
HAL Id: hal-00794138
https://hal.science/hal-00794138

Submitted on 25 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rational countable steps functions on the Circle and
ergodicity of Maharam measures

Julien Brémont

To cite this version:
Julien Brémont. Rational countable steps functions on the Circle and ergodicity of Maharam measures.
Bulletin of the London Math. Soc., 2013, 1 (1), pp.1-13. �hal-00794138�

https://hal.science/hal-00794138
https://hal.archives-ouvertes.fr


Submitted exclusively to the London Mathematical Society
doi:10.1112/0000/000000

Rational countable steps functions on the Circle and ergodicity of
Maharam measures

Julien Brémont

Abstract

We consider skew-products defined by BV countable steps functions with rational endpoints over an
irrational rotation on the circle. We study the ergodicity of Lebesgue measure and more generally of
all conformal (also called Maharam) measures. We next give an application to BV Davenport series.

1. Introduction

Let T = R/Z be the circle endowed with an irrational rotation Tx = x+ α mod 1 and Lebesgue
measure µ. Let f : T→ R be measurable, bounded and with µ−zero mean, i.e.

∫
f dµ = 0. We set

Tf = f ◦ T and introduce the ergodic sums :

fn(x) =

n−1∑
k=0

T kf(x), x ∈ T, n ≥ 1.

A usual way of studying these sums is via the skew-product associated with f :

Tf :
T× R −→ T× R
(x, y) 7−→ (Tx, y + f(x)).

The asymptotic behaviour of (fn(x)) for a µ-typical x is related to the ergodic properties of the
uniform measure ν = µ⊗ λR on T× R, which is naturally Tf -invariant. It is well-known that this
question of ergodicity is directly connected with the coboundary equation f = g − Tg, µ-a.-e., and
more generally with equations f − g + Tg ∈ H, µ-a.-e., for a closed subgroup H of (R,+); cf for
example Schmidt [20]. Let us recall that when f is not a measurable coboundary, then for µ-a.-e.
x ∈ T the proportion of n ≤ N so that fn(x) belongs to a fixed bounded domain tends to zero as
N → +∞. Ergodicity furthermore implies that (fn(x))n≥1 is dense in R for µ-a.-e. x ∈ T and gives
for this sequence statistics described by ν.

An important question is to determine all Borel locally finite (Radon) Tf -invariant ergodic
measures on T× R, for example in order to find points with different behaviours for the ergodic
sums. In this direction, one commonly introduces a family of Tf -invariant Radon measures
associated with f . For each t ∈ R define the Maharam measure νt,f on T× R by :∫

T×R
g(x, y) dνt,f (x, y) =

∫
T×R

g(x, y) etydµt,f (x)dy,

where µt,f is a Borel probability measure on T verifying the quasi-invariance property :

dTµt,f = etT
−1fdµt,f . (1.1)

The measure µt,f exists and is uniquely defined as well as non-atomic as soon as f is BV, which
will be our situation. These facts are for instance detailed in Conze-Guivarc’h [8]. All measures
νt,f are Tf -invariant, with ν0,f = ν, and a natural problem is whether they are ergodic and then
the only Tf -invariant ergodic Radon measures on T× R.
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Let Q(T) denote the set of rationals in T, often seen as Q ∩ [0, 1). Set Q∗(T) = Q(T)\{0}. Our
purpose in this article is to study the ergodicity of Maharam measures for the following examples :

U(x) =
∑

r∈Q∗(T)

ur(1[0,r)(x)− r), where u = {ur}r∈Q∗(T) ∈ l1. (1.2)

Extensions with maps of this form naturally appear for example when analyzing the ergodic
properties of billiard flows through the introduction of Poincaré sections. Let U(x−) and U(x+) be
the left and right limits of U at x. Notice first that U can be uniquely written in the form (1.2),
because U(r−)− U(r+) = ur for all r ∈ Q∗(T). Introduce :

ρu =
∑

r∈Q∗(T)

rur.

We have U(0+) = −ρu. Let now Hu be the closed subgroup of (R,+) generated by the values taken
by U . Denoting by σ(A) the subgroup generated by a set A, the previous remarks show that :

Hu = σ(u ∪ {ρu}).

Observe that Hu = R if and only if σ(u) = R. In the sequel we write Tu for TU and µt,u for µt,U .
Let λH be Haar measure on a closed subgroup H of (R,+). The story taking place in T×Hu,
introduce the family of Radon Tu-invariant measures νt,u on T×Hu, t ∈ R, defined by :

dνt,u(x, y) = etydµt,u(x)dλHu(y).

For simplicity we say that Tu is t-ergodic on T×Hu if (T×Hu,B(T×Hu), Tu, νt,u) is ergodic,
that U is a t-coboundary if U = g − Tg, µt,u-a.-e., for a real measurable g (which can always be
chosen Hu-valued). Conveniently we use ergodic for 0-ergodic and coboundary for 0-coboundary.

The problem of the ergodicity of Lebesgue measure for compact extensions by finite step functions
has been intensively studied; cf Veech [21] for instance. The case of non-compact extensions by
finite step functions and the ergodicity of Lebesgue measure has also been considered for a long
time. This question is sensibly more difficult, because of the possible phenomenon of non-regularity
(recalled below). We adress the reader to the recent paper by Conze [7] and references therein. In
[7] several existing results are extended. The case of Maharam measures is also treated in particular
situations, improving former results of Aaronson-Nakada-Sarig-Solomyak [2]. The analysis focuses
on the properties of the sequence (qnρu)n, where (qn) are the denominators of the convergents of
α. We give here partial results complementary to those in [7]. Our method is sensibly different,
working even if ρu = 0, but with main focus the case of rational endpoints and u ∈ l1.

Mention an interesting technical point making the presentation easier. Introduce the sawtooth
function {x}? = x− bxc − 1/2, where bxc is the integer part of x, with {0}? = 0. We have :

{x}? = −
∑
m≥1

sin(2πmx)

πm
, x ∈ T. (1.3)

It is easy to check that 1[0,r)(x)− r = {x− r}? − {x}?. Defining v = {vr}r∈Q(T) by vr = ur, r 6= 0,
and v0 = −

∑
r∈Q∗(T) ur, one can rewrite (1.2) as :

U(x) =
∑

r∈Q(T)

vr{x− r}?. (1.4)

We will use both representations for U . In practice {x}? has only one discontinuity on T, whereas
1[0,r) − r has two (when 0 < r < 1). It also behaves very well under rational rotations, as illustrated
by the following identities, checked for instance on the Fourier series :

∀q ≥ 1,
∑

0≤k<q

{x+ k/q}? = {qx}?. (1.5)
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2. Notations

– The convergents of α are denoted by (pn/qn) and its partial quotients by (an). We will use
classical inequalities, which can for instance be found in Khinchin [15]. Introduce also :

∗ (C) : (an) is bounded or ∀A > 0 ∃B ≥ A ∃(ψ(n))→ +∞ so that A ≤ aψ(n) ≤ B.
∗ (C ′) : ∀A > 0 ∃B ≥ A ∃(ψ(n))→ +∞ with A ≤ aψ(n)+1 ≤ B & minp>1, p|qψ(n)

{p} → +∞.

– A rational r = p/q ∈ Q(T) is implicitly written in irreducible form with q ≥ 1. We set d(r) = q.
Let P be the set of primes. The gcd of integers n and m is (n,m). Denote by ϕ Euler’s Totient
function, where ϕ(n) is the number of integers less than or equal to n and prime with n. Recall
the classical identity

∑
q|n ϕ(q) = n, n ≥ 1.

– The variation of a function f is written as V (f). If f is BV, the sum of its jumps is J(f). The
image of µt,f by f is written as Lt(f), with L0(f) = L(f).

– The distance in T or R is denoted by d(x, y), the distance from a real x to Z by ((x)).

3. Essential values

Let H be a closed subgroup of (R,+) and f : T→ H be measurable. As Tf is a cylindrical
transformation of T×H with an ergodic basis, the question of the ergodicity of Tf can be reduced
to the study of the set of periods or “essential values”. Basic results for µ were developed by
Schmidt [20] and Feldman-Moore [13]. The same ones for µt,f , t ∈ R, can be found in Conze-
Raugi [9], section 2.3. Recall that the notation fn is extended as usual to n ∈ Z by setting f−n(x) =
−T−nfn(x), n ≥ 0. Denote also by H̄ = H ∪ {∞} the one-point compactification of H.

Definition 3.1. An element c ∈ H̄ is a t-essential value for f if for any neighbourhood V of c
and A ∈ B(T) with µt,f (A) > 0 there is n ∈ Z so that µt,f (A ∩ T−nA ∩ {fn ∈ V }) > 0.

The set of t-essential values is written as Et(f) ⊂ H̄. The finite part Et(f) is a closed subgroup of
(H,+). Let us set E0(f) = E(f). An important property, called t-regularity, is when f − g + Tg ∈
Et(f), µt,f -a.-e., for a real measurable g. We say regular for 0-regular. For instance, a t-measurable
coboundary or a t-ergodic cocycle on T×H are t-regular. Mention that a cocycle may not be
regular (cf Zimmer [22], when t = 0). In our context, we have (see [20, 9]) :

Proposition 3.2.
i) The cocycle defined by f is t-ergodic on T×H if and only if Et(f) = H.

ii) The function f is a t-coboundary if and only if Et(f) = {0}.
iii) The cocycle defined by f is t-non-regular if and only if Et(f) = {0,∞}.

A way of finding finite essential values is via the following lemma; this is an extension of
proposition 9 in Lemańczyk-Parreau-Volny [17] to the conformal case. We suppose that f is BV.

Lemma 3.3.
Let (kn)→ +∞, with (kn) extracted from (qn) when t 6= 0. If knα→ 0 mod 1 and Lt(fkn)
converges to a measure m for the vague topology, then supp(m) ⊂ Et(f).

Proof of the lemma : One way is to follow the proof of lemma 2.2 in [3] given for t = 0. The
arguments are the same, except for the first step proving that

∫
T |g − T

kng| dµt,f → 0, as n→
+∞, for a bounded and measurable g. This is clearly true for a continuous g. For a general g,
let ε > 0 and take a continuous h so that

∫
T |g − h| dµt,f < ε. It is then enough to show that∫

T |T
kng − T knh| dµt,f is small. From the quasi-invariance property, the latter equals :∫

T
|g − h|e−tfkn dµt,f ≤ e|t|V (f)

∫
T
|g − h| dµt,f ≤ e|t|V (f)ε, (3.1)
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where we have used the Denjoy-Koksma inequality. This completes the proof of the lemma. �

4. Results

Lemma 4.1. Conditions (C) and (C ′) are both true µ-a.-e..

Our purpose is to establish :

Theorem 4.2. Let α 6∈ Q and u = {ur}r∈Q∗(T) ∈ l1.

i) - If supp(u) is finite or (C) is true then U is regular.

- If U is regular, then Tu is ergodic in T×Hu.

ii) If (C ′) is true, then Tu is t-ergodic on T×Hu, for all t ∈ R.

Remark. — As a corollary U is a coboundary if and only if u = 0. For µ-a.-e. angle α, this is also
true for t-coboundaries, for all t ∈ R.

Remark. — The first item of the theorem is an improvement of a result in [6], where ergodicity in
T× (1/d(r))Z is shown for U(x) = 1[0,r)(x)− r, r ∈ Q∗(T). One can build other kinds of examples.
For instance for any rational 0 < β < 1/2 and α 6∈ Q, the function f(x) = 1[0,β)(x)− 1[β,2β)(x)
defines an ergodic Z-valued cocycle. This is valid more generally for :

f(x) =
∑

1≤i≤N

mi(1[0,ri)(x)− 1[ri,2ri)(x)),

with rationals (ri) in (0, 1/2) so that ri 6= rj and ri 6= 2rj for i 6= j, together with integers (mi)
such that gcd(m1, · · · ,mN ) = 1. One may also consider :

f(x) =
∑
k>1

1

k2
(1[0,1/(2k))(x)− 1[1/(2k),1/k)(x)),

which defines an ergodic R-valued cocycle for any α with bounded (an). The latter cocycle is
furthermore t-ergodic for all t ∈ R, for µ-a.-e. α.

Remark. — In the second item of the theorem we haven’t been able to prove that Maharam
measures are the only Radon ergodic ones without using ρu. Unicity is proved in [7] when supp(u) is
finite and (qnρu)n has infinitely many cluster values modulo one. If ρu = 0 it is delicate to establish
that the non-degeneracy of Un at certain rigid times is “seen” by an arbitrary ergodic Radon
measure (this is the first step towards unicity; cf [2]). We also have no example of a non-regular
cocycle of this form. This point is discussed later.

Let us give an application to Davenport series D(x) =
∑
l≥1 cl{lx}?. Such series appear since

a long time in the litterature, as furnishing abundant examples and counter-examples in analysis.
Their systematic study was initiated by Davenport [10, 11]; see the presentation by Jaffard [14].

Proposition 4.3. Let α 6∈ Q and D(x) =
∑
l≥1 cl{lx}?, with (lcl)l≥1 ∈ l1. Let c = {cl}l≥1.

i) If
∑
l≥1 lcl 6= 0, then TD is ergodic in T× R.

ii) If
∑
l≥1 lcl = 0, the previous results apply because :

D(x) = U(x) =
∑

r∈Q∗(T)

ur(1[0,r)(x)− r),

with u = {ur}r∈Q∗(T) so that ur =
∑
m≥1 cmd(r). Also σ(u) = σ(c) and Hu = σ(c ∪ {(

∑
cl)/2}).
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4.1. Proof of lemma 4.1

This is clear for (C). Let us turn to (C ′). We shall prove the following stronger result : for
all A > 0 one can find B > A so that along a subsequence qn is prime and A ≤ an+1 ≤ B. We
use a difficult result of Erdös [12], theorem II, proving a particular case of the Duffin-Schaeffer
conjecture : if ε > 0 and n1 < n2 < · · · is a sequence verifying

∑
i≥1 ϕ(ni)/n

2
i = +∞, then :

µ(lim sup
i→+∞

Ai,ε) = 1, where Ai,ε = ∪r∈Q(T),d(r)=ni [r − ε/n
2
i , r + ε/n2i ].

Remark that when α ∈ [r − ε/n2i , r + ε/n2i ] with d(r) = ni and ε < 1/2 then r has to be some
convergent pk/qk of α. As 1/(2qkqk+1) ≤ |α− pk/qk|, we get ak+1 > 1/(4ε). We take for (ni) the
sequence of primes, which checks the condition because

∑
p∈P 1/p = +∞. Next, for ε > 0 set :

Bi,ε = ∪r∈Q(T),d(r)=ni [r + ε/(2n2i ), r + ε/n2i ].

We have Bi,ε ⊂ Ai,ε and µ(Bi,ε) ≥ µ(Ai,ε)/4. By a lemma of Cassels [5] :

µ(lim sup
i→+∞

Bi,ε) = µ(lim sup
i→+∞

Ai,ε) = 1.

For α ∈ [r + ε/(2n2i ), r + ε/n2i ] with d(r) = ni, we have r = pk/qk for some k with ak+1 ≤ 2/ε,
because |α− pk/qk| < 1/(qkqk+1). We finally choose α ∈ ∩m>2 lim supi→+∞Bi,1/m.

�

4.2. Proof of theorem 4.2 i)

Proposition 4.4. If U is regular, then σ(u) ⊂ E(U).

Proof of the proposition : We adapt [6]. Suppose that θ := U − g + Tg ∈ E(U), µ-a.-e., for a
measurable g. If σ(u) 6⊂ E(U), then necessarily E(U) = γZ for some γ ≥ 0 and ur0 6∈ E(U) for
some r0 ∈ Q∗(T). Let δ = d(ur0 , E(U)) > 0 and fix N > d(r0) so that :∑

r∈Q∗(T),d(r)>N

|ur| ≤ δ/8. (4.1)

Let ε = 1/(32N4) and K ⊂ T be a compact set with µ(K) > 1− ε so that g|K is uniformly
continuous. Choose η > 0 so that for x, y in K :

d(x, y) < η ⇒ |g(x)− g(y)| ≤ δ/8. (4.2)

Introduce Γn = {r − kα | r ∈ Q(T), d(r) ≤ N, 0 ≤ k < qn/N
2} and the corresponding partition Pn

of T. If x and x′ are in the same piece of Pn, then the intervals [x, x′] + kα, for 0 ≤ k < qn/N
2,

meet no r ∈ Q(T) with d(r) ≤ N . They are also disjoint if d(x, x′) < 1/(2qn). Therefore, by (4.1) :

|Uqn/N2(x)− Uqn/N2(x′)| ≤
∑

r∈Q(T),d(r)>N

|ur| ≤ δ/8, (4.3)

considering qn/N
2 as an integer. For 0 ≤ j ≤ qn/N2, let δ−j and δ+j be the length of the left and right

intervals of r0 − jα in Pn. Maybe cutting these intervals, introduce the left and right subintervals
I±j touching r0 − jα and with length min{1/(2qn), δ±j /2}.

Fix 0 ≤ j ≤ qn/N2 and take points x ∈ I−j and y ∈ I+j , µ-typical for the property “Tnθ ∈ E(U),
n ∈ Z”. Then :

d(ur0 , E(U)) ≤ |ur0 − θ qn
N2

(x) + θ qn
N2

(y)|

≤ |ur0 − U qn
N2

(x) + U qn
N2

(y)|+ |g(x)− g(y)|+ |g(x+
qn
N2

α)− g(y +
qn
N2

α)|. (4.4)
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In (4.4) consider the first term on the right. Introducing left and right limits of the ergodic sums
at r0, by (4.3), it is less than or equal to :

|ur0 − U qn
N2

(r−0 ) + U qn
N2

(r+0 )|+ |U qn
N2

(x)− U qn
N2

(r−0 )|+ |U qn
N2

(y)− U qn
N2

(r+0 )| ≤ 0 + δ/8 + δ/8.

As a result, d(ur0 , E(U)) ≤ δ/4 + |g(x)− g(y)|+ |g(x+ qn/N
2α)− g(y + qn/N

2α)|. If now x and
y were both in K ∩ (K − qn/N2α), then d(ur0 , E(U)) ≤ δ/2, by (4.2), because 1/qn < η for large
n. Hence µ-almost all I−j or µ-almost all I+j is included in Kc ∪ (K − qn/N2α)c, giving :

1

2
(qn/N

2) min
0≤j<qn/N2

{1/(2qn), δ−j /2, δ
+
j /2} ≤ 2ε.

Next δ±j ≥ min(r,k)6=(r0,j),d(r)≤N,0≤k≤qn/N2{|(r − kα)− (r0 − jα)|}. If k = j, then r 6= r0 and the
related quantity is ≥ 1/N2. If k 6= j, then :

|(r − kα)− (r0 − jα)| ≥ 1

d(r)d(r0)
d((k − j)d(r)d(r0)α,Z) ≥ 1

N2

1

2qn
.

We thus get 1/(8N4) ≤ 2ε, contradicting the hypothesis on ε. As a result, σ(u) ⊂ E(U).
�

Lemma 4.5. Let t ∈ R. If σ(u) ⊂ Et(U), then Et(U) = Hu.

Proof of the lemma : Supposing that ρu 6∈ σ(u), necessarily σ(u) = γZ for some γ > 0 and u has
finite support. Write ρu = γP/Q, (P,Q) = 1. As (qn, qn+1) = 1, fix a, b and (ψ(p))→ +∞ so
that aqψ(p) + bqψ(p)−1 = 1 mod Q for all p. We may suppose that aqψ(p) + bqψ(p)−1 → +∞, up
to adding some KQ to a.

Introduce U + σ(u) ∈ Hu/σ(u), the cocycle induced by U in Hu/σ(u). Then µt,u-a.-e. :

Uaqψ(p)+bqψ(p)−1
+ σ(u) = (aqψ(p) + bqψ(p)−1)ρu + σ(u) = γP/Q+ σ(u) = ρu + σ(u).

By the analogous statement as lemma 3.3 for Hu/σ(u), cf [1], ρu + σ(u) is a t-essential value for
U + σ(u) (with the same proof as that of lemma 3.3, using that a and b are fixed, therefore giving
in (3.1) an upper-bound of the form ε exp(|t|(|a|+ |b|)V (U)). The rest of the proof is now more or
less standard : for all ε > 0 and A ∈ B(T) with µt,u(A) > 0, there exists n ∈ Z so that :

µt,u(A ∩ T−nA ∩ {d(Un + σ(u), ρu + σ(u)) < ε}) > 0.

There thus exists an integer k so that µt,u(A ∩ T−nA ∩ {d(Un, ρu − kγ) < ε}) > 0. Call B the set
appearing here. As kγ is a t-essential value for U , there exists m ∈ Z so that :

µt,u(B ∩ T−mB ∩ {d(Um, kγ) < ε}) > 0.

The set involved above is included in A ∩ T−m−nA and on this set d(Um+n, ρu) < 2ε, because
d(Um, kγ) < ε and d(Un ◦ Tm, ρu − kγ) < ε. Hence :

µt,u(A ∩ T−n−mA ∩ {d(Un+m, ρu) < 2ε}) > 0.

As a result ρu is a t-essential value for U and Et(U) = Hu.
�

Proposition 4.6. If (C) is true or supp(u) is finite, then U is regular.
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Proof of the proposition : i) First, by (1.4) and (1.3) :

Un(x) = − 1

2iπ

∑
m 6=0

e2iπmx

m

(
e2iπmnα − 1

e2iπmα − 1

)
ξ(m), ξ(m) =

∑
r∈Q(T)

vre
−2iπmr.

Notice that ξ is an almost-periodic function on N. For some constant C > 0 :

‖Un‖22 ≥ C
∑
m≥1

((mnα))2

m2((mα))2
|ξ(m)|2. (4.5)

ii) We next make another computation. Let I1,n = [pn/qn, α] be the small interval on T determined
by pn/qn and α and Ik,n = [kpn/qn, kα] its image by ×k. Introduce the disjoint union Jn =
∪0≤k<qnIk,n and set εn = sign(α− pn/qn). By (1.5) :

{.}?qn(x) =
∑

0≤k<qn

{x+ kpn/qn}? +
∑

0≤k<qn

{x+ kα}? − {x+ kpn/qn}?

= {qnx}? +
qn(qn − 1)

2
(α− pn/qn)− εn

∑
0≤k<qn

1−x∈Ik,n . (4.6)

As a result, using that
∑
r∈Q(T) vr = 0 :

Uqn(x) =
∑

r∈Q(T)

vr{qn(x− r)}? − εn
∑

r∈Q(T)

vr1−x∈Jn−r

=
∑

r∈Q∗(T)

ur(1[0,{qnr})({qnx})− {qnr})− εn
∑

r∈Q∗(T)

ur(1−x∈Jn−r − 1−x∈Jn).

Setting γr(n) =
∑
s∈Q∗(T),qns=r us, we obtain :

Uqn(x) =
∑

r∈Q∗(T)

γr(n)(1[0,r)({qnx})− r)− εn
∑

r∈Q∗(T)

ur(1−x∈Jn−r − 1−x∈Jn). (4.7)

iii) Suppose now that U 6= 0. Let m0 be such that ξ(m0) 6= 0 and fix N with :

|
∑

r∈Q(T),d(r)≤N

ure
−2iπm0r| > 3

4
|ξ(m0)| and

∑
r∈Q(T),d(r)>N

|ur| <
1

4
|ξ(m0)|.

Let integers a, b and (ψ(p))→ +∞ be so that mp := aqψ(p) + bqψ(p)−1 verifies mp = m0 mod N !
for all p. We can suppose that |b| < N ! and KN ! ≤ a < 2KN !, with K ≥ 1 specified later. Notice
that mp((mpα)) ≤ (a+ |b|)2.

Using the term of index mp in (4.5) and ((nmpα)) ≥ |((naqψ(p)α))− ((nbqψ(p)−1α))|, we obtain
that for all integers n, p :

‖Un‖22 ≥
C

(a+ |b|)4
|ξ(m0)|2

4
[((naqψ(p)α))− ((nbqψ(p)−1α))]2. (4.8)

– In a first case, suppose that an ≤M for all n. Take K = 8M and k0 so that (3/2)k0 >
20MN !. For large p and n = qψ(p)−k0 , we have ((naqψ(p)α)) = na((qψ(p)α)) and ((nbqψ(p)−1α)) ≤
n|b|((qψ(p)−1α)). Thus, for large p, |((naqψ(p)α))− ((nbqψ(p)−1α))| is larger than or equal to :

qψ(p)−k0(a((qψ(p)α))− |b|((qψ(p)−1α))) ≥ qψ(p)−k0((qψ(p)α))(a− 4|b|M) ≥ a

2

1

(2M)k0+1
.

By Denjoy-Koksma’s inequality, ‖Uqψ(p)−k0
‖∞ ≤ 2

∑
r∈Q(T) |ur|, so (L(Uqψ(p)−k0

))p is tight. Any
cluster value in law is not zero because, by (4.8), ‖Uqψ(p)−k0

‖2 is bounded from below by a positive
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constant. As (qψ(p)−k)p is a rigid sequence, there exists a non-zero finite essential value for U , by
lemma 3.3. Therefore U is regular.

– Suppose next that for all A > 0 there exist B and (ψ(p))→ +∞ so that A ≤ aψ(p)+1 ≤ B. Take
n = qψ(p) in (4.8), K = 4 and A = 4N !. Then :

((naqψ(p)α))− ((nbqψ(p)−1α)) ≥ qψ(p)((qψ(p)α))(a− |b|) ≥ a

8B
.

We next conclude in the same way.

– Suppose now (an) unbounded. Let us place on a subsequence where an+1 → +∞ and define :

Kn = ∪
r∈Q(T),d(r)<min{qn,a1/4n+1}

(Jn − r).

Decomposing the last term of (4.7), we obtain that uniformly in x 6∈ −Kn :

Uqn(x) =
∑

r∈Q∗(T)

γr(n)(1[0,r)({qnx})− r) + o(1).

As µ(Jn) ≤ 1/(2an+1) we have µ(Kn) ≤ a1/2n+1µ(Jn) ≤ 1/(2a
1/2
n+1)→ 0. By Slutsky’s lemma on the

convergence of random variables, the behaviour in distribution of (Uqn)n≥1 along the considered
subsequence is that of :∑

r∈Q∗(T)

γr(n)(1[0,r)({qnx})− r) =L
∑

r∈Q∗(T)

γr(n)(1[0,r)(x)− r).

– Suppose that for some r0 ∈ Q∗(T), (γr0(n)) does not tend to 0. Then there exists a constant
γr0 6= 0 so that γr0(n)→ γr0 along a subsequence. Using the diagonal procedure, we construct
(γr)r∈Q∗(T) ∈ l1 and get a cluster value in law for the narrow topology of the form L(X), with :

X =
∑

r∈Q∗(T)

γr(1[0,r)(x)− r).

Clearly both X(r−0 ) and X(r+0 ) belong to supp(L(X)) and thus to E(U) by lemma 3.3. As
E(U) is a group, 0 6= γr0 = X(r−0 )−X(r+0 ) ∈ E(U). As a result U is regular.

– Suppose now that for each r, γr(n)→ 0. When supp(u) is finite, necessarily γr(n) = 0 for
n large enough. Hence, for n large enough, by (4.7), Uqn(x) = −εn

∑
r∈Q(T) vr1−x∈Jn−r. The

(Jn +mqnα)0≤m<an+1
are disjoint, so :

Umqn(x) = −εn
∑

r∈Q(T)

vr1−x∈∪0≤u<mJn+uqnα−r,

for 0 ≤ m < an+1. In (4.8), with K = 4, mp = aψ(p)+1/(10N !) and n = mpqψ(p), we get :

((naqψ(p)α))− ((nbqψ(p)−1α)) ≥ mpqψ(p)((qψ(p)α))(a− |b|) ≥ a

40N !
.

Hence (Umpqψ(p)
)p is uniformly bounded and bounded from below by a positive constant in

L2(µ), by (4.8). As mpqψ(p)α→ 0 mod 1, we conclude again with lemma 3.3 that U is regular.
�

4.3. Proof of theorem 4.2 ii)

Let n ≥ 1. Consider the (kα)0≤k<qn on T and denote by pk(n)α the predecessor of kα for the
trigonometric ordering, with 0 < pk(n) ≤ qn. As a first remark, {qnx}? is linear with slope qn going
from −1/2 to 1/2 on each interval (l/qn, (l + 1)/qn). It can therefore be rewritten as :

{qnx}? =
∑

0≤k<qn

(qn(x+ kpn/qn)− 1/2)1x∈[−kpn/qn,−pk(n)pn/qn]. (4.9)
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Without loss of generality, suppose now that εn = +1, ie α > pn/qn. We next have :

{qnx}? −
∑

0≤k<qn

1x∈[−kα,−kpn/qn] =
∑

0≤k<qn

(qn(x+ kpn/qn)− 1/2)1x∈[−kα,−pk(n)α],

as (make a picture) this operation of subtraction moves the domain of each linear part qn(x+
kpn/qn)− 1/2 from (−kpn/qn,−pk(n)pn/qn) to (−kα,−pk(n)α). By (4.6), we obtain :

{.}?qn(x) =
∑

0≤k<qn

(qn(x+ kpn/qn)− 1/2)1[−kα,−pk(n)α](x) +
qn(qn − 1)

2
(α− pn/qn).

By (1.4) and as the vr sum to 0 :

Uqn(x) =
∑

r∈Q(T)

vr
∑

0≤k<qn

(qn(x− r + kpn/qn)− 1/2)1[−kα,−pk(n)α](x− r). (4.10)

For δ > 0, let A+(n, δ) = ∪0≤k<qn [0, δ/qn]− kα, A−(n, δ) = ∪0≤k<qn [−δ/qn, 0]− kα. Set finally
B(n, δ) = A+(n, δ) ∪A−(n, δ). If x ∈ (B(n, δ) + r) ∩ (B(n, δ) + r′) for r 6= r′ in Q(T), then :

r − r′ = (kn − k′n)α+ y′n − yn, (4.11)

for integers 0 ≤ kn, k′n < qn and reals yn, y′n with |yn|, |y′n| ≤ δ/qn. If the prime factors of qn are
large enough, then ((qn(r − r′))) ≥ 1/(d(r)d(r′)). Multiplying (4.11) by qn and taking d(.,Z) :

1

d(r)d(r′)
≤ ((qn(r − r′))) ≤ 1

an+1
+ 2δ. (4.12)

Let t ∈ R. As before, fixing r0 ∈ Q∗(T), it is enough to show that ur0 ∈ Et(U). Fix ε > 0 and
choose an integer N > max{d(r0), 1/(3εd(r0)} verifying :∑

r∈Q(T),d(r)>N

|vr| < ε. (4.13)

Let δ = 1/(3Nd(r0)) and A = 100Nd(r0). Take B ≥ A and a subsequence of (qn) where the smallest
prime factor of qn tends to infinity, together with A ≤ an+1 ≤ B. By (4.12), both A±(n, δ) + r0
are disjoint from the B(n, δ) + r, for r ∈ Q(T) with r 6= r0 and d(r) ≤ N .

Let y = −knα+ yn ∈ A+(n, δ), 0 ≤ kn < qn, 0 ≤ yn < δ/qn. Set x = y + r0. As x− r0 = y ∈
(−knα,−pkn(n)α), the term corresponding to r0 in (4.10) is :

∑
0≤k<qn

(qn(x− r0 + kpn/qn)− 1/2)1[−kα,−pk(n)α](x− r0) = qn(−knα+ yn + knpn/qn)− 1/2

= −εnkn((qnα)) + qnyn − 1/2

= −1/2 + rn(x), (4.14)

with |rn(x)| ≤ δ + 1/an+1 ≤ 1/(2Nd(r0)). Consider next r ∈ Q(T) with r 6= r0 and d(r) ≤ N .
From the previous discussion, we know that (B(n, δ) + r0) ∩ (B(n, δ) + r) = ø. As x− r0 ∈
B(n, δ), we have x− r 6∈ B(n, δ) and so clearly x− r 6∈ ∪0≤k<qn [−kα,−kpn/qn]. Therefore for the
corresponding term in (4.10), using also (4.9) at the end, we can write :

∑
0≤k<qn

(qn(x− r + kpn/qn)− 1/2)1[−kα,−pk(n)α](x− r)

=
∑

0≤k<qn

(qn(x− r + kpn/qn)− 1/2)1[−kpn/qn,−pk(n)pn/qn](x− r)

= {qn(x− r)}? = {sn(x) + (r0 − r)qn}? (4.15)

with sn(x) = qn(yn − knα) and thus ((sn(x))) = ((qnyn − knqnα)) ≤ δ + 1/an+1 ≤ 1/(2Nd(r0)).
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Take another subsequence on which (r0 − r)qn = ir/jr mod 1, with |jr| ≤ d(r0)d(r), for all r ∈
Q(T) with r 6= r0 and d(r) ≤ N . Necessarily ir/jr 6= 0 mod 1, for all r. Set :

Kr0 =
∑

r∈Q(T),d(r)≤N,r 6=r0

vr{ir/jr}?.

Along this subsequence, in (4.10), using (4.13), (4.14), (4.15) and Denjoy-Koksma’s inequality
as well as that {sn(x) + ir/jr}? − {ir/jr}? = sn(x) for r 6= r0 and d(r) ≤ N , we have for all x ∈
A+(n, δ) + r0, :

|Uqn(x)−Kr0 + vr0/2| ≤ |
∑

r∈Q(T),d(r)>N

vr{.}?qn(x− r)|+ |vr0({.}?qn(x− r0) + 1/2)|

+ |
∑

r∈Q(T),d(r)≤N,r 6=r0

vr({.}?qn(x− r)− {ir/jr}?)|

≤ 2ε+
1

2Nd(r0)

∑
r∈Q(T),d(r)≤N

|vr| ≤ ε′, (4.16)

with ε′ = ε(2 + ‖v‖l1). Idem, along the same subsequence, for all x in A−(n, δ) + r0 :

|Uqn(x)−Kr0 − vr0/2| ≤ ε′.

As Uqn is bounded because of Denjoy-Koksma’s inequality, take a cluster value m of (Lt(Uqn))n
for the narrow topology along the previous subsequence. Then, from (4.16) :

m(B̄(Kr0 − vr0/2, ε′)) ≥ lim sup
n∈subseq

µt,u(Uqn ∈ B̄(Kr0 − vr0/2, ε′)) ≥ lim sup
n∈subseq

µt,u(A+(n, δ) + r0).

We will show later that for a constant C > 0, along the subsequence :

µt,u(A±(n, δ) + r0) ≥ C > 0. (4.17)

This gives B̄(Kr0 − vr0/2, ε′) ∩ supp(m) 6= ø. By lemma 3.3, B̄(Kr0 − vr0/2, ε′) ∩ Et(U) 6= ø. Simi-
larly one gets B̄(Kr0 + vr0/2, ε

′) ∩ Et(U) 6= ø. As Et(U) is a group, B̄(vr0 , 2ε
′) ∩ Et(U) 6= ø. This is

true for all ε > 0 and Et(U) is closed, so vr0 ∈ Et(U). This is the desired conclusion.

It remains to show (4.17). We consider A+(n, δ) + r0, the other case being similar. Notice first
that from (1.1), for t ∈ R, n ∈ Z and A ∈ B(T) :

µt,u(T−nA) =

∫
A

e−tU−n dµt,u. (4.18)

Define Cn = [−((qnα)), ((qnα))] and Dn = ∪0≤k<qnT−kCn + r0. As T qnDn ⊂ A+(n, δ) + r0, using
next (4.18), we get :

µt,u(A+(n, δ) + r0) ≥ µt,u(T qnDn) ≥ e−|t|V (U)µt,u(Dn).

On the other hand, the (TmqnDn)0≤m<2an+1
cover T. Therefore, using again (4.18) :

1 ≤ µt,u(∪0≤m<2an+1
TmqnDn) ≤ µt,u(Dn)

∑
0≤m<2an+1

e|t|mV (U).

We conclude that µt,u(A+(n, δ) + r0) ≥ 1/
∑

1≤m≤2B+1 e
|t|mV (U) > 0. This shows (4.17) and

completes the proof of the result.
�

Remark. — A similar result is true if supp(u) ⊂ {r ∈ Q∗(T), d(r) ∈ P} and α verifies : ∀A > 0 ∃B ≥
A ∃(ψ(n))→ +∞ so that A ≤ aψ(n), aψ(n)+1 ≤ B, this time immediately seen to true µ-a.-e..
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Remark. — For a given α 6∈ Q, it is very difficult in general to determine the decomposition in
prime factors of the denominators of its convergents. Recall that it is a delicate question even for
a sequence satisfying a fixed linear recursive relation, a famous open question being for example
whether the Fibonacci sequence contains infinitely many primes.

Remark. — The denominators qn and qn+1 are always relatively prime, but, as mentioned in [12],
for distinct primes p and q, there exists α so that q2n = pun and q2n+1 = qvn . Here is a way of
building such an α. Writing α = [a1, a2, · · · ], we have q0 = 1. Choose a1 = q1 = q. Recursively, use
first the little Fermat theorem to write qϕ(p

un )−1 = ln+1p
un + 1 and next take an+1 = ln+1q

vn−1

and q2n+1 = qϕ(p
un )−1+vn−1 in order to satisfy q2n+1 = an+1p

un + qvn−1 . For this α, an interesting
example is as follows. Let (bk)k≥1 and (cl)l≥1 in l1 with

∑
k≥1 bk =

∑
l≥1 cl = 0. Define :

D(x) =
∑
k,l≥1

bkcl{x+ 1/pk + 1/ql}?.

Following the same ideas one obtains rather easily that (Dqn) converges to zero µ-a.-e., if α is
chosen enough Liouville. Is it possible to get a non-regular cocycle in this way ?

4.4. Proof of proposition 4.3

Set ur = Cd(r), where Cq =
∑
m≥1 cmq, q ≥ 1. As (lcl) ∈ l1, we get (ϕ(q)Cq) ∈ l1, hence

(ur)r∈Q∗(T) ∈ l1. Now, by (1.5) and using the dominated convergence theorem :

D(x) =
∑
l≥1

cl
∑

0≤k<l

{x+ k/l}? =
∑

r∈Q(T)

Cd(r){x+ r}?.

From the properties of Euler’s Totient function ϕ we obtain :∑
r∈Q(T)

ur =
∑
q≥1

ϕ(q)
∑
m≥1

cmq =
∑
l≥1

cl
∑
q|l

ϕ(q) =
∑
l≥1

lcl.

i) Suppose that
∑
l≥1 lcl 6= 0. For N ≥ 1 fixed later define :

E(x) =
∑

r∈Q(T),d(r)<N

Cd(r){x+ r}? and F = D − E.

Let us respectively compute the sum of the jumps of E and the variation of F :

J(E) = −
∑

r∈Q(T),d(r)<N

Cd(r) and V (F ) = |
∑

r∈Q(T),d(r)≥N

Cd(r)|+
∑

r∈Q(T),d(r)≥N

|Cd(r)|.

Since
∑
l≥1 lcl 6= 0, we have V (F ) < |J(E)| for N large enough. By theorem 3 in [17], giving a

perturbation result, D = E + F defines an ergodic extension.

ii) Suppose that
∑
l≥1 lcl = 0. It is sufficient to show that :

σ({Cq}q≥1) = σ({cl}l≥1) and
∑

r∈Q∗(T)

rCd(r) = −(
∑
l≥1

cl)/2. (4.19)

The last point follows from D(0+) = −(
∑
l≥1 cl)/2 =

∑
r∈Q(T) Cd(r). For the first one, “⊂” is clearly

true. For the other direction we use a sieve argument of Haar (cf chap. 1, no. 129, Pólya and
Szegö [19]). Let l ≥ 1. Take M ≥ 1 and write p1 < · · · < pM for the first M primes. The sum :

∑
m≥1

cml −
M∑
i=1

∑
m≥1

cmlpi +
∑

1≤i<j≤M

∑
m≥1

cmlpipj + · · ·+ (−1)M
∑
m≥1

cmlp1···pM

belongs to σ({cl}l≥1) and equals
∑
m≥1 cml(1− 1{∃1≤i≤M,pi|m}). Letting M → +∞ and using the

dominated convergence theorem, the limit is cl. As l is arbitrary, this completes the proof of (4.19).
�
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Remark. — The argument in i) does not work when
∑
l≥1 lcl = 0. In this case V (F ) ≥ 2|J(E)|.

Remark. — Following the proof of theorem 4.2, one can show the following property resonant with
(1.5) for BV Davenport series : for α in a set of full µ-measure independent of D, (L(Dqn))n≥1
admits L(D) as cluster value for the narrow topology.

Remark. — For example proposition 4.3 implies that Hecke’s function Hs(x) =
∑
l≥1 l

−s{lx}?,
with s > 2, defines an ergodic skew-product for any α 6∈ Q.

Remark. — It would be interesting to replace {x}? by {x}?κ =
∑
m≥1m

−κ sin(2πmx), 0 < κ < 1.
The function {x}?κ is continuous on (0, 1) but presents a singularity like 1/x1−κ at 0, giving {x}?κ ∈
Lp(T, µ) for p < (1− κ)−1 only. Observe that this time for all q ≥ 1 we have :∑

0≤k<q

{x+ k/q}?κ = q1−κ{qx}?κ, x ∈ T.

Setting U(x) =
∑
r∈Q(T) vr{x+ r}?κ, with (vr) ∈ l1, is (L(Uqn/q

1−κ
n ))n≥1 tight ?
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