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1 Université de Lyon, CNRS
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ABSTRACT

We present a novel human vision inspired framework that can
recognize facial expressions very efficiently and accurately.
We propose to computationally process small, salient region
of the face to extract features as it happens in human vision.
To determine which facial region(s) is perceptually salient
for a particular expression, we conducted a psycho-visual ex-
perimental study with an eye-tracker. A novel feature space
conducive for recognition task is proposed, which is created
by extracting Pyramid Histogram of Orientation Gradients
features only from the salient facial regions. By process-
ing only salient regions, proposed framework achieved two
goals: (a) reduction in computational time for feature extrac-
tion (b) reduction in feature vector dimensionality. The pro-
posed framework achieved automatic expression recognition
accuracy of 95.3% on extended Cohn-Kanade (CK+) facial
expression database for six universal facial expressions.

Index Terms— facial expression recognition, human vi-
sion, eye-tracker, pyramid histogram of oriented gradients

1. INTRODUCTION

Humans are blessed with the amazing ability to decode fa-
cial expressions across different cultures, in diverse condi-
tions and in a very short time. Human visual system (HVS)
has limited neural resources but still it can analyze complex
scenes in real-time. As an explanation for such performance,
it has been proposed that only some visual inputs are selected
by considering “salient regions” [1], where “salient” means
most noticeable or most important.

In this paper, we propose very efficient and simple frame-
work for automatic facial expression recognition (FER) based
on HVS. We propose a new feature space which is created by
computationally processing salient facial regions with Pyra-
mid Histogram of Orientation Gradients (PHOG) [2] operator.
To determine which facial region(s) is the most important or
salient according to HVS, we conducted a psycho-visual ex-
periment using an eye-tracker. We have considered six univer-
sal facial expressions for psycho-visual experimental study as
these expressions are proved to be consistent across cultures

[3]. These six expressions are anger, disgust, fear, happiness,
sadness and surprise.

There are two main approaches to extract facial fea-
tures: appearance-based methods or geometric feature-based
methods. One of the widely studied method to extract ap-
pearance information is based on Gabor wavelets [4, 5].
Another promising approach to extract appearance infor-
mation is by using Haar-like features [6]. Recently texture
descriptor “Local Phase Quantization” [7] is also studied
to extract appearance-based facial features. For geometric
feature-based methods [8, 9], shapes and locations of facial
components are extracted. Research has been done with
success in recent times to combine features extracted using
appearance-based and geometric feature-based methods [10].

We have found one shortcoming in the reviewed meth-
ods for facial expression recognition that none of them try
to mimic HVS in recognizing them. Rather all of the meth-
ods, spend computational time on whole face image or divides
the facial image based on some mathematical or geometrical
heuristic for features extraction. We argue that the task of
expression analysis and recognition could be done in more
conducive manner, if only some regions are selected for fur-
ther processing (i.e. salient regions) as it happens in human
visual system. Thus, our contribution in this study is twofold:

a. Through psycho-visual experiment we determined
which facial region(s) is salient for a particular expression.

b. We show that very high facial expression recognition
accuracy is achievable by using proposed framework.

The next section provides the details related to psycho-
visual experiment. Results obtained from the psycho-visual
experiment are presented in the Section 3. Section 4 presents
the proposed framework for FER. Experimental results of the
proposed approach for the expression recognition on the clas-
sical databases are presented in the Section 5. This is followed
by the conclusion.

2. PSYCHO-VISUAL EXPERIMENT

The aim of our experiment was to record the eye movement
data of human observers in free viewing conditions. The data



were analyzed in order to find which components of face are
salient for specific displayed expression.

2.1. Participants, apparatus and stimuli

Eye movements of fifteen human observers were recorded us-
ing video based eye-tracker (EyelinkII system, SR Research),
as the subjects watched the collection of 54 videos selected
from the extended Cohn-Kanade (CK+) database [11], show-
ing one of the six universal facial expressions [3]. Observers
include both male and female aging from 20 to 45 years with
normal or corrected to normal vision. All the observers were
naı̈ve to the purpose of an experiment. CK+ database con-
tains 593 sequences across 123 subjects. Each video showed
a neutral face at the beginning and then gradually developed
into one of the six facial expression.

2.2. Eye movement recording

Eye position was tracked at 500 Hz with an average noise
less than 0.01◦. Head mounted eye-tracker allows flexibility
to perform the experiment in free viewing conditions as the
system is designed to compensate for small head movements.

3. PSYCHO-VISUAL EXPERIMENT RESULTS

In order to statistically quantify which region is perceptually
more attractive for specific expression, we have calculated
the average percentage of trial time observers have fixated
their gazes at specific region(s) in a particular time period.
As the stimuli used for the experiment is dynamic i.e. video
sequences, it would have been incorrect to average all the
fixations recorded during trial time (run length of the video)
for the data analysis as this could lead to biased analysis
of the data. To meaningfully observe and analyze the gaze
trend across one video sequence we have divided each video
sequence in three mutually exclusive time periods. The first
time period correspond to initial frames of the video se-
quence i.e. neutral face. The last time period encapsulates
the frames where the expression is shown with full intensity
(apex frames). The second time period is a encapsulation
of the frames which has a transition of facial expression i.e.
transition from neutral face to the beginning of the desired
expression (i.e neutral to the onset of the expression). Then
the fixations recorded for a particular time period are aver-
aged across fifteen observers. For drawing the conclusions
we considered second and third time periods as they have the
most significant information in terms of specific displayed
expression. Conclusions drawn are summarized in Table 1.
Refer [12] for the detailed explanation of the psycho-visual
experimental study.

Expression Salient facial region(s)
Happiness Mouth region.
Surprise Mouth region.
Sadness Mouth and eye regions.

Biased towards mouth region.
Disgust Nose, mouth and eye regions. Wrinkles

on the nose region gets little more
attention than the other two regions.

Fear Mouth and eye regions.
Anger Mouth, eye and nose regions.

Table 1. Summary of the facial regions that emerged as
salient for six universal expressions

4. EXPRESSION RECOGNITION FRAMEWORK

Feature selection along with the region(s) from where these
features are going to be extracted is one of the most impor-
tant step to successfully recognize expressions. As the pro-
posed framework draws its inspiration from the human visual
system, it processes only perceptual salient facial region(s)
for the feature extraction. The proposed framework creates a
novel feature space by extracting Pyramid Histogram of Ori-
entation Gradients (PHOG) [2] features from the perceptu-
ally salient facial regions. PHOG features are selected as they
have proven to be highly discriminative for FER task [13, 14].
Schematic overview of the proposed framework is illustrated
in Figure 1. Steps of the proposed framework are as follows:
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Fig. 1. Schematic overview of the proposed framework

Step 1: The framework initializes with the localization of
the mouth region from the input sequence. Then, the PHOG
features are extracted from the localized mouth region. The
classification (“Classifier-a” in the Figure 1) is carried out on
the basis of extracted features in order to make two groups of
facial expressions. First group comprises of those expressions
that has one perceptual salient region i.e. happiness, sadness
and surprise while the second group is composed of those ex-



pressions that have two or more perceptual salient regions i.e.
anger, fear and disgust. Purpose of making two groups of ex-
pressions is to reduce feature extraction computational time.

Step 2: If the sequence is classified in the first group, then
it is classified either as happiness, sadness or surprise by the
“Classifier-b”. Classification is carried out on the already ex-
tracted PHOG features from the salient mouth region.

Step 3: If the input sequence is classified in the second
group, then the framework extracts PHOG features from the
eyes region and concatenates them with the already extracted
PHOG features from the mouth region. Then, the concate-
nated feature vector is fed to the classifier (“Classifier-c”) for
the final classification of the sequence.

4.1. Feature extraction using PHOG

PHOG [2] is a spatial shape descriptor. It first extracts Edge
contours of the given stimuli using the Canny edge detector.
Then, the image is divided into finer spatial grids by itera-
tively doubling the number of divisions in each dimension.
The grid at level l has 2l cells along each dimension. After-
wards, a histogram of orientation gradients (HOG) are calcu-
lated using 3 x 3 Sobel mask and the contribution of each edge
is weighted according to its magnitude. Within each cell, his-
togram is quantized into N bins. Each bin represents the accu-
mulation of number of edge orientations within a certain an-
gular range. To obtain the final PHOG descriptor, histograms
of gradients (HOG) at the same levels are concatenated. The
final PHOG descriptor is a concatenation of HOG at different
pyramid levels. Generally, the dimensionality of the PHOG
descriptor can be calculated by: N

∑
l 4l. In our experiment

we obtained 168 dimensional feature vector ( f1, ....., f168 )
from one facial region, as we created two pyramid levels with
8 bins with the range of [0-360].

5. EXPRESSION RECOGNITION EXPERIMENT

To test the effectiveness of the proposed framework we con-
ducted the expression recognition experiment on the CK+
database [11]. The performance of the framework was eval-
uated using four classifiers i.e. “Support vector machine
(SVM)” with χ2 kernel and γ=1, “C4.5 Decision Tree” with
reduced-error pruning, “Random Forest” of 10 trees and “2
Nearest Neighbor (2NN)” based on Euclidean distance. The
parameters of the classifiers were determined empirically.

For the experiment we used all the 309 sequences from
the CK+ database which have FACS coded expression label
[15]. The experiment was carried out on the frames which
covers the status of onset to apex of the expression, as done
by Yang et al. [6]. Region of interest was obtained auto-
matically by using Viola-Jones object detection algorithm
[16] and processed to obtain PHOG feature vector. The
proposed framework achieved average recognition rate of
95.3%, 95.1%, 96.5% and 96.7% for SVM, C4.5 decision

tree, random forest and 2NN respectively. These values were
calculated using 10-fold cross validation.

Sa Ha Su Fe An Di
Sa 95.5 0 0.5 0 4.0 0
Ha 0 95.1 0 4.1 0 0.8
Su 3.4 0 96.6 0 0 0
Fe 0 3.2 0 94.6 2.2 0
An 4.8 0 0 0 95.2 0
Di 0.8 0.9 0 0 3.4 94.9

Table 2. Confusion Matrix: SVM

For comparison and reporting results, we have used the
classification results obtained by the SVM as it is the most
cited method for classification in the literature. Table 2 shows
the confusion matrix for SVM. In the presented table expres-
sion of Happiness is referred by “Ha”, Sadness by “Sa”, Sur-
prise by “Su”, Fear by “Fe”, Anger by “An” and Disgust by
“Di”. Diagonal and off-diagonal entries of confusion matrix
shows the percentages of correctly classified and misclassi-
fied samples respectively.

Fig. 2. Evolution of the achieved average recognition accu-
racy for the six universal facial expressions with the increas-
ing number of folds for the k-fold cross validation technique.

Figure 2 shows the influence of the size of the training set
on the performance of the four classifiers used in the exper-
iment. For all the classifiers we have computed the average
recognition accuracy using different number of folds (k’s) for
the k-fold cross validation technique and plotted them in the
Figure 2. It can be observed that C4.5 decision tree classifier
was influenced the most with less training data while 2NN
classifier achieved highest recognition rate among the four
classifiers with relatively small training set (i.e. 2-folds). This
indicates how well our novel feature space was clustered.

Table 3 shows the comparison of the achieved average
recognition rate of the proposed framework with the state-



Sequence Class Performance Recog.
Num Num Measure Rate (%)

[4] 313 7 leave-one-out 93.3
[17] 374 6 ten-fold 96.26
[10] 374 6 five-fold 94.5
[5] 375 6 - 93.8
[6]a 352 6 66% split 92.3
[6]b 352 6 66% split 80
Ours 309 6 ten-fold 95.3

Table 3. Comparison with the state-of-the-art methods

of-the-art methods[4, 17, 10, 5, 6] using the same database
(i.e Cohn-Kanade database). Results from [6] are presented
for the two configurations. “[6]a” shows the reported result
when the method was evaluated for the last three frames (apex
frames) from the sequence while “[6]b” presents the reported
result for the frames which encompasses the status from on-
set to apex of the expression. It can be observed from the
Table 3 that the proposed framework is comparable to any
other state-of-the-art method in terms of expression recog-
nition accuracy. The method discussed in “[6]b” is directly
comparable to our method, as we also employed the same ap-
proach. In this configuration, our framework is better in terms
of average recognition accuracy.

6. CONCLUSION

In this paper we presented a novel framework for automatic
and reliable facial expression recognition. Framework is
based on a initial study of human vision. With the proposed
framework high recognition accuracy, reduction in feature
vector dimensionality and reduction in computational time
for feature extraction is achieved by processing only percep-
tually salient region of face. Our proposed framework can be
used for real-time applications since its unoptimized Matlab
implementation run at 4 frames / second which is enough as
facial expression does not change abruptly.
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