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We consider Davenport-like series with coefficients in l 2 and discuss L 2 -convergence as well as almost-everywhere convergence. We give an example where both fail to hold. We next improve former sufficient conditions under which these convergences are true.

Introduction

Let R\Z be the Circle and L 2 be the restriction of the space L 2 (R\Z → R) to odd functions. For a real parameter λ > 1/2, we introduce the map :

g λ (x) = m≥1 sin(2πmx) m λ .
This function is defined everywhere on R\Z. It is continuous, except at 0 when 1/2 < λ ≤ 1, and belongs to L 2 . For real sequences (a n ) ∈ l 2 , we consider expansions based on the dilated functions system {g λ (nx)} n≥1 of the following form :

a n g λ (nx), (1) 
where we write for the summation +∞ n=1 . We are interested in the questions of L 2 -convergence and Lebesgue almost-everywhere (a.e) convergence of such series. This is a natural problem which can be formulated with g λ replaced by a general g ∈ L 2 (R\Z). A reason for focusing on odd functions is that sin series in general better converge than cos series. When g(x) = sin(2πx), the L 2 -convergence of a n g(nx) follows from the fact that the {g(nx)} n≥1 are orthonormal. A.e-convergence in this case is the difficult theorem of Carleson [START_REF] Carleson | On convergence and growth of partial sums of Fourier series[END_REF]. For a different g such that the {g(nx)} n≥1 are complete in L 2 , the {g(nx)} n≥1 are not orthogonal, see Bourgin and Mendel [START_REF] Bourgin | Orthonormal sets of periodic functions of the type {f (nx)}[END_REF], and the question of L 2 -convergence is already not clear. The case of g = g λ was introduced by Wintner in [START_REF] Wintner | Diophantine approximation and Hilbert's space[END_REF]. A special motivation comes Arithmetics and the case λ = 1, corresponding to the first Bernoulli polynomial or "sawtooth function" {x} := x -[x] -1/2, where [x] is the integer part of x ∈ R. Indeed :

{x} = - 1 π m≥1 sin(2πmx) m .
Series of the form a n {nx} appear since long ago in the litterature, at the interface of Number Theory and Analysis. We recommend the very detailed presentation of such series by Jaffard in [START_REF] Jaffard | On Davenport expansions, Fractal geometry and applications : a jubilee of Benoît Mandelbrot[END_REF], where they are called Davenport series, due to Davenport's initial systematic study [START_REF] Davenport | On some infinite series involving arithmetical functions[END_REF][START_REF] Davenport | On some infinite series involving arithmetical functions II[END_REF]. In this article and for simplicity we call D λ -series a series of the form (1), the case of Davenport series corresponding to λ = 1.

Beginning with a discussion in L 2 , Wintner [START_REF] Wintner | Diophantine approximation and Hilbert's space[END_REF] established that the family {g λ (nx)} n≥1 is complete in L 2 for any λ > 1/2. We now consider the L 2 -convergence of D λ -series with (a n ) ∈ l 2 . According to work by Wintner [START_REF] Wintner | Diophantine approximation and Hilbert's space[END_REF] and next Hedenmalm, Lindqvist and Seip [START_REF] Hedenmalm | A Hilbert space of Dirichlet series and systems of dilated functions in L 2 (0, 1)[END_REF], the {g λ (nx)} n≥1 form a Riesz basis when λ > 1. By a "Riesz basis" we mean a complete sequence (ξ n ) in L 2 such that for some constant C > 0 :

C -1 a 2 n ≤ a n ξ n 2 ≤ C a 2 n , ∀(a n ) ∈ l 2 .
Here and in the whole article we denote by the usual L 2 -norm, with scalar product , . Lindqvist and Seip [START_REF] Lindqvist | Note on some greatest common divisor matrices[END_REF] provide the inequalities :

ζ(2λ) ζ(λ) 2 a 2 n ≤ a n g λ (nx) 2 ≤ ζ(λ) 2 ζ(2λ) a 2 n ,
where ζ(s) = n≥1 n -s , for s > 1, is the Riemann Zeta function. Constants are optimal. This settles the question of L 2 -convergence when λ > 1. In this case, the a.e-convergence of D λ -series for (a n ) ∈ l 2 follows from Carleson's theorem [START_REF] Carleson | On convergence and growth of partial sums of Fourier series[END_REF] on the a.e-convergence of Fourier series. Indeed :

N n=1 a n g λ (nx) = m≥1 m -λ N n=1 a n sin(2πmnx). (2) 
For each m ≥ 1, By classical work on the maximal operator, M L 1 (R\Z) ≤ C a 2 n (cf for instance Fefferman [START_REF] Fefferman | Pointwise convergence of Fourier series[END_REF]). Thus m≥1 m -λ M (mx) is integrable and in particular a.e finite. One can now a.e apply the Lebesgue dominated convergence theorem in (2) to conclude. Of course this argument does not work when 1/2 < λ ≤ 1. Mention also that Carleson's theorem uses properties of the Fourier basis. There exists orthonormal bases of L 2 for which L 2 -convergence does not imply a.e-convergence, see Rademacher [START_REF] Rademacher | Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen[END_REF].

For the rest of the article we suppose that 1/2 < λ ≤ 1. As a consequence of an analysis by Wintner [START_REF] Wintner | Diophantine approximation and Hilbert's space[END_REF] of some Dirichlet series associated to D λ -series, for any 1/2 < λ ≤ 1 there exists

(a n ) ∈ l 2 such that a n g λ (nx) is L 2 -divergent.
In particular for 1/2 < λ ≤ 1, the {g λ (nx)} n≥1 do not form a Riesz basis of L 2 . We now detail known sufficient conditions for L 2 and a.e-convergence. We are essentially aware of results concerning Davenport series. Wintner [START_REF] Wintner | Diophantine approximation and Hilbert's space[END_REF] proved that a n {nx} converges in L 2 whenever a n = O(n -κ ), with κ > 1/2. Extending this result, Jaffard [START_REF] Jaffard | On Davenport expansions, Fractal geometry and applications : a jubilee of Benoît Mandelbrot[END_REF] showed that for (a n ) ∈ l 2 the sum a n {nx} converges in a Sobolev space very close to L 2 . About a.econvergence, Davenport in his fundamental papers [START_REF] Davenport | On some infinite series involving arithmetical functions[END_REF][START_REF] Davenport | On some infinite series involving arithmetical functions II[END_REF] gave non-trivial arithmetical examples where a.e-convergence is true, such as :

+∞ n=1 λ(n) n {nx}, +∞ n=1 Λ(n) n {nx}, +∞ n=1 µ(n) n 2 {n 2 x}, (3) 
where λ(n), Λ(n) and µ(n) are respectively Liouville's function, Von Mangolt's function and Mobius' function. When the a n are slowly varying, the a.e-convergence of a n {nx} follows, via an Abel transform, from estimates on n<N {nx}, cf Lang [START_REF] Lang | Introduction to Diophantine approximation[END_REF]. Jaffard [START_REF] Jaffard | On Davenport expansions, Fractal geometry and applications : a jubilee of Benoît Mandelbrot[END_REF] deduced the a.econvergence of a n {nx}, whenever a n = O(log n) -α and a n+1 -

a n = O(n -1 (log n) -(1+α)
) for some α > 2. In particular, Hecke series :

H s (x) = +∞ n=1 {nx} n s (4)
converge a.e for Re(s) > 0, a result already shown by Hardy and Littlewood [START_REF] Hardy | Some problems of Diophantine approximation : the analytic properties of certain Dirichlet's series associated with the distribution of numbers of modulus unity[END_REF]. For general sequences, Hartman proved in [START_REF] Hartman | On a class of arithmetical Fourier series[END_REF] the a.e-convergence of a n {nx} when a n = O(n -κ ), with κ > 2/3. Mention finally some results going further than a.e-convergence. Using P-summation techniques, de la Bretêche and Tenenbaum [START_REF] De La Bretèche | Séries trigonométriques à coefficients arithmétiques[END_REF] proved that ( 4) is convergent when s = 1 outside a set of Hausdorff dimension zero that they describe. Also the second series in (3) is everywhere convergent.

We now detail the content of the article. We discuss the L 2 and a.e-convergence of D λ -series of the form (1) for general (a n ) ∈ l 2 . We first complete the L 2 -divergence result of Wintner [START_REF] Wintner | Diophantine approximation and Hilbert's space[END_REF] by an a.e-divergence result. We next improve former sufficient conditions for L 2 and a.e-convergence.

Theorem 1.1 Assume that 1/2 < λ ≤ 1. i) There exists (a n ) ∈ l 2 such that a n g λ (nx) is simultaneously L 2 -divergent and a.e-divergent.
ii) Suppose that for some ε > 0 :

     a 2 n n (1+ε)(log n) -(2λ-1) 2(1-λ) log log n < ∞, when 1/2 < λ < 1, a 2 n (log n) 3 (log log n) 2+ε < ∞, when λ = 1.
Then a n g λ (nx) converges in L 2 and a.e.

In particular, the latter conditions are verified if a 2 n n ε < ∞, for some ε > 0. For example, the following series converge in L 2 and a.e when s > 1/2 :

+∞ n=1 λ(n) n s {nx}, +∞ n=1 Λ(n) n s {nx} and +∞ n=1 µ(n) n 2s {n 2 x}.
We note that whereas Wintner's approach is abstract we build here an explicit example. The fact that (a n ) ∈ l 2 does not imply the a.e-convergence of D λ -series is not that surprising, since this condition is not the correct one for L 2 -convergence. One can make the second moment explode and develop a probabilistic argument based on the Central Limit Theorem. The true question, more difficult, is whether L 2 -convergence implies a.e-convergence. A weak formulation is as follows :

Question. If 1/2 < λ ≤ 1 and k≥1 n≥1 n -λ |a kn | 2 < +∞, does a n g λ (nx) converge a.e ?
The above condition is strictly stronger than (a n ) ∈ l 2 , when 1/2 < λ ≤ 1. As detailed below, it ensures the L 2 -convergence of a n g λ (nx) and is necessary when the a n have constant sign.

We next consider three classical situations, for instance Hadamard lacunarity, where we can prove L 2 -convergence, but a.e-convergence only under stronger conditions. We define the support supp(n) of an integer n as its set of prime divisors and write |supp(n)| for the cardinal of this set.

Theorem 1.2 Suppose that 1/2 < λ ≤ 1. i) Let (n k ) check n k+1 /n k ≥ c, where c > 1.
Then a k g λ (n k x) converges in L 2 whenever (a k ) ∈ l 2 and more precisely :

C 1 a 2 k ≤ a k g λ (n k x) 2 ≤ C 2 a 2 k ,
where :

C 1 = (1 -1/e) ζ(4λ) 2 2λ -1 2λ ln(c 2λ-1 ) 1 + ln(c 2λ-1 ) 2 and C 2 = ζ(2λ) 2 c λ + 1 c λ -1 .
If the stronger condition

a 2 k (log k) 2 < ∞ is verified, then a k g λ (n k x) is also a.e-convergent.
ii) If (a n ) ∈ l 2 and {|supp(n)|, a n = 0} is finite, then a n g λ (nx) converges in L 2 . In fact, for N ≥ 1 there exists C(λ, N ) > 0 such that for (a n ) ∈ l 2 with a n = 0 if |supp(n)| > N , then :

C -1 (λ, N ) a 2 n ≤ a n g λ (nx) 2 ≤ C(λ, N ) a 2 n .
If moreover

a 2 n (log n) 2 < ∞, then a n g λ (nx) is also a.e-convergent. iii) Let a n = O(b n ), where (b n ) n≥1 ∈ l 2 ∩ (R + ) N satisfies b nm = b n b m whenever n and m are relatively prime. Then a n g λ (nx) converges in L 2 .
A word on the method. The study of the convergence of Davenport series often starts with trying to write a n {nx} as a Fourier series c m sin 2πmx. It was indeed remarked by Davenport [START_REF] Davenport | On some infinite series involving arithmetical functions[END_REF] that formally the (c m ) are explicitly given in terms of the (a n ) and vice-versa. An alternative approach, developed here, when considering L 2 -convergence is to orthonormalize the {g λ (nx)} n≥1 . The Gram-Schmidt orthonormalisation procedure is explicit and a consequence of Carlitz's lemma on the reduction of quadratic forms. We provide details for simplicity. This furnishes a rather simple characterization of L 2 -convergence. Theorem 1.2 follows via more or less standard computations. Concerning a.e-convergence, the orthonormalisation approach allows to adapt a technique of Rademacher [START_REF] Rademacher | Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen[END_REF] initially developed for the pointwise convergence of series built with general orthonormal systems.

A few notations. We write i ∧ j and i ∨ j respectively for the greatest common divisor and the smallest common multiple of integers i and j. The set of primes is P = {p n , n ≥ 1}.

Orthonormalization

Recall that 1/2 < λ ≤ 1. We first study correlations. The following computation is already contained in Lindqvist and Seip [START_REF] Lindqvist | Note on some greatest common divisor matrices[END_REF].

Lemma 2.1 Let i, j ≥ 1. Then g λ (i.), g λ (j.) = ζ(2λ) 2 i ∧ j i ∨ j λ .
Proof of the lemma :

Let i = i/i ∧ j, j = j/i ∧ j.
Since Lebesgue measure on R\Z is invariant by x -→ px for any integer p, we have g λ (i.), g λ (j.) = g λ (i .), g λ (j .) . Using the Fourier expansion of g λ :

g λ (i .), g λ (j .) = k,l≥1 1 0 sin(2πki x) k λ sin(2πlj x) l λ dx = 1 2 m≥1 1 (m 2 i j ) λ = ζ(2λ) 2 (i j ) -λ ,
since a relation ki = lj reduces to k = j m and l = i m for some integer m. This concludes the proof of the lemma.

Remark. -The correlations being positive, if

b n g λ (nx) is L 2 -convergent with (b n ) ∈ (R + ) N and if a n = O(b n ), then a n g λ (nx) also converges in L 2 .
We turn to the orthonormalization of the {g λ (nx)} n≥1 . The following proposition is an application of Carlitz's lemma, cf for instance Haukkanen, Wang and Sillanp [START_REF] Haukkanen | On Smith's determinant[END_REF].

Recall that the Möbius function µ on the integers is defined by µ

(1) = 1, µ(p i1 • • • p i k ) = (-1) k and µ(n) = 0 if n is not square-free.
If f and g are real maps defined on the integers related by f (n) = k|n g(k), then (Möbius inversion formula) we have g

(n) = k|n µ(n/k)f (k). Proposition 2.2 i) Let f n,λ (x) = n -λ k|n k λ µ(n/k) g λ (kx), n ≥ 1.
Then {f n,λ } n≥1 is an orthogonal family with :

f n,λ 2 = ζ(2λ) 2 p|n,p∈P 1 -p -2λ ∈ 1 2 , ζ (2λ) 2 . 
The {f n,λ } n≥1 form an orthogonal Riesz basis of L 2 , with :

2ζ(2λ) -1 n≥1 f n,λ , h 2 ≤ h 2 ≤ 2 n≥1 f n,λ , h 2 , ∀h ∈ L 2 .
ii) An equality

n i=1 a i g λ (i.) = n i=1 b i f i,λ holds if and only if b i = [n/i] k=1 k -λ a ki , 1 ≤ i ≤ n. These equalities are reversed into a i = [n/i] k=1 k -λ µ(k)b ki , 1 ≤ i ≤ n.

Proof of the proposition :

Let n ≥ 1. We introduce n-square matrices D and T , where D is diagonal and T is upper-triangular. Set T = (t ij ) with t ij = j -λ 1 i|j and write D = diag(d i ), where the (d i ) are defined below. First :

( t T DT ) ij = 1≤k≤n t ki d k t kj = (ij) -λ k|i∧j d k .
We choose D so that k|m d k = (ζ(2λ)/2)m 2λ , which by the Möbius inversion formula corresponds to setting d k = (ζ(2λ)/2) l|k µ(k/l)l 2λ . Lemma 2.1 gives ( t T DT ) ij = g λ (i.), g λ (j.) .

Next, the inverse of T is given by T -1 ij = 1 i|j i λ µ(j/i), since for any i ≤ j :

n k=1 1 i|k i λ µ(k/i)j -λ 1 k|j = 1 i|j i λ j -λ l|j/i µ(l) = 1 i=j , using that k|m µ(k) = 0, if m ≥ 2. Observe that f i,λ = i -λ 1≤k≤n ( t T -1 ) ik g λ (k.), for 1 ≤ i ≤ n. The {f i,λ } i≥1 are therefore orthogonal in L 2 , with f i,λ 2 = d i i -2λ
. They also form a complete family, since it is the case for the {g λ (nx)}, cf Wintner [START_REF] Wintner | Diophantine approximation and Hilbert's space[END_REF]. Decomposing i = p α1 l1 • • • p α k l k in prime factors, we have :

f i,λ 2 = ζ(2λ) 2 d|i d -2λ µ(d) = ζ(2λ) 2 k j=1 d|p α j l j d -2λ µ(d) = ζ(2λ) 2 p|i, p∈P (1 -p -2λ ).
Finally :

n i=1 a i g λ (i.) = n i=1 a i n k=1 ( t T ) ik k λ f k,λ = n i=1 a i n k=1 i -λ 1 k|i k λ f k,λ = n k=1 f k,λ [n/k] i=1 i -λ a ki .
The reversed formula is proved in a similar way.

We deduce the following characterization of L 2 -convergence.

Corollary 2.3

i) The series a n g λ (nx) converges in L 2 if and only if the numerical series k≥1 k -λ a ki converge for all i ≥ 1, together with the uniformity condition :

i≥1   k>[n/i] k -λ a ki   2 → 0, as n → ∞. ii) A sufficient condition for a n g λ (nx) to be L 2 -convergent is : i≥1   k≥1 k -λ |a ki |   2 < +∞.
This condition is necessary when

(a n ) ∈ (R + ) N .
Proof of the corollary :

If a n g λ (nx) converges in L 2 , by proposition 2.2 the component [n/i]
k=1 k -λ a ki with respect to each f i,λ converges as n → +∞. The L 2 -limit then has to be i≥1 f i,λ ( k≥1 k -λ a ki ). The uniformity condition is a consequence from the fact that the norm of f i,λ belongs to (1/2, ζ(2λ)/2). The first assertion of the second item is an application of the Lebesgue Dominated Convergence Theorem, whereas the second one follows from the first item.

Remark. -Corollary 2.3 can also be obtained when considering directly the Fourier expansion of a n g λ (nx) given by g λ . In the sequel, the orthonormalization point of view has the practical advantage to keep finite all partial sums.

3 A l 2 -example of a L 2 -divergent and a.e-divergent series

We prove theorem 1.1 i), using that for 1/2 < λ ≤ 1 the series p∈P p -λ is divergent. For each integer K ≥ 1, we choose a finite set P K = {p j,K } 1≤j≤l K of consecutive primes satisfying :

l K j=1 (p j,K ) -λ ≥ K. (5) 
We fix

m K ≥ 2 so that m K -1 m K l K ≥ 1/2. Introduce sets :        F 1,K = p u1 1,K • • • p u l K l K ,K , 1 ≤ u 1 , • • • , u l K ≤ m K F 1,K = p u1 1,K • • • p u l K l K ,K , 1 ≤ u 1 , • • • , u l K ≤ m K -1 . We have |F 1,K | = (m K ) l K and |F 1,K | = (m K -1) l K .
Let q 1,K = 1 and take next infinitely many primes q 2,K < • • • < q n,K < • • • , larger than p l K ,K and subject to the condition :

(p 1,K • • • p l K ,K ) m K 1 + (m K ) l K /2 K +∞ r=2 (q r-1,K ) r-1 q r,K ≤ 1 K . ( 6 
)
Define the random variable :

X 1,K = 1 K|F 1,K | 1/2 n∈F 1,K g λ (nx).
It has zero mean and belongs to L 2 . We write σ 2 K = 1 0 (X 1,K ) 2 (x) dx for its variance and choose an integer T K ≥ K so that :

1 0 (X 1,K ) 2 (x)1 {|X 1,K |>(T K ) 1/12 σ K } dx ≤ 1 K . (7) 
We define another collection of sets :

   F 2,K = q 2,K F 1,K F 2,K = q 2,K F 1,K • • •    F T K ,K = q T K ,K F 1,K F T K ,K = q T K ,K F 1,K .
Grouping sets, we define :

E K = T K r=1 F r,K and E K = T K r=1 F r,K .
We have

|E K | = T K |F 1,K | and |E K | = T K |F 1,K |.
In particular :

|E K | |E K | = |F 1,K | |F 1,K | = m K -1 m K l K ≥ 1 2 . ( 8 
)
When considering the next integer (ie K + 1) we start with p 1,K+1 > q

T K ,K (p 1,K • • • p l K ,K ) m K .
Observe that all the (F r,K ) K≥1,1≤r≤T K , are pairwise disjoint and in particular the (E K ) K≥1 , which furthermore are consecutive. We finally set :

a n =      1 K|E K | 1/2 , when n ∈ E K , for some K ≥ 1, 0 , otherwise.
This completes the definition of the sequence (a n ). Formally a n g λ (nx) = K≥1 Z K , with :

Z K = 1 √ T K T K r=1 X r,K (x) and X r,K (x) = 1 K|F 1,K | 1/2 n∈F r,K g λ (nx). (9) 
From the previous construction, observe that a partial sum N K=1 Z K (x) corresponds to a partial sum of a n g λ (nx). We now proceed to verifications.

i) The sequence (a n ) belongs to l 2 . Indeed :

n≥1 a 2 n = K≥1 n∈E K 1 K 2 |E K | = K≥1 1 K 2 < ∞.
ii) The series a n g λ (nx) is L 2 -divergent. Indeed, using ( 5) and ( 8) :

n≥1   k≥1 k -λ a kn   2 ≥ K≥1 n∈E K   k≥1 k -λ a kn   2 ≥ K≥1 n∈E K k∈P K k -λ a kn 2 ≥ K≥1 n∈E K 1 K 2 |E K | k∈P K k -λ 2 ≥ K≥1 |E K | K 2 K 2 |E K | ≥ K≥1 1 2 = +∞.
Since the a n are positive, the conclusion comes from corollary 2.3.

iii) The series a n g λ (nx) is a.e-divergent. This requires longer computations. For a fixed K ≥ 1, all (X r,K ) 1≤r≤T K have the same law, due to the invariance of Lebesgue measure on R\Z under multiplication by an integer. They do not form a stationary process, but are nearly independent. Under our hypotheses, it is routine to check that the law of (σ 2

K T K ) -1/2 T K r=1 X r,K is asymptoti- cally normal.
In a first step, we compute the variance σ 2 K and verify that it grows rapidly to infinity, as suggested by ii). Via lemma 2.1, we have : 1)), when x and n are large. Inserting this in the previous calculations, we obtain, with a uniform o(1) :

σ 2 K = Var(X 1,K ) = ζ(2λ) 2 1 K 2 (m K ) l K n,m∈F 1,K n ∧ m n ∨ m λ = ζ(2λ) 2 1 K 2 (m K ) l K 1≤aj ,bj ≤m K ,1≤j≤l K l K j=1 (p j,K ) -λ|aj -bj | = ζ(2λ) 2 1 K 2 (m K ) l K l K j=1   m K a,b=1 (p j,K ) -λ|a-b|   = ζ(2λ) 2 1 K 2 (m K ) l K l K j=1 m K + 2(p j,K ) -λ(m K -1) m K -1 k=1 k(p j,K ) λ(k-1) . For x > 1, we have n-1 k=1 kx k-1 = ((n -1)x n -nx n-1 + 1)/(x -1) 2 = nx n-2 (1 + o(
σ 2 K = ζ(2λ) 2 1 K 2 (m K ) l K l K j=1 m K + 2m K (p j,K ) -λ (1 + o(1)) = ζ(2λ) 2 1 K 2 e P l K j=1 log(1+2(p j,K ) -λ (1+o(1))) = ζ(2λ) 2 1 K 2 e 2 " P l K j=1 (p j,K ) -λ " (1+o(1)) ≥ e K , (10) 
for large K, using [START_REF] Davenport | On some infinite series involving arithmetical functions[END_REF].

We now establish the convergence :

(σ 2 K T K ) -1/2 T K r=1 X r,K → N (0, 1), in law. ( 11 
)
We write E for the expectation under Lebesgue measure on R\Z.

Set Y r,K = (σ 2 K T K ) -1/2 X r,K and S N = N r=1 Y r,K . For 1 ≤ r ≤ T K , introduce the finite partitions : F r = {[k/q r,K , (k + 1)/q r,K ), 0 ≤ k < q r,K }.
Each Y r,K being (1/q r,K )-periodic, for a bounded measurable f :

E(f (Y r,K )) = E(f (Y r,K )|F r ). ( 12 
)
For t ∈ R and 2 ≤ N ≤ T K , we have :

E(e itS N ) = E(e itS N -1 e itY N,K ) = E(E(e itS N -1 |F N )e itY N,K ) + E((e itS N -1 -E(e itS N -1 |F N ))e itY N,K ) = A + B.
First of all, taking conditional expectation and using [START_REF] Jaffard | On Davenport expansions, Fractal geometry and applications : a jubilee of Benoît Mandelbrot[END_REF] :

A = E(E(e itS N -1 |F N )E(e itY N,K |F N )) = E(E(e itS N -1 |F N )E(e itY N,K )) = E(e itS N -1 )E(e itY N,K ). (13) 
Next :

|B| ≤ E(|e itS N -1 -E(e itS N -1 |F N )|). ( 14 
)
The map x -→ e itx is |t|-Lipschitz. On each piece of F N which contains no discontinuity of S N -1 , when counting the oscillation we have :

|e itS N -1 -E(e itS N -1 |F N )| ≤ |t| q N,K (σ 2 K T K ) -1/2 (K(m K ) l K )) 1/2 N -1 r=1 (m K ) l K (p 1,K • • • p l K ,K ) m K q r,K ≤ |t| (m K ) l K /2 K (p 1,K • • • p l K ,K ) m K (N -1)q N -1,K q N,K , (15) 
since T K ≥ K and σ K ≥ 1 for large K, by [START_REF] Haukkanen | On Smith's determinant[END_REF]. Next, S N -1 is continuous on the interior of each segment of the partition whose step

-1 is q 1,K • • • q N -1,K (p 1,K • • • p l K ,K ) m K .
The total measure of the pieces of F N which may contain a discontinuity of S N -1 is bounded from above by :

q 1,K • • • q N -1,K (p 1,K • • • p l K ,K ) m K 1 q N,K ≤ (p 1,K • • • p l K ,K ) m K (q N -1,K ) N -1 q N,K . (16) 
From ( 14), ( 15) and ( 16), we deduce that :

|B| ≤ 2(1 + |t|)(p 1,K • • • p l K ,K ) m K 1 + (m K ) l K /2 K (q N -1,K ) N -1 q N,K . ( 17 
)
Using that for all 1 ≤ N ≤ T K , we have |E(e itY N,K )| ≤ 1, when iterating the procedure with ( 13) and ( 14), we obtain via (6) :

|E(e itS T K ) -

T K r=1 E(e itY r,K )| ≤ 2(1 + |t|)(p 1,K • • • p l K ,K ) m K 1 + (m K ) l K /2 K T K r=2 (q r-1,K ) r-1 q r,K ≤ 2(1 + |t|) 1 K . ( 18 
)
As a consequence of (18), in order to show [START_REF] Hedenmalm | A Hilbert space of Dirichlet series and systems of dilated functions in L 2 (0, 1)[END_REF] we only need to focus on :

T K r=1 E(e itY r,K ) = E(e itY 1,K ) T K . ( 19 
)
We now use the fact that for all t ∈ R :

|e it -(1 + it -t 2 /2)| ≤ min{|t| 3 /6, |t| 2 }, (20) 
which comes from e it -(1 + it -t 2 /2) = i 3 /2 t 0 (t -s) 2 e is ds = i 2 t 0 (t -s)(e is -1) ds. Via (20) and the property that X 1,K has zero mean, we now deduce the following inequalities :

E e itY 1,K -1 - t 2 2T K ≤ E e itY 1,K -1 + itY 1,K - t 2 2 Y 2 1,K ≤ E e itY 1,K -1 + itY 1,K - t 2 2 Y 2 1,K ≤ E min{|tY 1,K | 3 /6, |tY 1,K | 2 } .
With ε = (T K ) -5/12 and using [START_REF] Fefferman | Pointwise convergence of Fourier series[END_REF], as well as T K ≥ K and σ K ≥ 1 for large K :

E e itY 1,K -1 - t 2 2T K ≤ |t| 3 6 E |Y 1,K | 3 1 |Y 1,K |≤ε + |t| 2 E |Y 1,K | 2 1 |Y 1,K |>ε ≤ |t| 3 6(T K ) 5/4 + |t| 2 σ 2 K T K E |X 1,K | 2 1 |X 1,K |>(T K ) 1/12 σ K ≤ 1 T K |t| 3 6(T K ) 1/4 + |t| 2 Kσ 2 K ≤ 1 T K |t| 3 6K 1/4 + |t| 2 K . (21) 
Since T K → +∞, as K → +∞, we deduce from ( 18), ( 19) and ( 21) that E(e itS T K ) → e -t 2 /2 , as K → +∞, for all t ∈ R. This proves [START_REF] Hedenmalm | A Hilbert space of Dirichlet series and systems of dilated functions in L 2 (0, 1)[END_REF].

To conclude, for all L ≥ 1 we choose K L ≥ L so that :

P (|S T K L | ≤ 1/L 2 ) ≤ 2 |t|≤1/L 2 dN (0, 1)(t) =: δ L .
Clearly L≥1 δ L < ∞, so by Borel-Cantelli's lemma, for a.e x when L is large enough we have

|S T K L | ≥ 1/L 2 .
For such a x, using [START_REF] Haukkanen | On Smith's determinant[END_REF] and when L is large enough :

|Z K L | = 1 T K L T K L r=1 X r,K L (x) = σ K L |S T K L | ≥ e K L /2 L 2 ≥ e L/2 L 2 .
Since partial sums N K=1 Z K (x) are partial sums of a n g λ (nx), this prevents a n g λ (nx) from converging at x. This completes the proof of item i) of theorem 1.1.

Sufficient conditions for L 2 and a.e-convergence

We take a finite sequence (a n ) and write

a n g λ (nx) = b n f n,λ (x)
, where (b n ) is also finite. By proposition 2.2 :

a n g λ (nx) 2 = b n f n,λ 2 ≤ ζ(2λ) 2 b 2 n ≤ ζ(2λ) 2 n≥1   k≥1 k -λ |a kn |   2 . Set ψ λ (k) = k 1-λ (log k) 2 if 1/2 < λ < 1 and ψ 1 (k) = log k(log log k) 1+ε
, for some ε > 0. For simplicity we write log(x) for max{1, log(x)}. Using Cauchy-Schwarz's inequality :

n≥1   k≥1 k -λ |a kn |   2 = k,k ≥1 (kk ) -λ n≥1 |a nk a nk | ≤ k,k ≥1 (kk ) -λ   n≥1 a 2 nk   1/2   n≥1 a 2 nk   1/2 ≤    k≥1 k -λ   n≥1 a 2 nk   1/2    2 ≤   k≥1 k -λ 1 ψ λ (k)     k≥1 k -λ ψ λ (k) n≥1 a 2 nk   ≤ C ε n≥1 a 2 n k|n k -λ ψ λ (k). ( 22 
)
We first consider the case 1/2 < λ < 1. Remark that 0 < 2λ-1 < 1. Using a classical upper-bound for k|n k 2λ-1 , cf Krätzel [13], we have for any δ > 0 :

k|n k -λ ψ λ (k) = k|n k 1-2λ (log k) 2 ≤ (log n) 2 k|n k 1-2λ ≤ (log n) 2 n 1-2λ k|n k 2λ-1 ≤ (log n) 2 n 1-2λ C δ n 2λ-1 e (1+δ)(log n) 1-(2λ-1) (1-(2λ-1)) log log n ≤ C δ n (1+2δ)(log n) 1-2λ 2(1-λ) log log n .
In the situation when λ = 1, we have :

k|n k -1 ψ 1 (k) ≤ ψ 1 (n) k|n k -1 = ψ 1 (n)n -1 k|n k.
We use this time the inequality k|n k ≤ Cn log log n, see again [13]. As a result, for any ε > 0 there is a constant C ε > 0 such that for any sequence (a n ) :

     a n g λ (nx) 2 ≤ C ε a 2 n n (1+ε)(log n) -(2λ-1) 2(1-λ) log log n
, when 1/2 < λ < 1,

a n {nx} 2 ≤ C ε a 2 n log n(log log n) 2+ε , when λ = 1. (23) 
These properties imply the L 2 -convergence of D λ -series under the assumptions of theorem 1.1.

We turn to the question of the a.e-convergence of D λ -series. The second item of theorem 1.1 is a consequence of inequalities (23) and of the following proposition. The latter is an adaptation of a method due to Rademacher [START_REF] Rademacher | Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen[END_REF] for the study of series based on a general orthonormal family.

Proposition 4.1 Let (a n ) n≥1 and (ϕ(n)) n≥1 be such that a 2 n ϕ(n)(log n) 2 < ∞ and for any M ≤ N : N n=M a n g λ (nx) 2 ≤ N n=M a 2 n ϕ(n).
Then a n g λ (nx) converges a.e.

Proof of the proposition :

We can suppose that log is the logarithm in base 2. Let S(n)(x) = 1≤k≤n a k g λ (kx). For m < n, introduce the notations :

S(m, n)(x) = m≤k<n a k g λ (nx) and σ l (m, n) = m≤k<n a 2 k ϕ(k)(log k) l , for l ∈ {0, 1, 2}.
Step 1. We show that (S(2 n )(x)) converges for a.e x. Let 0 < N < n. We have :

1 0 N ≤r<n S(2 r , 2 n ) 2 (x)dx ≤ N ≤r<n σ 0 (2 r , 2 n ) = N ≤r<n n-1 s=r σ 0 (2 s , 2 s+1 ) ≤ n-1 s=N (s -N + 1)σ 0 (2 s , 2 s+1 ) ≤ n-1 s=N sσ 0 (2 s , 2 s+1 ) ≤ σ 1 (2 N , 2 n ). By Markov's inequality, N ≤r<n S(2 r , 2 n ) 2 (x) ≤ σ 1 (2 N , 2 n ) 2/3
for all x in a Borel set E N,n with :

λ(E N,n ) ≥ 1 -σ 1 (2 N , 2 n ) 1/3 ≥ 1 -σ 1 (2 N , ∞) 1/3 .
In particular, for x ∈ E N,n and all N ≤ r < n, we have

S(2 r , 2 n )(x) ≤ σ 1 (2 N , 2 n ) 1/3
. Define a set E N,n by the condition that for all N ≤ r ≤ r < n :

S(2 r , 2 r )(x) ≤ 2σ 1 (2 N , ∞) 1/3 . Since E N,n ⊂ E N,n , we have λ(E N,n ) ≥ 1 -σ 1 (2 N , ∞) 1/3 . Fixing N , the E N,n are monotonic in n.
The set D N defined by the condition that for all

N ≤ r ≤ r , S(2 r , 2 r )(x) ≤ 2σ 1 (2 N , ∞) 1/3 has therefore a measure λ(D N ) ≥ 1 -σ 1 (2 N , ∞) 1/3 . Since λ(D N ) → 1, as N → +∞, we deduce that λ(lim sup D N ) = 1. If x ∈ lim sup D N , the sequence (S(2 n )(x)
) clearly satisfies the Cauchy criterion, so converges. This concludes step 1.

Step 2. To complete the proof, we show that a.e sup 2 r <n<2 r+1 |S(2 r , n)(x)| → 0, as r → +∞. Let 2 r < n < 2 r+1 and decompose n in base 2 :

n = 2 r + r l=1
θ l 2 r-l , with θ l ∈ {0, 1}.

Then :

S(2 r , n) = r l=1 S 2 r + l-1 m=1 θ m 2 r-m , 2 r + l m=1 θ m 2 r-m .
By convexity :

S(2 r , n) 2 ≤ r r l=1 S 2 r + l-1 m=1 θ m 2 r-m , 2 r + l m=1 θ m 2 r-m 2 ≤ r r l=1 2 r-l -1 h=0 S 2 r + h2 l , 2 r + h2 l + 2 l-1 2 =: T (r).
The quantity T (r) is independent on 2 r < n < 2 r+1 . Next :

1 0 T (r)(x) dx = r r l=1 2 r-l -1 h=0 1 0 S 2 r + h2 l , 2 r + h2 l + 2 l-1 2 (x) dx ≤ r r l=1 2 r-l -1 h=0 σ 0 (2 r + h2 l , 2 r + h2 l + 2 l-1 ) ≤ r r l=1 σ 0 (2 r , 2 r+1 ) = r 2 σ 0 (2 r , 2 r+1 ) ≤ σ 2 (2 r , 2 r+1 ).
Fix N and let r ≥ N . By Markov's inequality, for x in a Borel set F r (N ) of Lebesgue measure

λ(F r (N )) ≥ 1 -σ 2 (2 r , 2 r+1 )/σ 2 (2 N , ∞) 2/3
, we have :

sup 2 r <n<2 r+1 S(2 r , n) 2 (x) ≤ T (r) ≤ σ 2 (2 N , ∞) 2/3 . Let G N = ∩ r≥N F r (N ). Then λ(G N ) ≥ 1 -r≥N σ 2 (2 r , 2 r+1 )/σ 2 (2 N , ∞) 2/3 = 1 -σ 2 (2 N , ∞) 1/3 . For x ∈ G N : ∀r ≥ N, sup 2 r <n<2 r+1 |S(2 r , n)(x)| ≤ σ 2 (2 N , ∞) 1/3 . As λ(G N ) → 1, we get λ(lim sup G N ) = 1. If x ∈ lim sup G N , then sup 2 r <n<2 r+1 |S(2 r , n)(x)
| tends to 0, as r → ∞. This concludes step 2 and the proof of the proposition.

5 Particular classes where L 2 -convergence is true

We consider the proof of theorem 1.2.

Proof of i)

Let (n k ) be lacunary in the sense that n k+1 /n k ≥ c > 1 and (a k ) ∈ l 2 . We first consider the upper bound. We can assume the sequence (a k ) finite. By lemma 2.1, the L 2 -norm of (2/ζ(2λ)) 1/2 a k g λ (n k x) is given by : k,l≥1

a k a l n k ∧ n l n k ∨ n l λ = a 2 k + 2 k<l a k a l (n k ∧ n l ) 2λ (n k n l ) λ .
Using Cauchy-Schwarz's inequality, the second term is bounded by :

k<l |a k a l | (n k ∧ n l ) 2λ (n k n l ) λ ≤ k<l |a k a l | n 2λ k (n k n l ) λ ≤ k<l |a k a l |c -λ(l-k) ≤ k≥1 |a k | l≥1 c -λl |a k+l | ≤   n≥1 a 2 k   1/2    k≥1   l≥1 c -λl |a k+l |   2    1/2 .
Next, still via Cauchy-Schwarz's inequality :

k≥1   l≥1 c -λl |a k+l |   2 = l,l ≥1 c -λ(l+l ) k≥1 |a k+l a k+l | ≤ l,l ≥1 c -λ(l+l )   k≥1 a 2 k+l   1/2   k≥1 a 2 k+l   1/2 ≤    l≥1 c -λl   k≥1 a 2 k+l   1/2    2 ≤ 1 (c λ -1) 2 k≥1 a 2 k .
As a consequence :

k<l |a k a l | (n k ∧ n l ) 2λ (n k n l ) λ ≤ 1 (c λ -1) k≥1 a 2 k .
Since 1 + 2/(c λ -1) = (c λ + 1)/(c λ -1), this completes the proof of the upper-bound.

For the lower bound, one can also suppose that (a k ) is finite. We have

a k g λ (n k x) = b k f k,λ
, where (b k ) is also finite. By proposition 2.2 :

a k g λ (n k x) 2 = b k f k,λ 2 ≥ 1 2 b 2 k . Fixing 0 < ε < 1 -(2λ) -1 , giving 2λ(1 -ε) > 1 : a 2 k = k≥1   l≥1 l -λ µ(l)b ln k   2 ≤ k≥1   l≥1 l -2λ(1-ε) µ(l) 2     l≥1 l -2λε b 2 ln k   ≤ i≥1 1 + p -2λ(1-ε) i   l≥1 b 2 l k,n k |l n k l 2λε   ≤ i≥1 1 -p -4λ(1-ε) i 1 -p -2λ(1-ε) i   m≥0 c -2λεm   l≥1 b 2 l ≤ ζ(2λ(1 -ε)) ζ(4λ(1 -ε)) (1 -c -2λε ) -1 l≥1 b 2 l .
To complete the proof, we first use that

ζ(4λ(1-ε)) ≥ ζ(4λ) and ζ(2λ(1-ε)) ≤ 1+1/(2λ(1-ε)-1). Set ε = ρ(1 -1/( 2λ 
)), with 0 < ρ < 1. We have :

1 + 1 2λ(1 -ε) -1 1 1 -c -2λε ≤ 2λ 2λ -1 1 (1 -ρ)(1 -c -(2λ-1)ρ )
.

Minimizing in ρ, we take ρ = 1/(1 + ln c 2λ-1 ). We finally use the inequality 1 -e

-x ≥ (1 -1/e)x, for 0 ≤ x ≤ 1, giving (1 -c -(2λ-1)ρ ) ≥ (1 -1/e)(1 -ρ).
Concerning a.e-convergence, we can now apply proposition 4.1 with ϕ = 1.

Proof of ii)

We start from (22). For n with |supp(n)| ≤ N and any 0 < δ < 2λ -1, we have :

k|n k -λ ψ λ (k) ≤ C δ k|n k 1-2λ+δ ≤ C δ p|n,p∈P (1 -p 1-2λ+δ ) -1 ≤ C δ N i=1 (1 -p 1-2λ+δ i ) -1 .
For the lower bound, we use b n f n,λ 2 ≥ (1/2) b 2 n , by proposition 2.2. Next :

a 2 k = k≥1   l≥1 l -λ µ(l)b lk   2 ≤ k≥1   l≥1 l -λ |b lk |   2 ≤ C ε n≥1 b 2 n k|n k -λ ψ λ (k),
when proceeding in the same way as for (22). We then conclude as above, using the fact that b n = 0 when |supp(n)| > N . For a.e-convergence, we apply proposition 4.1 with ϕ = 1.

Proof of iii)

Using the remark after lemma 2.1 we only need to focus on (b n ). Set b i,n = b p n i . Multiplicativity implies that the (b i,n ) i,n≥1 entirely determine the sequence (b n ). Via corollary (2.3), we show that :

n≥1   k≥1 k -λ b kn   2 < +∞. (24) 
Each term in this series is finite, by Cauchy-Schwarz's inequality. We first claim the equivalence (b n ) ∈ l 2 ⇔ i≥1 n≥1 b 2 i,n < +∞. Indeed, using that b 1 = 1, we have :

n≥1 b 2 n = 1 + k≥1 1≤i1<•••<i k u1≥1,••• ,u k ≥1 b 2 i1,u1 • • • b 2 i k ,u k = i≥1   1 + n≥1 b 2 i,n   . (25) 
This proves the claim.

For technical reasons, up to considering bi,n = b i,n + 1/(in), (i, n) ≥ 1, and the corresponding multiplicative sequence ( bn ), which satisfies ( bn ) ∈ l 2 ⇔ (b n ) ∈ l 2 , we assume that b i,n > 0 for all indices (i, n) ≥ 1. Decomposing in prime factors n = p u1 i1 • • • p u k i k , with k = 0 if n = 1, and using multiplicativity :

n≥1   l≥1 l -λ b ln   2 = k≥0 1≤i1<•••<i k u1≥1,••• ,u k ≥1 j ∈{i1,••• ,i k }   1 + m≥1 p -λm j b j,m   × l=1,••• ,k   v l ≥0 p -λv l i l b i l ,u l +v l   .
The first product term is uniformly bounded from above since for a constant C : To prove (24), it remains to check the finiteness of : Set c i,n = p λn i v≥n p -λv i b i,v , which is finite by Cauchy-Schwarz's inequality. We thus verify that i≥1,n≥1 c 2 i,n < +∞. Fixing 0 < ε < 1 -2 -λ , we prove below that for all i ≥ 1 :

n≥1 c 2 i,n ≤ 1 ε 2 (1 -(1 -ε) -2 p -2λ i ) n≥1 c 2 i,n 1 - c i,n+1 p λ i c i,n 2 (26) ≤ 1 ε 2 (1 -(1 -ε) -2 2 -2λ ) n≥1 b 2 i,n .
Since i,n≥1 b 2 i,n < ∞, this brings the conclusion. 

{n ≥ 1} = [a 1 , b 1 ] ∪ [a 1 , b 1 ] ∪ • • • ∪ [a k , b k ] ∪ [a k , b k ] ∪ • • • .
Observe finally that :

a k l=a k c 2 i,l ≤ c 2 i,a k m≥0 (1 -ε) -2m p -2λm i ≤ (1 -(1 -ε) -2 p -2λ i ) -1 c 2 i,a k . (29) 
Combining ( 27), ( 28) and (29), we get (26). This completes the proof of this item.

N n=1 a na

  sin(2πmnx) converges a.e, as N → +∞, by Carleson's theorem. Next : n sin(2πmnx)| =: M (mx).

Fix i ≥ 1 . 2 <

 12 and introduce C = {n ≥ 1, |1 -c i,n+1 /(p λ i c i,n )| < ε}. We claim that if C is infinite, then it does not contain all large integers. Indeed, if n ∈ C, then c i,n+1 ≥ (1 -ε)p λ i c i,n , since c i,n+1 < p λ i c i,n . If C contains some interval [n 0 , +∞), then for n ≥ n 0 : v≥0 b i,v+n p -λv i = p λn i v≥n b i,v p -λv i ≥ p λn i (1 -ε) n-n0 v≥n0 b i,v p -λv i However v≥n0 b i,v p -λv iis fixed and > 0, since b i,v > 0. As p λ i (1 -ε) > 1, a contradiction is given by Cauchy-Schwarz's inequality, because the left-hand side is bounded from above by : +∞.Decompose now into disjoint intervals C = ∪ k≥1 [a k , b k ] and write in a disjoint union :

2 i,n 1 - c i,n+1 p λ i c i,n 2 ≥ ε 2 np λ i c i,l 2 ≥ ε 2 k≥1 c 2 i

 212222 Notice that the first interval [a 1 , b 1 ] may be empty, whereas the other ones are not, and that the collection of ([a k , b k ], [a k , b k ]) k may be finite. We have : n ∈C,n ∈{a k , k≥1} c ∈C,n ∈{a k , k≥1} ,a k .
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