ∈ S, OUTv(c) =©∩ u∈Γ 01
v
PRIVu(c)

Proposition 1. Algorithm 1 is self-stabilizing: it converges in finite time to a
legitimate configuration of L1 after the last occurrence of a transient fault and
the last modification of either the topology or the direct confidences (inputs).

Proof. Let e be an execution of Algorithm 1 on the distributed system S. Let
c ∈ e be the first configuration from which the topology and the inputs are stable
and such that there is no transient fault from c in e. Note that there is no more
crash faults from c as they affect the topology. As there is no more transient
faults from c, the private memories do contain the direct confidences. Let c′ ∈ e
a configuration reachable from c such that, for any node v, its timer has expired

between c and c’. Then all the incoming memories have been purged (line 8).
Let c′′ ∈ e a configuration reachable from c′ such that, for any node v, its timer
has expired between c′ and c′′. Since the topology is stable and there is no more
transient fault, the direct confidence of each node u has been copied into the
incoming memory of any node v such that u is a direct ancestor of v. Then any
node v will compute ©∩ u∈Γ 01

v
PRIVu(c) that will be stored in OUTv. Hence, any

configuration of e from c′′ belongs to L1. 2

3.5 Exploiting the output: from discretized weights to decision

By considering focal sets of cardinality larger than one (e.g., {wet, cloud}), the
Theory of Belief Functions generalizes the Bayesian Probability Theory and is
well adapted for representing weak states of knowledge. Nevertheless, when a
decision has to be taken, one need to go back to focal sets of cardinality one.
For this purpose the result BBA (expressed as a vector of weights) is converted
in a mass function m and is then mapped to a pignistic probability function P

[22], defined by: P (A) =
∑
∅6=B⊂Ω(B) |A∩B||B| .

Applying to our example, the decision would be: Is the umbrella necessary?
By computing the pignistic probability on our previous numerical example,
we find for instance that P ({sun}) = 0.84 when considering only the direct
confidences of u and v while it is equal to 0.645 when considering the direct
confidence of w, which did not agree with u and v.

4 Distributed Confidence Algorithm

Starting from Algorithm 1, we present an algorithm that computes on every node
its distributed confidence, by combining the direct confidence of all the nodes,
not only those of its neighbors.

4.1 Distributed Confidence Principle

The algorithm presented in the previous section is able to compute the so-called
neighborhood confidence of every node by combining the direct confidence of its
direct ancestors. The algorithm relies on local exchanges of belief functions rep-
resented as vector of masses belonging to K. However, the information produced
by a node will never impact nodes at more than one hop in the network. Yet in
many cases it would be interesting to take into account remote information.

For instance, in our weather forecast example, the neighborhood confidence
is preferable to the direct confidence because it relies on several measures. How-
ever it cannot determine the weather by advance. To the contrary, if remote
measures are taken into account in the computation, a node could be warn
about a depression before it arrives on it (supposing the distributed algorithm
converges more rapidly than the wind!).

In order to preserve the networking and computing resources over the net-
work, it is preferable that each node computes its distributed confidence using
the one computed by its neighbors instead of using the direct confidence of
remote nodes. By the way, the modification to be done in Algorithm 1 is at
line 7: each node v will push its output OUTv, containing the result of its local
computation, instead of its input INv containing its direct confidence.

7 push(OUTv)

This has some consequences on the distributed algorithm, and the operator
has to be changed at line 5. We first introduce Algorithm 2a in Section 4.2, that
uses the cautious operator. Then we show it cannot support transient failures
and we introduce Algorithm 2b in Section 4.3, based on the cautious operator
and a discounting function. This last one is self-stabilizing.

4.2 Cautious operator: Algorithm 2a

While it makes sense to use the Dempster operator to combine all the direct
confidences, this is no more suitable with our algorithm modified at line 7 to
push the output of each node. Indeed, whenever the network admits two distinct
paths between nodes u and v, the direct confidence of u will be taken into account
several times in the result built by node v. This problem is known as data incest.
By the way, Algorithm 1 with the above mentioned modification at line 7 is only
suitable for stable networks having a topology corresponding to a tree.

Besides the data incest, the algorithm would converge to the vector w⊥ ∈ K
(composed only with ε values) whenever there is a loop in the network because
the multiplications by operator ∗ will converge to ε. As explained in [12], an
idempotent operator is required for ensuring the convergence in a network with
circuits.

In [6], an idempotent operator has been introduced for combining non dog-
matic BBAs: the cautious operator denoted by ?. It is based on the Least Com-
mitment Principle, which states that: ”when several belief functions are compat-
ible with a set of constraints, the least informative should be selected”. When
the BBAs are represented by weight functions, it is computed by taking the min-
imum of each component: µ1?2 = µ1?µ2 is defined by µ1?2(A) = µ1(A)∧µ2(A)
for any A (Ω, where ∧ denotes the minimum operator on R.

Translated in K, the discretization is here straightforward. We have, for any
subset A of Ω with A 6= Ω and A 6= ∅, w1 ? w2[A] = w1[A] ∧ w2[A], where
w[A] denotes the component of the vector w corresponding to the subset of A,
and ∧ the minimum operator on W. This operator is associative, commutative
and idempotent on K. It admits w> as neutral element (vector composed only
with some 1). It solves the data incest problem.

In fact, besides solving the data incest problem, operator ? also ensures the
termination of the distributed computation. Let Algorithm 2a be the algorithm
obtained from Algorithm 1 with line 7 replaced by push(OUTv) and line 5 mod-
ified to use operator ? instead of �. Let c0 be the initial configuration defined

by: for all nodes v in S, INv is empty and OUTv = w>. Assuming the topology is
stable and the direct confidences stabilized, the set of legitimate configurations
L2 of Algorithm 2 is defined by:

∀c ∈ L2a, ∀v ∈ S, OUTv(c) = ?u∈ΓvPRIVu(c)

As the cautious operator is a law of an idempotent semi-group, the following
proposition holds (Proposition 4 in [14]).

Proposition 2. Algorithm 2a stabilizes in a fixed topology starting from config-
uration c0, assuming the direct confidences (inputs) stabilizes.

4.3 Cautious and discounting: Algorithm 2b

In contrast with Algorithm 1, Algorithm 2 stabilizes to a legitimate configuration
only when it starts from the initial configuration c0 (cf. Propositions 1 and 2).
Indeed, an associative, commutative and idempotent operator leads to a self-
stabilizing distributed algorithm only on networks corresponding to trees. For
instance, consider a distributed system S in form of a loop composed of two
nodes u and v and suppose that, due to a transient fault, the vector of weights
w⊥ appears in the incoming memory of u. The next output of u will be w⊥,
which will be sent to v. Both nodes will then converge to w⊥ whatever are their
direct confidences (Proposition 7 in [14]).

On another hand, one may object that the legitimate configurations of Algo-
rithm 2a are not always satisfactory. Indeed, it gives a single result per connected
components of the network. When the information admits a local meaning (such
as the weather forecast in our example), the result on a node u should differ from
the result of a far node v except if all the nodes agree on their direct confidence.
Hence, while it is useful to take into account remote information, all the nodes
should not always converge to the same belief function.

We then introduce a discounting function r, which is applied to each incom-
ing data before the computation with the cautious operator (line 5). We call
Algorithm 2b the algorithm obtained by modifications of the line 7 (for pushing
OUTv) and of the line 5 as follows:

5 OUTv ← OUTv ? r(INv[u])

The function r is called a discounting ; it is used to decrease the information
in a given basic belief function. The choice of the discounting is application-
dependent. Nevertheless, we impose two conditions on r. As ? is associative,
commutative and idempotent, it defines an order relation denoted ≺? by: w1 ≺?
w2 if and only if w1 6= w2 and w1 ? w2 = w1.

Condition 1 The discounting function r is an endomorphism of (K,?): for any
w1 and w2 in K, r(w1) and r(w2) belong to K and r(w1?w2) = r(w1)?r(w2).

Condition 2 The function r is expansive on K: ∀w ∈ K \ {w>}, w ≺? r(w)
and r(w>) = w>.

Condition 1 is justified as follows. Consider a path u1, u2, . . . , uk in a stable
network and suppose that the algorithm has converged (all the outputs of the
nodes do not change any more). Then we have: OUTuk = PRIVuk ? r(OUTuk−1

) ?
· · · . Recursively, OUTuk−1

= PRIVuk−1
? r(OUTuk−2

) ? · · · . Since r is an homo-
morphism, we have OUTuk = PRIVuk ? r(PRIVuk−1

) ? r2(PRIVuk−2
) · · · . Hence,

thanks to Condition 1, the output of a node takes into account every received
direct confidence a single time but discounted accordingly to the distance from
the sender. The second condition is required for discounting the received BBA
compared to the local direct confidence. It is also required for the convergence
(else every node v in a loop would converge to w>).

In our example, the weights being discretized up to the thousandth, the
application r : w → r(w) defined by r(w)[A] = min(1,w[A] + 0.1) for any
A ⊂ Ω (A 6= Ω and A 6= ∅) is convenient.

4.4 Self-stabilizing property of Algorithm 2b

It is a remarkable result that the cautious operator along with a discounting is
a strictly idempotent r-operator. Under certain conditions, the r-operators lead
to self-stabilization of the global computation [12, 14, 13, 4]. This is a convenient
way to design new self-stabilizing silent tasks: by only checking algebraic prop-
erties of the operator modeling the local computation, global properties over the
whole networks are ensured.

An r-operator is the law of an r-semi-group [12], which generalizes the idem-
potent Abelian semi-group. Let (S, �) be a set endowed by an operator � (magma).
It admits a right-identity element e� if ∀x ∈ S, x = x�e�. It is weak left can-
cellative iff ∀y, z ∈ S, (∀x ∈ S, x�y = x�z) ⇔ (y = z). Let r : S → S be a
mapping. Then (S, �) is r-associative iff ∀x, y, z ∈ S, x�(y�z) = x�y�r(z). It
is r-commutative iff ∀x, y ∈ S, r(x)�y = r(y)�x. It is r-idempotent iff ∀x ∈ S,
r(x)�x = r(x).

Definition 3 (r-semi-group). Let (S, /) be a weak left cancellative magma
admitting the right identity element e/, and let r : S→ S be an endomorphism.
Then (S, /) is an r-semi-group if it is r-associative, r-commutative, r-idempotent
with the application r.

Proposition 3. Let r : K→ K a mapping satisfying Conditions 1 and 2. Let /
the operator defined on K by w1#/w2 = w1 ? r(w2). Then (K,#/) is a strictly
idempotent r-semi-group.

Assuming the topology is stable and the direct confidences stabilized, the
set of legitimate configurations L2b of Algorithm 2b is defined by (we states
dist(v, v) = 0):

∀c ∈ L2b, ∀v ∈ S, OUTv(c) = #/ u∈ΓvPRIVu(c) = ?u∈Γvr
dist(u,v)(PRIVu(c))

Proposition 4. Algorithm 2b is self-stabilizing: it converges in finite time to a
legitimate configuration of L2b after the last occurrence of a transient fault and
the last modification of either the topology or the direct confidences (inputs).

Proof. As #/ induces a partial order relation on K (≺? based on ∧ component
per component of vectors), we apply results of [13], proved for the shared register
model. As soon as the topology stabilizes, the distributed system S is assimilated
to a shared-registers system, with the difference that links are unforeseen (not
known at the beginning, not known by the senders and the receivers when the
system is stabilized). Moreover, as the topology was moving, any value could
have been copied in the incoming memories. This means that, during the stabi-
lizing phase, Algorithm 2b runs on an unknown directed topology starting from
any configuration. Thanks to Proposition 4 and Condition 2, Theorem 9 of [13]
applies and Algorithm 2b is self-stabilizing. 2

Let k be the integer defined by rk(w⊥) = w> and D the diameter of the
stabilized topology. Supposing a synchronous system, the stabilization time is
O(k + D). In a system without transient fault, when starting from the good
initial configuration c0 (§ 4.2), the convergence time is O(D) .

In our weather forecast example, our discounting function r satisfies k = 10.

5 Conclusion

In this paper, two algorithms have been presented for dealing with distributed
imprecise an uncertain data in a network. The first one builds the neighborhood
confidence of each node based on the inputs of its neighbors. The second one
extends this computation to the whole network: each input is taken into account
while favoring close information. These algorithms are self-stabilizing, meaning
that, they converge in finite time in a legitimate configuration after the topology
and the inputs become stable.

These results rely on the r-operators introduced for stabilizing distributed
computations and on the cautious operator introduced for dealing with data in-
cest in the Theory of Belief Functions, completed with a discounting for ensuring
the self-stabilization and discretized for ensuring the convergence in finite time.

We believe that a large set of applications, either fundamental or practical,
could take benefit of this approach. In particular, our simple weather forecast
application is more efficient than other schemes based on data gathering while
allowing to process uncertain and imprecise data given by cheap sensors. It
supports crash faults of sensors, network reconfigurations and transient faults
affecting memories. It can be implemented on wireless sensors networks.

Future work will concern extension of this approach as well as the study of
its applications.

References

1. Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in
message-passing systems. Journal of the ACM, 1(42):124–142, 1995.

2. V. Cherfaoui, T. Denoeux, and Z-L. Cherfi. Vehicular Networks: Techniques, Stan-
dards, and Applications, chapter Confidence management in Vehicular Network,
pages 357–378. CRC Press, 2009. ISBN: 9781420085716.

3. V. Cherfaoui, T. Denoeux, and Z.L. Cherfi. Distributed data fusion: application
to confidence management in vehicular networks. In Proceedings of the 11th Inter-
national Conference on Information Fusion (FUSION 2008), Germany, 2008.

4. S. Delaët, B. Ducourthial, and S. Tixeuil. Self-stabilization with r-operators revis-
ited. In Journal of Aerospace Computing, Information, and Com., 2006.

5. A.P. Dempster. A generalization of bayesian inference. Journal of the Royal Sta-
tistical Society, 30:205–247, 1968.

6. T. Denœux. Conjunctive and disjunctive combination of belief functions induced
by non distinct bodies of evidence. Artificial Intelligence, 172:234–264, 2008.

7. Y. Dieudonné, B Ducourthial, and S.-M. Senouci. Design and experimentation
of a self-stabilizing data collection protocol for vehicular ad-hoc networks. IEEE
Intelligent Vehicle Symposium 2012, Madrid, June 2012.

8. Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Com-
mun. ACM, 17(11):643–644, 1974.

9. Shlomi Dolev. Self-Stabilization. MIT Press, 2000.
10. D. Dubois and H. Prade. Representation and combination of uncertainty with

belief functions and possibility measures. Computer intelligence, 4:244–264, 1988.
11. Swan Dubois. Tolerating Transient, Permanent, and Intermittent Failures. PhD

thesis, Université Pierre et Marie Curie, Paris, France, 2011.
12. B. Ducourthial. r-semi-groups: A generic approach for designing stabilizing silent

tasks. In SSS’2007, Barcelona, November 2007.
13. B. Ducourthial and S. Tixeuil. Self-stabilization with path algebra. Theor. Comput.

Sci., 293(1):219–236, 2003.
14. Bertrand Ducourthial and Sébastien Tixeuil. Self-stabilization with r-operators.

Distributed Computing, 14(3):147–162, 2001.
15. Andrea Gasparri, Flavio Fiorini, Maurizio Di Rocco, and Stefano Panzieri. A

networked transferable belief model approach for distributed data aggregation.
IEEE Transactions on Systems, Man, and Cybernetics, Part B, PP(99), 2011.

16. David L. Hall and James Llinas. Handbook of Multisensor Data Fusion. CRC
Press, 2001.

17. A. Segall. Distributed network protocols. IEEE Trans. Inf. Theory, 29(1):23–34,
1983.

18. G. Shafer. A mathematical theory of evidence. Princeton, N.J, 1976.
19. Ph. Smets. The combination of evidence in the Ttransferable Belief Model. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 12(5):447–458, 1990.
20. Ph. Smets. The canonical decomposition of a weighted belief. In Int. Joint Conf. on

Artificial Intelligence, pages 1896–1901, San Mateo, Ca, 1995. Morgan Kaufman.
21. Ph. Smets. Data fusion in the transferable belief model. Proceedings of. 3rd Intern.

Conf. Information Fusion, Paris, France., 2000.
22. Ph. Smets. Decision making in the TBM: the necessity of the pignistic transfor-

mation. Int. Journal of Approximate Reasoning, 38:133–147, 2005.
23. Philippe Smets and Robert Kennes. The transferable belief model. Artificial

Intelligence, 66:191–234, 1994.
24. G. Tel. Topics in Distributed Algorithms, volume 1 of Cambridge International

Series on Parallel Computation. Cambridge University Press, 1991.
25. G. Tel. Introduction to Distributed Algorithms. Cambridge University Press, 1994.
26. N. El Zoghby, V. Cherfaoui, B. Ducourthial, and T. Denoeux. Distributed data

fusion for detecting sybil attacks in VANETs. In Proc. of the 2nd Int. Confer-
ence on Belief Functions, Springer-Verlag, Advances in Intelligent and Software
Computing, France, May 2012.

