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Ergodic non-abelian smooth extensions of an irrational rotation

Julien Brémont

Abstract

Above an irrational rotation on the Circle, we build optimally smooth ergodic cocycles with values
in some nilpotent or solvable subgroups of triangular matrices.

1. Introduction

Let (X,B, T, µ) be an invertible dynamical system, where (X,B) is a standard Borel space, T an
invertible measurable transformation of X and µ a T -invariant ergodic Borel probability measure.
Let G be a locally compact separable group. We suppose that the topology on G is defined by some
fixed metric and we write Vε(c) for the open ball of radius ε > 0 and center c ∈ G. In the sequel G
is Rd or a closed subgroup of GLd(R).

To a measurable function ϕ : X → G one canonically associates the cylindrical or skew-product
transformation Tϕ : (x, g) 7−→ (Tx, ϕ(x)g) on X ×G. Iterates of Tϕ involve the cocycle (ϕn)n∈Z :

ϕn(x) =

 ϕ(Tn−1x) · · ·ϕ(x), n > 0,
e, n = 0,

ϕ−1(Tnx) · · ·ϕ−1(T−1x), n < 0.

We next use the notation Tϕ for ϕ ◦ T . When G is abelian, the law in G is written additively and
ϕn is then the Birkhoff sum ϕn(x) =

∑n−1
k=0 ϕ(T kx), for n ≥ 1.

Fixing a left-invariant Haar measure λ on G, the product measure µ⊗ λ on X ×G is Tϕ-invariant.
We consider in this article the existence and the construction of ϕ such that Tϕ is ergodic for µ⊗ λ.
In the whole text, the ergodicity of Tϕ only refers to µ⊗ λ. Such ϕ provide ergodic dynamical
systems, of particular interest when G is non-compact since the invariant measure is infinite.

The existence of ϕ : X → G with Tϕ ergodic requires that G is amenable, cf Golodets and
Sinel’shchikov [9]. A problem is then to exhibit concrete examples and a large part of the literature
on cocycles is devoted to expliciting classes of ϕ : X → G such that Tϕ is ergodic for specific groups
and dynamical systems. The case when G = R, X is the Circle T1 = R\Z and T is an irrational
rotation Rα of angle α has received considerable attention, see for instance the bibliography in
Conze [4]. Most examples are discontinuous and piecewise smooth. A non-commutative situation
has recently been considered by Greschonig [10], when (X,T ) = (T1, Rα) and G is the discrete
Heisenberg group N3(Z). An ergodic BV example is built, using linear combinations of interval
indicator functions, for any α with bounded partial quotients.

When (X,T ) and G have a smooth structure, it is natural to ask for smooth examples. For a
large class of topological dynamical systems and amenable groups, Nerurkar [15] has first given
genericity results. More precisely, among continuous ϕ, the ones for which Tϕ is ergodic are generic
in the Baire Category sense. Producing ϕ : X → G with an a priori smoothness so that Tϕ is
ergodic is often delicate and can be impossible. In the situation when (X,T ) admits fast periodic
approximations, Nerurkar [16] proved genericity results on ergodic cocycles with high regularity.
For G = R and (X,T ) = (T1, Rα), existence results, based on tower constructions, about ergodic
cocycles with optimal smoothness and other properties are contained in Volný [20].

Let us now describe the content of this article. We fix the base to (X,T ) = (T1, Rα). When
G = Rd and for a general α with unbounded partial quotients, the optimal regularity of ϕ : T1 → Rd
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with Tϕ ergodic is C1, since C1+ε-extensions are not ergodic if α has Diophantine type 1. This is
recalled below. The condition on α for a C1 regularity is minimal, since ergodic C1-extensions are
impossible if α has bounded partial quotients.

The purpose of this paper is to prove similar results in some non-abelian situations. More precisely,
under the same hypothesis on α, we build C1 ergodic cocycles in the following closed subgroups of
the group of invertible d× d upper-triangular matrices :

– the nilpotent non-abelian group Nd(R) of matrices with unit diagonal elements, when d ≥ 3,
– the solvable non-nilpotent group Sol3(R), when d = 3.

In these cases, the optimal regularity of an ergodic extension is thus the same as for Rd. Our strategy
is semi-abstract and therefore essentially furnishes existence results. We develop via elementary
Fourier Analysis a general method for building smooth ergodic cocycles by explicit formulas in
terms of the sequence of convergents of α.

2. Preliminaries

We first introduce the notion of essential value, used for considering the ergodicity of a skew-
product. We next present the basic stone with which our examples are built and, in a first
application, focus on the situation when G = Rd.

2.1. Essential values ; a general lemma for abelian groups

In the general context of the beginning of the introduction, the question of the ergodicity of a
skew-product can be reformulated using essential values. See Schmidt [17] or Feldman-Moore [7].
Let ϕ : X → G be measurable.

Definition 2.1. An element c ∈ G ∪ {∞} is an essential value for ϕ, if for any ε > 0 and Borel
set A ⊂ X with µ(A) > 0, there is n ∈ Z so that µ(A ∩ T−nA ∩ {ϕn ∈ Vε(c)}) > 0.

The set of finite essential values is a closed subgroup of G, denoted by E(ϕ) in the sequel. The
skew-product Tϕ on X ×G is then ergodic if and only if E(ϕ) = G.

When G is abelian, the non-degeneracy of the cocycle along a rigid sequence provides finite
essential values. Minimal translations on a torus furnish a natural situation for this to occur.

The following lemma is prop 9 in Lemańczyk-Parreau-Volný [13]. See also the notion of quasi-period
in [4]. Reordering arguments appearing in the literature, we give another proof.

Lemma 2.2.
Let G be abelian and ϕ : X → G be measurable. If (kn)→ +∞ verifies T knx→ x, µ− ae, and the
law of ϕkn converges to a measure ν for the vague topology, then Supp(ν) ⊂ E(ϕ).

Proof of the lemma :
Starting as in [4], for a Borel set A :∫

X

|1A − 1T−knA| dµ −→n→+∞ 0. (2.1)

Indeed, this is true when 1A is replaced by a continuous function. This property is extended to
functions in L1(µ) via the invariance of the measure µ.

Following next [17], if F is compact and such that F ∩ E(ϕ) = ø, then for all B with µ(B) > 0,
there is A ⊂ B with µ(A) > 0 such that for all n ∈ Z, µ(A ∩ T−nA ∩ {ϕn ∈ F}) = 0. This is where
the abelian character of G is used. By (2.1), we get µ(A ∩ {ϕkn ∈ F})→ 0, as n→ +∞.

Via the exhaustion lemma 1.0.7 in Aaronson [1], we obtain X = ∪l≥1Al modulo µ, where µ(Al ∩
{ϕkn ∈ F})→ 0 for each l ≥ 1. Therefore :
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µ{ϕkn ∈ F} →n→+∞ 0. (2.2)

Suppose then that c ∈ Supp(ν)\E(ϕ), where ν is the vague limit of the laws of ϕkn . Since E(ϕ)
is closed, there is ε > 0 such that Vε(c) ∩ E(ϕ) = ø. Fix a continuous ψ : G→ [0, 1] so that ψ > 0
on Vε/4(c) and ψ = 0 outside Vε/2(c). By (2.2), µ{ϕkn ∈ V̄ε/2(c)} → 0. However :

µ{ϕkn ∈ V̄ε/2(c)} ≥
∫
X

ψ(ϕkn) dµ→
∫
G

ψ dν > 0.

This contradiction concludes the proof of the lemma.
�

Remark — A sequence (kn) as in the statement of the lemma is said “rigid”. Recall that for the
vague topology a sequence of probability measures is relatively compact among Borel measures
with mass less than or equal to one.

In the sequel, except for section 2.5, X is the torus T1 identified to R/Z, with an irrational
rotation T of angle α and Lebesgue measure µ.

2.2. Squashability

In most cases, we also examine the squashability of (X ×G,Tϕ). This question comes after
ergodicity. Following Aaronson [1, 2], an infinite ergodic dynamical system (Y, S, ν) is squashable,
if there exists a non-singular non-measure-preserving transformation Q commuting with S. In this
case, since ν ◦Q−1 is S-invariant and equivalent to ν, there is a constant c such that ν ◦Q−1 =
cν, with therefore c 6= 1. The dynamical system (Y, S, ν) is completely squashable if any c 6= 1 is
possible.

Squashability is an obstruction to the existence of a generalised law of large numbers, ie of a
measurable Ψ : {0, 1}N → R+ such that ν(A) = Ψ((1A(Snω))n≥1), ν − ae, for all measurable set
A. Indeed, reproducing the proof in [1], take A with positive finite measure and ω such that ω and
Qω are ν-typical. A contradiction is obtained as follows :

ν(A) = Ψ((1A(SnQω))) = Ψ((1A(QSnω))) = Ψ((1Q−1A(Snω))) = ν(Q−1A) = cν(A).

In our setting we have the following result from [1] (proposition 8.4.1) :

Proposition 2.3.
Let X = T1 with an irrational rotation T of angle α and Lebesgue measure µ. Let G be a locally
compact second countable group and ϕ : X → G be measurable. If Tϕ is ergodic and Q : X ×G→
X ×G is non-singular with Q ◦ Tϕ = Tϕ ◦Q, then there exist β ∈ R, a continuous surjective group
endomorphism w : G→ G and a measurable f : X → G so that :

Q(x, y) = (x+ β, f(x)w(y)) and ϕ(x+ β) = Tf(x)w(ϕ(x))f−1(x),

for all x ∈ X, y ∈ G.

The proof in [1] is given when G is abelian. Using the notations of [1], it remains valid in general
when taking the translations Qg(x, y) = (x, yg) to show that F−1.F ◦Qg is Tϕ-invariant.

2.3. Smooth ergodic cocycles in Rd

In the present paragraph G = Rd. The sequence of convergents of α is denoted by (pn/qn) and
the partial quotients by (an). Recall that they obey the recursive relations :
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
pn+1 = an+1pn + pn−1 and qn+1 = an+1qn + qn−1, n ≥ 0,

p−1 = 1, p0 = 0, q−1 = 0, q0 = 1.

We say α has bounded partial quotients (bpq), if an ≤ C for some constant C > 0. We write ((x))
for the distance from x to Z. Recall also that 1/(qn + qn+1) ≤ ((qnα)) < 1/qn+1.

The constructions that appear in this article are essentially variations on a single example.
Consider positive integers (uk)k≥1 with

∑
1/uk <∞ and a subsequence (vk)k≥1 of the (qn). Define :

f(x) =
∑
k≥1

1
uk

sin(2πvkx).

Introducing a sequence of times (tn), we compute ftn :

ftn(x) = Im
∑
k≥1

e2iπvkx

uk

(
e2iπvktnα − 1
e2iπvkα − 1

)
=
∑
k≥1

sin(πvktnα)
uk sin(πvkα)

sin[πvk(2x+ (tn − 1)α)]

=
∑
k<n

+
∑
k=n

+
∑
k>n

= An +Bn + Cn. (2.3)

An existence result, classical when d = 1, is the following :

Proposition 2.4.
i) Let α have non bpq. Choose a strictly increasing sequence (θ(k))k≥1 so that aθ(k)+1 ≥ k3. Set :

f = (f i)1≤i≤d, where f i(x) =
∑
k≥1

sin(2πqθ(dk+i)x)
k2qθ(dk+i)

.

Then f is C1 and Tf : T1 × Rd → T1 × Rd is ergodic and non-squashable.

ii) Let α have bpq. Fix a decreasing function ε such that ε(h)→ +∞, as h→ 0+, and choose a
strictly increasing sequence (θ(k))k≥1 satisfying θ(k) ≥ k2 and ε(1/qθ(k)) ≥ k. Set :

f = (f i)1≤i≤d, where f i(x) =
∑
k≥1

sin(2πqθ(dk+i)x)
qθ(dk+i)

.

Then hε(h) is a modulus of continuity for f and Tf : T1 × Rd → T1 × Rd is ergodic and non-
squashable.

Proof of the proposition :
i) We fix 1 ≤ j ≤ d and consider the rigid sequence (tj,n)n≥1 = (n2qθ(dn+j))n≥1. For each 1 ≤ i ≤ d,
we focus on the decomposition (Ain, B

i
n, C

i
n) associated to f i and given by (2.3).

Using that qθ(k+1)/qθ(k) → +∞, as k → +∞, we have for a generic constant C > 0 :

|Ain| ≤ C
∑
k<n

n2((qθ(dn+j)α))
k2((qθ(dk+i)α))

≤ C
n2qθ(d(n−1)+i)+1

qθ(dn+j)+1
≤ C n2

aθ(dn+j)+1
→n→+∞ 0,

|Cin| ≤ C
∑
k>n

n2qθ(dn+j)

k2qθ(dk+i)
≤ C

qθ(dn+j)

qθ(d(n+1)+i)
≤ C

aθ(dn+j)+1
→n→+∞ 0,

due to the assumption on θ and since in each case the argument of θ in the numerator is strictly less
than that in the denominator. Next Bin = win sin[πqθ(dn+i)(2x+ (tj,n − 1)α)], with the expression :
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win =
sin(πn2qθ(dn+j)qθ(dn+i)α)
n2qθ(dn+i) sin(πqθ(dn+i)α)

∼n→+∞ εn(i, j)
πn2qθ(dn+min(i,j))((qθ(dn+max(i,j))α))

πn2qθ(dn+i)((qθ(dn+i)α))
, (2.4)

where εn(i, j) = ±1. The point is that |win| → 1 if i = j and win → 0 otherwise. As a result, if X is
a random variable with uniform law on [0, 1] :

ftj,n →n→∞ (1i=j sin(2πX))1≤i≤d, in law.

Lemma 2.2 then implies that {0}j−1 × [−1, 1]× {0}d−j ⊂ E(f). Since this holds for all 1 ≤ j ≤ d,
we obtain E(f) = Rd and thus Tf is ergodic.

If Tf is squashable, by proposition 2.3 there exists a d-square invertible matrix M satisfying
|detM | 6= 1, a measurable ψ : T1 → Rd and β such that for almost-every x ∈ T1 :

g(x) := Mf(x)− f(x+ β) = ψ(x)− ψ(x+ α).

Fix 1 ≤ j ≤ d and consider (kn) so that qθ(dkn+j)β → ζj mod (1) and wjkn → δ ∈ {±1}. Then :

(ftj,kn (.), ftj,kn (.+ β))→n→+∞ δ(1i=j(sin(2πX), sin(2π(X + ζj))))1≤i≤d, in law.

Writing (ei)1≤i≤d for the canonical basis of Rd, by lemma 2.2, for all c ∈ [0, 1] :

δ sin(2πc)Mej − δ sin(2π(c+ ζj))ej ∈ E(g).

Since Rd is abelian and g is a T -coboundary, we have E(g) = {0}, cf [17]. As a result Mej is
proportional to ej andMjj sin(2πc) = sin(2π(c+ ζj)), for all c ∈ [0, 1]. Necessarily,Mjj = ±1. Since
this holds for all 1 ≤ j ≤ d, M is diagonal and detM = ±1, but this is a contradiction.

ii) Concerning the regularity of f i, let h > 0 be small so that 1/qθ(dl+i+1) ≤ h < 1/qθ(dl+i), for
some l ≥ 1. Splitting f(x)− f(x+ h) into

∑
k≤l and

∑
k>l, we obtain for a generic constant C :

|f(x)− f(x+ h)| ≤ C(hl + h) ≤ Chl ≤ Chε(1/qθ(dl+i)) ≤ Chε(h).

For the ergodicity and the squashability of Tf we run the same proof with the sequence of times
(tj,n)n≥1 = (qθ(dn+j))n≥1, where 1 ≤ j ≤ d is fixed. Since qθ(k+1)/qθ(k) → +∞, as k → +∞, we only
have to focus on the new (win)1≤i≤d given by :

win =
sin(πqθ(dn+j)qθ(dn+i)α)
qθ(dn+i) sin(πqθ(dn+i)α)

.

As in (2.4), win →n→+∞ 0, when i 6= j. Since α has bpq, let M check an ≤M for all n ≥ 1. Using
that ql+1 ≤ (M + 1)ql, we have qn((qnα)) ∈ [1/(M + 2), 1/(1 + 1/(M + 1))]. As a result :

1
π

sin
(

π

M + 2

)
≤ lim inf |wjn| ≤ lim sup |wjn| ≤

(M + 2)
π

.

Consequently, (wjn)n≥1 converges to a non-zero constant along a subsequence (kn). The reasoning
is then the same, using this time the sequence (tj,kn). This completes the proof of the proposition.

�

Remark 1 — Results related to item i) when d = 1 can be found in [20], where the method is
developed in order to produce completely squashable examples. In the context of ii), for instance,
Liardet and Volný [14] have constructed ergodic cocycles with an absolutely continuous f .

Remark 2 — When (T1, T ) admits fast periodic approximations, in the spirit of [16] or [20], then
the function f : T1 → Rd can be taken more regular :
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– of class Cp, if lim sup qn+1/q
p
n = +∞, for some integer p ≥ 1. Indeed, choose (θ(k)) with

qθ(k)+1 ≥ k3qpθ(k) and define :

f = (f i)1≤i≤d, with f i(x) =
∑
k≥1

k−2q−pθ(dk+i) sin(2πqθ(dk+i)x).

Then Tf : T1 × Rd → T1 × Rd is ergodic and non-squashable. The same demonstration works,
when taking (n2qpθ(dn+j)) as rigid sequences.

– of class C∞, if lim sup qn+1/q
p
n = +∞, for all p ≥ 1. Choose this time (θ(k)) satisfying qθ(k)+1 ≥

k3qkθ(k) and introduce :

f = (f i)1≤i≤d, with f i(x) =
∑
k≥1

k−2q−kθ(dk+i) sin(2πqθ(dk+i)x).

Then Tf : T1 × Rd → T1 × Rd is ergodic and non-squashable. Take (n2qnθ(dn+j)) as rigid
sequences.

– real analytic, if lim sup log qn+1/qn = +∞. Choose (θ(n)) checking qθ(n)+1/(qθ(n)e
nqθ(n))→

+∞ and define :

f = (f i)1≤i≤d, with f i(x) =
∑
k≥1

κ−1
k,i sin(2πqθ(dk+i)x),

where κk,i = qθ(dk+i)[exp {(dk + i)qθ(dk+i)}] and [x] is the integer part of x. Each f i is real
analytic, since z 7−→

∑
k≥1 κ

−1
k,i exp (zqθ(dk+i)) uniformly converges on compact sets of C and

Tf : T1 × Rd → T1 × Rd is ergodic and non-squashable, using now (κn,j) as rigid sequences.

Remark 3 — Fixing d = 1, we recall a few facts about coboundaries. If α has bpq and f ′ ∈ L2(T1),
then f is a L2-coboundary, in particular when f is C1. If α has Diophantine type 1 and f is C1+ε,
then f is a continuous coboundary (cf Arnold [3]). A result of Meyer (cf Herman [11], p. 187) says
that for any irrational α there is f of class C1 that is not a continuous coboundary.

2.4. Adequate perturbations for some BV functions

Consider the same context with d = 1 and any irrational α. The function :

h(x) =
∑
l≥1

q−1
l2 sin(2πql2x)

is an example such that (hn) converges in law along a subsequence of the (qn) to a random variable
whose support contains a non-empty open interval. Such a map can be used as a “good” perturbing
element for a large class of BV functions.

Proposition 2.5.
Consider (ak)k≥1 ∈ l1(N) and intervals (Ik)k≥1 in T1. Set γ =

∑
k≥1 akµ(Ik) and define :

f =
∑
k≥1

ak1Ik − γ.

Introduce the compact K = {
∑
akuk | uk ∈ Z ∩ [−2, 2]}. We have :

– If K has empty interior, then Tf+εh : T1 × R→ T1 × R is ergodic for any ε 6= 0.

– If the box-dimension of K is < 1/2, then Tf+εh is ergodic and non-squashable for any ε 6= 0.

Proof of the proposition :
Since Var(1Ik) = 2, the Denjoy-Koksma inequality gives :

(1Ik − µ(Ik))qn(x) = mk,n(x)− {qnµ(Ik)} ∈ [−2, 2], where mk,n(x) ∈ Z ∩ [−2, 2].
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As in the proof of proposition 2.4 ii), we have :

hqn2 (x) = χn sin[qn2π(2x+ (qn2 − 1)α)] + o(1),

with uniform o(1) and where the (χn) are uniformly far from 0 and ±∞. Choose (θ(n))n≥1 so that
γn :=

∑
k≥1 ak{qθ(n)2µ(Ik)} → γ∞ and χθ(n) → χ 6= 0. Introduce the random variables :

Xn(x) = εhqθ(n)2
(x), Yn(x) =

∑
k≥1

akmk,θ(n)2(x) and Zn = Xn + Yn.

Let X be the uniform random variable x 7−→ x on (T1, µ). We have :

Xn → εχ sin(2πX), in law.

Since the (Xn) and the (Yn) are uniformly bounded, the laws of the (Zn) are tight. Let (rn) be
a sequence such that (Zrn) converges in law to some Z. Since γn → γ∞, notice that (Zrn , γrn)
converges in law to (Z, γ∞).

Let ε 6= 0 and suppose that Tf+εh is not ergodic. Then E(f + εh) = λZ, for some λ ≥ 0. Fixing
δ > 0, introduce the open set Oδ = {x ∈ T1,dist(x, λZ) < δ} and its closure Fδ. By lemma 2.2 :

1 = µ(Z − γ∞ ∈ Oδ).

Since Oδ + γ∞ is open, using the law convergence for the first inequality and the fact that Yrn ∈ K,
as well as K = −K, for the last inequality, we obtain :

1 ≤ lim inf µ(Zrn ∈ Oδ + γ∞) ≤ lim supµ(Zrn ∈ Fδ + γ∞)
≤ lim supµ(Xrn ∈ Fδ +K + γ∞).

Since Fδ +K + γ∞ is closed, as K is compact, using the law convergence of (Xn) we finally get :

1 = µ(εχ sin(2πX) ∈ Fδ +K + γ∞).

The closedness of Fδ +K + γ∞ then implies that εχ[−1, 1] ⊂ γ∞ +K + Fδ. As K is compact,
K + Fδ tends to K + λZ as δ → 0. Therefore :

εχ[−1, 1] ⊂ γ∞ + ∪n∈Z(K + nλ).

However each K + nλ is a compact with empty interior, thus ∪n∈Z(K + nλ) also has empty interior,
but this is a contradiction. Therefore Tf+εh is ergodic.

Suppose now that dimbox(K) < 1/2 and ε 6= 0. If Tf+εh is squashable, by proposition 2.3 there
exists κ 6= ±1, a measurable ψ : T1 → Rd and β such that for almost-every x ∈ T1 :

g(x) := κ(f + εh)(x)− (f + εh)(x+ β) = ψ(x)− ψ(x+ α). (2.5)

Set f̃(x) = κf(x)− f(x+ β) = κ
∑
ak1Ik(x)−

∑
ak1Ik−β(x)− γ(κ− 1). Comparing with f , the

compact K is replaced in f̃ by the compact κK +K, whose Hausdorff dimension is less than
2dimbox(K) < 1. Thus κK +K has empty interior.

Choose (kn) so that qθ(kn)2β → ζ mod (1). If Tg is not ergodic, then the same proof with f̃ and
the perturbation ε(κh(.)− h(.+ β)), using the sequence (qθ(kn)2), gives some λ ≥ 0 so that :

εχ(κ sin(2πc)− sin(2π(c+ ζ))) ∈ γ∞(κ− 1) + ∪n∈Z(κK +K + nλ), ∀c ∈ [0, 1].
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However, the image of the left-hand side contains a non-empty open interval, since |κ| 6= 1, whereas
the right-hand side has empty interior. Therefore Tg is ergodic. This contradicts (2.5) and concludes
the proof of the proposition.

�

2.5. An example with ϕ : T2 → R2

Take now X = T2 with Lebesgue measure µ and G = R2. The method used in the proof of
proposition 2.4 furnishes for any minimal translation T by α = (α1, α2) on T2 a continuous f :
T2 → R2 of the form f(x, y) = (ϕ(x), ϕ(y)) such that Tf : T2 × R2 → T2 × R2 is ergodic and non-
squashable. Indeed, it is enough to take a sequence (qn) growing fast enough, with ((qnα1)) +
((qnα2)))→ 0 fast enough. Setting :

ϕ(x) =
∑
k≥1

q−1
2k sin(2πq2k+1x),

the same proof works with the rigid sequence (q2n).

Inspired by ideas of Yoccoz [21] (see also Conze-Chevallier [5]), we build a smooth example for
a particular α.

Proposition 2.6.
Let α = (α1, α2) = (

∑
k≥1 2−mk ,

∑
k≥1 3−mk), where mn+1/mn > ln 12/ ln 2. Define :

f(x, y) = (ϕ(x), ϕ(y)), where ϕ(x) =
∑
k≥1

k−26−mk sin(2π6mkx).

Then the translation T by α is minimal, f is of class C1 and Tf : T2 × R2 → T2 × R2 is ergodic
and non-squashable.

Proof of the proposition :
We first check that T is minimal. Considering αn =

∑
k≤n(2−mk , 3−mk), the subgroup generated

by αn is 〈αn〉 = (k2−mn , l3−mn)(k,l)∈Z2 and αn has order 6mn . For 0 ≤ q ≤ 6mn , we have :

d(qα, qαn) ≤ C6mn2−mn+1 → 0,

so the orbit of α is dense in T2.

Set tn = n26mn . Since ((tnαi)) ≤ n26mn2−mn+1 → 0, (tn) is a rigid sequence for α = (α1, α2).
Let qn = 6mn and consider ϕn under the rotation by αi. Using the decomposition given in (2.3) :

|An| ≤ C
∑
k<n

n2((qnαi))
k2((qkαi))

≤ Cn
26mn2−mn+1

6mn−12−mn
→ 0 and |Cn| ≤ C

qn
qn+1

→ 0.

As sin(π6mnn26mnαi)/n26mn sin(π6mnαi)→ 1, we obtain :

ftn(x, y) = (sin[πqn(2x+ (tn − 1)α1)], sin([πqn(2y + (tn − 1)α2)]) + o(1).

Denoting by L the law of sin(2πX), where X is a uniform random variable on [0, 1], we have
ftn → L⊗L, in law. Lemma 2.2 gives [−1, 1]2 ⊂ E(f). Thus E(f) = R2 and Tf is ergodic.

If Tf is squashable, proposition 2.3 furnishes a 2× 2 invertible matrix M with |detM | 6= 1, a
measurable ψ : T2 → R2 and β = (β1, β2) such that for almost-every x ∈ T2 :

g(x) := Mf(x)− f(x+ β) = ψ(x)− ψ(x+ α).
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We thus have E(g) = {0}. Consider a subsequence (kn) so that qknβ → ζ = (ζ1, ζ2) mod Z2. Using
the sequence (tkn), we obtain via the same proof that for all (x, y) ∈ R2 :

M

(
sin(2πx)
sin(2πy)

)
−
(

sin(2π(x+ ζ1))
sin(2π(y + ζ2))

)
= 0.

Taking y = 0, we get sin(2πx)Me1 = t (sin(2π(x+ ζ1)), sin(2πζ2)). Thus M21 = 0 and this gives
M11 sin(2πx) = sin(2π(x+ ζ1)). Necessarily M11 = ±1. In the same way, M12 = 0 and M22 = ±1.
As a consequence M is diagonal and detM = ±1, but this is a contradiction.

�

3. Smooth ergodic cocycles in a nilpotent group

We come back to X = T1, with an irrational rotation T of angle α and Lebesgue measure µ,
and use the same notations as in section 2.3 for the sequence of best approximations of α. We now
build examples of smooth ergodic cocycles with values in the group G = Nd(R), where :

Nd(R) =




1 · · ·

0
. . . (aij)

...
...

. . . . . .
0 · · · 0 1

 | (aij) = (aij)1≤i<j≤d ∈ Rd(d−1)/2

 .

If A ∈ Nd(R), we write A = (aij)1≤i<j≤d or A = (aij) for simplicity. Matricial indices are written
upwards, down indices being for cocycles.

We suppose that d ≥ 3, so Nd(R) is nilpotent but non-abelian. Recall that Haar measure in Nd(R)
is the left and right-invariant Lebesgue measure.

Theorem 3.1.
Let α have non bpq. Choose a strictly increasing (θ(n))n≥1 satisfying aθ(n)+1 ≥ n3 as well as
qθ(n+1) ≥ qdθ(n)+1. We define :

(Φ) = (f ij)1≤i<j≤d, by f ij(x) =
∑
k≥1

sin(2πqθ(d2k+di+j)x)
k2qθ(d2k+di+j)

.

Then Φ is C1 and TΦ : T1 ×Nd(R)→ T1 ×Nd(R) is ergodic.

Remark 1 — For almost-every x ∈ T1, the orbit (Φn(x))n∈Z (and in fact (Φn(x))n≥1) is dense in
Nd(R). The continuity of Φ implies that this property is true for x in a Gδ-set of full Lebesgue
measure.

Remark 2 — If α has bpq and Φ is C1 or if α has Diophantine type 1 and Φ is C1+ε, then TΦ

cannot be ergodic. Indeed Φ12
n = f12

n , for all n ∈ Z and Tf12 : T1 × R→ T1 × R would be ergodic.
However f12 is in this case a coboundary.

Remark 3 — There is a similar statement for α with bpq. Fixing a decreasing ε(h)→ +∞, as
h→ 0+, choose (θ(n))n≥1 with θ(n) ≥ n2, ε(1/qθ(n)) ≥ n and qθ(n+1) ≥ qdθ(n)+1. Set :

(Φ) = (f ij)1≤i<j≤d, where f ij(x) =
∑
k≥1

q−1
θ(d2k+di+j) sin(2πqθ(d2k+di+j)x).

Then hε(h) is a modulus of continuity for Φ and TΦ : T1 ×Nd(R)→ T1 ×Nd(R) is ergodic. The
proof is directly adapted from the one given below, as for item ii) of proposition 2.4 from item i).

Remark 4 — We examine squashability in the special case when d = 3 below.
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As Nd(R) is not abelian, lemma 2.2 does not apply. We proceed differently and first introduce
some definitions. Denote by Dl(A) = (aii+l)1≤i≤d−l the l-upper diagonal of A = (aij) ∈ Nd(R).

Definition 3.2.
A l-upper diagonal x = (xii+l)1≤i≤d−l ∈ Rd−l is essential for Φ if ∀ε > 0, ∀ Borel set B with µ(B) >
0, there is n ∈ Z such that :

µ(B ∩ T−nB ∩ {(D1(Φn), · · · , Dl(Φn)) ∈ Vε(0Rd−1 , · · · , 0Rd−l+1 , x)}) > 0.

We write Dl(Φ) for the set of l-upper essential diagonals.

A generalisation of considerations by Greschonig [10] is the following.

Lemma 3.3.
The set Dl(Φ) is a closed subgroup of (Rd−l,+) and :

E(Φ) = Nd(R)⇔ Dl(Φ) = Rd−l, for 1 ≤ l ≤ d− 1.

Proof of the lemma :
We first show that Dl(Φ) is a closed subgroup of (Rd−l,+). Let x and x′ be in Dl(Φ). Fix ε > 0
and a Borel set B with µ(B) > 0. For some m ∈ Z :

µ(B ∩ T−mB ∩ {(D1(Φm), · · · , Dl(Φm)) ∈ Vε(0Rd−1 , · · · , 0Rd−l+1 , x)}) > 0.

Let C be the set appearing above. Since µ(TmC) = µ(C) > 0, there is n ∈ Z such that :

µ(TmC ∩ Tm−nC ∩ {(D1(Φn), · · · , Dl(Φn)) ∈ Vε(0Rd−1 , · · · , 0Rd−l+1 , x′)}) > 0. (3.1)

The following fact can be verified by carefully considering the entries of the matrix product : if P
and Q in Nd(R) are such that :

(Dj(Q))1≤j≤l ∈ Vε((0Rd−j )1≤j≤l−1, x
′) and (Dj(P ))1≤j≤l ∈ Vε((0Rd−j )1≤j≤l−1, x),

then (Dj(QP ))1≤j≤l ∈ VMε((0Rd−j )1≤j≤l−1, x+ x′), where M is a constant depending only on d.
If F is the set in (3.1), using the cocycle property :

T−mF ⊂ B ∩ T−m−nB ∩ {(D1(Φm+n), · · · , Dl(Φm+n)) ∈ VMε(0Rd−1 , · · · , 0Rd−l+1 , x+ x′)}. (3.2)

Since µ(T−mF ) = µ(F ) > 0, we conclude that x+ x′ ∈ Dl(Φ). Similarly, −x ∈ Dl(Φ), if x ∈ Dl(Φ).
Hence Dl(Φ) is a subgroup of (Rd−l,+). The closedness part is obvious.

We turn to the second part of the lemma. Clearly, E(Φ) = Nd(R) implies that Dl(Φ) = Rd−l, for
all 1 ≤ l ≤ d− 1. Conversely, fix a = (aij) ∈ Nd(R), ε > 0 and a Borel set B with µ(B) > 0.

Since a1 := (aii+1)1≤i≤d−1 ∈ D1(Φ), there is n1 so that µ(B ∩ T−n1B ∩ {D1(Φn1) ∈ Vε(a1)}) > 0.
Let now (bl)l≥1 be dense in Nd(R). As :

{D1(Φn1) ∈ Vε(a1)} = ∪l≥1{Φn1 ∈ Vε(bl), D1(Φn1) ∈ Vε(a1)},

there is b1 = (bij,1)1≤i<j≤d ∈ Nd(R) such that bii+1,1 = aii+1, for all 1 ≤ i ≤ d− 1, so that :

µ(B ∩ T−n1B ∩ {Φn1 ∈ Vε(b1)}) > 0.

Let B2 be the set appearing above. Since a2 := (aii+2 − bii+2,1)1≤i≤d−2 ∈ D2(Φ) and µ(Tn1B2) > 0,
there is n2 such that :
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µ(Tn1B2 ∩ Tn1−n2B2 ∩ {(D1(Φn2), D2(Φn2)) ∈ Vε(0Rd−1 , a2)}) > 0.

If B3 is the previous set, then µ(T−n1B3) = µ(B3) > 0 and :

T−n1B3 ⊂ B ∩ T−n1−n2B ∩ {(D1(Φn1+n2), D2(Φn1+n2)) ∈ VMε((aii+1)1≤i≤d−1, (aii+2)1≤i≤d−2)},

where M is as in (3.2). The separability of Nd(R) again implies that there is b2 = (bij,2)1≤i<j≤d ∈
Nd(R), with bii+l,2 = aii+l for l ∈ {1, 2} and 1 ≤ i ≤ d− l, such that :

µ(B ∩ T−n1−n2B ∩ {Φn1+n2 ∈ V2Mε(b2)}) > 0.

Iterating the procedure, we obtain integers n1, · · · , nd−1 such that :

µ(B ∩ T−n1−n2−···−nd−1B ∩ {Φn1+n2+···+nd−1 ∈ V(2M)d−2ε(a)}) > 0.

As a result, a = (aij) ∈ E(Φ). Thus E(Φ) = Nd(R) and this concludes the proof of the lemma.
�

Proof of theorem 3.1 :
Step 1. We make preliminary computations. Recall that Φn = Tn−1Φ · · ·Φ, for n ≥ 1. We have
Φkkn = 1 and by definition of the matrix product, if k < l :

Φkln =
l−k∑
m=1

∑
k=u0<···<um=l

∑
0≤sm<···<s1<n

T s1fu0u1 · · ·T smfum−1um .

Using the decomposition sin(2πqθ(d2r+dk+l)x) = (e2iπqθ(d2r+dk+l)x − e−2iπqθ(d2r+dk+l)x)/2i, write
fkl = (fkl,+ − fkl,−)/2i. Then :

Φkln =
l−k∑
m=1

1
(2i)m

∑
δ=(δ1,··· ,δm)∈{±1}

δ1 · · · δm
∑

k=u0<···<um=l

Φkl,m,δ,un ,

where u = (ui) and :

Φkl,m,δ,un =
∑

0≤sm<···<s1<n

T s1fu0u1,δ1 · · ·T smfum−1um,δm .

Set wr(k, l) = d2r + dk + l and vt(p) = qθ(wp(ut−1,ut)). Using the expression for fkl,±, we obtain :

Φkl,m,δ,un (x) =
∑

p1,··· ,pm≥1

e2iπ
Pm
t=1 δtvt(pt)x∏m

t=1 p
2
t vt(pt)

∑
0≤sm<···<s1<n

e2iπδ1v1(p1)s1α · · · e2iπδmvm(pm)smα. (3.3)

Step 2. A remark, about indices, is that wr(k, l) = wr′(k′, l′) if and only if r = r′, k = k′ and
l = l′, since dk + l ∈ [1, d2] and l ∈ [1, d]. Therefore, for all values of p1, · · · , pm, the quantities
(wpt(ut−1, ut))1≤t≤m are pairwise distinct.

Fix (i, j) with 1 ≤ i < j ≤ d and suppose that (k, l) satisfies l − k ≤ j − i. In other words (k, l) lies
on a lower upper-diagonal than (i, j). Impose also (k, l) 6= (i, j). As a result, for all m, δ, u and for
all p1, · · · , pm, the m-tuples (wpt(ut−1, ut))1≤t≤m appearing in the expression of Φkl,m,δ,un are also
distinct from any wn(i, j), n ≥ 1.

Let now tn = n2qθ(wn(i,j)). We prove that Φkl,m,δ,utn → 0 uniformly, as n→ +∞. Let In be the
set of (p1, · · · , pm) so that max1≤t≤m wpt(ut−1, ut) < wn(i, j). Then in (3.3) at time tn, the sum
restricted to Icn and written S1 satisfies, for some constant C > 0 :
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|S1| ≤
m∑
t=1

∑
p1,··· ,pm≥1;wpt (ut−1,ut)>wn(i,j)

tmn∏m
t′=1 p

2
t′vt′(pt′)

≤ tmn
m∑
t=1

∏
t′∈{1,··· ,m}\{t}

∑
pt′≥1

1
p2
t′vt′(pt′)

 ∑
pt≥1,wpt (ut−1,ut)>wn(i,j)

1
p2
t vt(pt)

≤ Cn2m
qmθ(wn(i,j))

qθ(wn(i,j)+1)
→n→+∞ 0.

We next turn to the sum S2, corresponding to (3.3) at time tn with indices (p1, · · · , pm) restricted
to In. We have :

|S2| ≤
∑

pt≥1,wpt (ut−1,ut)<wn(i,j),1≤t≤m

1∏m
t=1 p

2
t vt(pt)

|Ψn(p1, · · · , pm)|,

where :

Ψn(p1, · · · , pm) =
∑

0≤sm<···<s1<tn

e2iπδ1v1(p1)s1α · · · e2iπδmvm(pm)smα

=
∑

0≤sm−1<···<s1<tn

e2iπ
Pm−1
t=1 δtvt(pt)stα

(
e2iπδmvm(pm)sm−1α − 1
e2iπδmvm(pm)α − 1

)

=
∑

εm=0,1

(−1)1+εm
∑

0≤sm−1<···<s1<tn

e2iπ(
Pm−1
t=1 δtvt(pt)st+εmδmvm(pm)sm−1)α

e2iπδmvm(pm)α − 1

=
∑

εm,··· ,ε2=0,1

(−1)m−1+
Pm
t=2 εt

e2iπ[δ1v1(p1)+
Pm
t=2 ε2···εtδtvt(pt)]tnα − 1∏m

r=1

(
e2iπ[δrvr(pr)+

Pm
t=r+1 εr+1···εtδtvt(pt)]α − 1

) ,
observing that everywhere δrvr(pr) +

∑m
t=r+1 εr+1 · · · εtδtvt(pt) 6= 0, since all vt(pt) are pairwise

distinct and, as follows easily from the hypotheses, qθ(k+1) ≥ 2qθ(k) for all k ≥ 1.

There is then an absolute constant C > 0 such that in the last fraction, the absolute value of the
denominator is bounded from below by C

∏m
r=1((vr(pr)α)). As a result, if C > 0 is now generic :

|S2| ≤ C
∑

pt≥1,wpt (ut−1,ut)<wn(i,j),1≤t≤m

1∏m
t=1 p

2
t vt(pt)

((tnα))
∑m
t=1 vt(pt)∏m

t=1((vt(pt)α))

≤ C((tnα))
∑

pt≥1,wpt (ut−1,ut)<wn(i,j),1≤t≤m

∏m
t=1 qθ(wpt (ut−1,ut))+1∏m
t=1 p

2
t qθ(wpt (ut−1,ut))

max
1≤t≤m

qθ(wpt (ut−1,ut))

≤ C
n2qθ(wn(i,j)−1)+1qθ(wn(i,j)−1)

qθ(wn(i,j))+1
≤ C

n2qθ(wn(i,j)−1)+1qθ(wn(i,j)−1)

wn(i, j)3qθ(wn(i,j))

≤ C
qθ(wn(i,j)−1)+1qθ(wn(i,j)−1)

qdθ(wn(i,j)−1)+1

→n→+∞ 0.

As a result, Φkl,m,δ,utn → 0, uniformly. When summing on m, δ and u, we get that whenever
l − k ≤ j − i and (k, l) 6= (i, j), then Φkltn → 0, uniformly. Concerning Φijtn , write :

Φijtn = f ijtn +
j−i∑
m=2

1
(2i)m

∑
δ=(δ1,··· ,δm)∈{±1}

δ1 · · · δm
∑

i=u0<···<um=j

Φij,m,δ,utn .

Indices (ut−1, ut) appearing in the right-hand sum are all distinct from (i, j). As before, all Φij,m,δ,utn
tend to 0 uniformly, as n→ +∞. Therefore the right-hand sum tends to 0 uniformly, as n→ +∞.
On the contrary, proceeding as in proposition 2.4 i) :
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f ijtn(x) = κn sin(2πqθ(wn(i,j))x) + o(1), (3.4)

where κn ∈ {±1} and each o(1) is uniform. Thus, Φijtn(x) = κn sin(2πqθ(wn(i,j))x) + o(1), with
uniform o(1).

Step 3. We finally show that E(Φ) = Nd(R). We use lemma 3.3 and prove that for all 1 ≤ l ≤ d− 1,
we have Dl(Φ) = Rd−l. Fix 1 ≤ l ≤ d− 1, 1 ≤ i ≤ d− l. Since Dl(Φ) is a subgroup of (Rd−l,+), it
is enough to show that {0}i−1 × [−1, 1]× {0}d−l−i ⊂ Dl(Φ).

Set j = i+ l and tn = n2qθ(wn(i,j)). Up to considering a subsequence of the (tn), we suppose that
κn → κ ∈ {±1}, where κn appears in (3.4). Let c ∈ [0, 1] and x = (0, · · · , 0, κ sin(2πc), 0, · · · , 0) ∈
Rd−l, where the singular component is at place i.

The following argument is inspired from Fayad [6]. We suppose by contradiction that x is not a
l-upper essential diagonal. Let then ε > 0 and B be a Borel set with µ(B) > 0 such that :

µ(B ∩ T−nB ∩ {(D1(Φn), · · · , Dl(Φn)) ∈ Vε(0Rd−1 , · · · , 0Rd−l+1 , x)}) = 0, ∀n ∈ Z. (3.5)

Set By,η = B ∩ [y − η/2, y + η/2], for η > 0. Since (qθ(wn(i,j))y)n≥1 mod (1) is dense in T1 for
almost-every y (see for example Kuipers and Niederreiter [12]) and µ(B) > 0, we can take a
Lebesgue density point y0 ∈ B and then a sequence (kn) = (kn(y0)) verifying the conditions :

µ(By0,η)
η

→η→0 1 and qθ(wkn (i,j))y0 →n→+∞ c mod (1).

For all n ≥ 1 and η > 0, we get from (3.5) :

µ(By0,η ∩ T−tknBy0,η ∩ {(D1(Φtkn ), · · · , Dl(Φtkn )) ∈ Vε(0Rd−1 , · · · , 0Rd−l+1 , x)}) = 0.

Choose now ηn = n−1/2q−1
θ(wkn (i,j)). Using the final result of Step 2 :

(D1(Φtkn ), · · · , Dl(Φtkn ))→ (0Rd−1 , · · · , 0Rd−l+1 , x),

uniformly on By0,ηn . Consequently, for n large enough :

By0,ηn ⊂ {(D1(Φtkn ), · · · , Dl(Φtkn )) ∈ Vε(0Rd−1 , · · · , 0Rd−l+1 , x)}.

Thus µ(By0,ηn ∩ T−tknBy0,ηn) = 0, for large n. Observe that ((k2
nqθ(wkn (i,j))α)) ≤ 1/(nqθ(wkn (i,j))).

Using the identity µ(A ∩B) = µ(A) + µ(B)− µ(A ∪B) and the T -invariance of µ, we obtain a
contradiction in the following way :

µ(By0,ηn ∩ T−tknBy0,ηn) ≥ 2ηn(1 + o(1))− (ηn + ((k2
nqθ(wkn (i,j))α)))

≥ q−1
θ(wkn (i,j))

(
1

n1/2
(1 + o(1))− 1

n

)
> 0,

for n large enough. This completes the proof of the theorem.
�

We complete the study in the case d = 3.

Proposition 3.4.
Let d = 3 and Φ be as in theorem 3.1. Then TΦ : T1 ×N3(R)→ T1 ×N3(R) is also non-squashable.
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Proof of the proposition :
By proposition 2.3, if Q : T1 ×N3(R)→ T1 ×N3(R) is a non-singular transformation satisfying
Q ◦ Tϕ = Tϕ ◦Q, then there exist β ∈ R, a continuous surjective group endomorphism w : N3(R)→
N3(R) and a measurable f : T1 → N3(R) so that :

Q(x, y) = (x+ β, f(x)w(y)) and Φ(x+ β) = Tf(x)w(Φ(x))f−1(x).

If w is a continuous endomorphism of N3(R), it is an exercise (see for instance Gelbrich [8], section
3) that there exist constants λ1, γ1, λ2, γ2, r, s such that :

w(a, b, c) = (λ1a+ γ1b, λ2a+ γ2b, λ1λ2a
2/2 + γ1γ2b

2/2 + λ2γ1ab+ ra+ sb+ (λ1γ2 − λ2γ1)c).

The condition that w is surjective is thus equivalent to λ1γ2 − λ2γ1 6= 0.

As we have seen in the proof of theorem 3.1, if tn = n2qθ(wn(1,3)), then there exist a sequence
(κn) ∈ {±1} and uniform o(1) such that :

Φtn(x) = (0, 0, κn sin(2πqθ(wn(1,3))x)) + o(1).

Since T tnx = x+ tnα mod (1), tnα→ 0 mod (1) and f is measurable, there is a deterministic
subsequence (un) so that f(T tunx)→ f(x) for almost-every x. Suppose also that (un) is chosen so
that qθ(wun (1,3))β converges to some ζ modulo one, as well as (κun) to some κ ∈ {±1}.

Now (qθ(wun (1,3))x) mod (1) is dense in [0, 1) for almost every x. If c ∈ [0, 1) is fixed, then for
almost-every x there is a random sequence along which (qθ(wun (1,3))x) mod (1) converges to c. We
deduce from the relation Φtn(x+ β) = f(T tnx)w(Φtn(x))f−1(x) that for almost-every x :

(0, 0, κ sin(2π(c+ ζ))) = f(x)w(0, 0, κ sin(2πc))f−1(x) = w(0, 0, κ sin(2πc)),

since w(0, 0, κ sin(2πc)) belongs to the center of N3(R), due to the form of w. The latter also implies
that for all c, κ sin(2π(c+ ζ)) = (λ1γ2 − λ2γ1)κ sin(2πc). Necessarily, λ1γ2 − λ2γ1 = ±1. From this
property we infer that the absolute value of the Jacobian of w is equal to 1 and then that Q preserves
the product of µ with Lebesgue measure on N3(R). As a result, TΦ is not squashable.

�

4. Smooth ergodic cocycles in a solvable group

The base is still X = T1, with an irrational rotation T of angle α, Lebesgue measure µ and
the notations of section 2.3. We now consider a solvable group that is not nilpotent. There are
two-dimensional examples, but a classical one is Sol3(R) :

Sol3(R) =


 ex 0 y

0 e−x z
0 0 1

 | (x, y, z) ∈ R3

 .

This group is the component of the identity in the planar Poincaré group and also one of “Thurston’s
height geometries”, cf Thurston [18] or Troyanov [19]. Let us make preliminary computations.

First, Sol3(R) is isomorphic to R3 with the composition law :

(x, y, z).(x′, y′, z′) = (x+ x′, exy′ + y, e−xz′ + z). (4.1)

When A ∈ Sol3(R), we write A = (A1, A2, A3) for simplicity. Commutators are given by :

(a, b, c)(x, y, z)(a, b, c)−1(x, y, z)−1 = (0, b(1− ex) + y(ea − 1), c(1− e−x) + z(e−a − 1)).
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The commutator subgroup [Sol3(R), Sol3(R)] is therefore {(0, u, v) | (u, v) ∈ R2}, which is abelian.
Hence Sol3(R) is solvable. Clearly [[Sol3(R), Sol3(R)], Sol3(R)] = [Sol3(R), Sol3(R)], so Sol3(R) is
not nilpotent.

Mention also that in Sol3(R) Haar measure is the left and right-invariant Lebesgue measure.

We next build a smooth ergodic cocycle (Φn)n∈Z with values in Sol3(R). In comparison with
Nd(R), where the components of Φn were polynomial expressions, here some exponentials appear.
Keeping the same strategy, we introduce for a measurable Φ : T1 → Sol3(R) a definition parallel
to definition 3.2.

Definition 4.1.
i) A real y is 2-essential for Φ if ∀ε > 0, ∀ Borel set B with µ(B) > 0, there is n ∈ Z such that
µ(B ∩ T−nB ∩ {Φn ∈ Vε(0, y, 0)}) > 0. We write F2(Φ) for the set of 2-essential reals.

ii) A real z is 3-essential for Φ if ∀ε > 0, ∀ Borel set B with µ(B) > 0, there is n ∈ Z such that
µ(B ∩ T−nB ∩ {Φn ∈ Vε(0, 0, z)}) > 0. We write F3(Φ) for the set of 3-essential reals.

In the same vein as lemma 3.3, we have :

Lemma 4.2.
Each Fl(Φ) is a closed subgroup of (R,+). We have E(Φ) = Sol3(R) if and only if TΦ1 : T1 × R→
T1 × R is ergodic and F2(Φ) = F3(Φ) = R.

Proof of the lemma :
i) To show that F2(Φ) (or F3(Φ)) is a closed subgroup of (R,+), differences with respect to the proof
of lemma 3.3 have the following form. Let y and y′ be in F2(Φ) and ε > 0. Choose 0 < ε′ < ε so that
|e±ε′ − 1|(|y|+ ε) < ε. If for integers n and m, one has Φm ∈ Vε(0, y, 0) and TmΦn ∈ Vε′(0, y′, 0),
then Φm+n ∈ V3ε(0, y + y′, 0). The rest of the proof is similar.

ii) Analogous modifications of the proof of ergodicity conclude the demonstration.
�

We now suppose that α ∈ [0, 1), so α/2 is well defined.

Theorem 4.3.
Let α have non bpq. Choose a strictly increasing sequence (θ(n))n≥1 so that aθ(n+1)+1 ≥ 3nqθ(n)

and qθ(n+1) ≥ 3nq2
θ(n) . Define :

Φ =

 ef 0 g
0 e−f h
0 0 1

 ,

where : 

f(x) =
∑
l≥1 sin(πqθ(3l)α) sin[2πqθ(3l)(x+ α/2)],

g(x) = ef(x)
∑
r≥1

sin(2πqθ(3r+1)x)

2rqθ(3r+1)
e−

1
2

Pr
l=1 cos(2πqθ(3l)x),

h(x) = e−f(x)
∑
r≥1

sin(2πqθ(3r+2)x)

2rqθ(3r+2)
e

1
2

Pr
l=1 cos(2πqθ(3l)x).

Then Φ is C1 and TΦ : T1 × Sol3(R)→ T1 × Sol3(R) is ergodic.
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Remark — Conditions on the sequence (θ(n))n≥1 will be seen to be rather rough (as in theorem
3.1). They have the advantage to be easy to present. The same remarks as for the cocycle in
theorem 3.1 are valid :

(1) This is an example of Φ of class C1 such that (Φn(x))n≥0 is dense in Sol3(R) for a full-measure
Gδ-set of x.

(2) There is similar statement for α with bpq and Φ with a regularity arbitrary close to C1.
(3) Since Φ1

n = fn, for all n ∈ Z, a transformation TΦ cannot be ergodic when α has bpq and Φ
is C1 or if α has Diophantine type 1 and Φ is C1+ε.

We haven’t been able to deal with the question of squashability on this example.

Proof of theorem 4.3 :
Step 1. In the proof, constants are generic. Let us first check that Φ is C1. For f , we have∑
l≥1 qθ(3l)((qθ(3l)α)) ≤ C

∑
l≥1 3−3l < +∞. Concerning g and h, this follows from :

∑
r≥1

2−rer/2

1 +
πr

qθ(3r+1)

∑
1≤l≤r

qθ(3l)

 < +∞.

We turn to the ergodicity of TΦ and wish to apply lemma 4.2. Since Φn = Tn−1Φ · · ·Φ, for n ≥ 1,
when identifying Sol3(R) to R3 with the composition law in (4.1), we get :

Φn =

fn, ∑
0≤k<n

(T kg)e
P
k<l<n T

lf ,
∑

0≤k<n

(T kh)e−
P
k<l<n T

lf


=

fn, efn ∑
0≤k<n

T k(ge−f )e−fk , e−fn
∑

0≤k<n

T k(hef )efk

 .

Consider first Φ1
n and set tn = [(aθ(3n)+1 + 1)/2]qθ(3n), for n ≥ 1. We have :

Φ1
tn(x) =

(∑
l<n

+
∑
l=n

+
∑
l>n

)
sin(πqθ(3l)tnα) sin(πqθ(3l)(2x+ tnα)) = An +Bn + Cn.

The extremal terms are estimated by :
|An| ≤ Cqθ(3n−3)((tnα)) ≤ C qθ(3n−3)

qθ(3n)
→n→+∞ 0,

|Cn| ≤ Ctn((qθ(3n+3)α)) ≤ C qθ(3n+1)

qθ(3n+3)
→n→+∞ 0.

As a result Φ1
tn(x) = sin(πqθ(3n)tnα) sin(πqθ(3n)(2x+ tnα)) + o(1), with a uniform o(1). Observe

that sin(πqθ(3n)tnα) = εn sin(πqθ(3n)[(aθ(3n)+1 + 1)/2]((qθ(3n)α))), where εn ∈ {±1}, and :

1
4
≤

aθ(3n)+1qθ(3n)

2(qθ(3n) + qθ(3n)+1)
≤ qθ(3n)[(aθ(3n)+1 + 1)/2]((qθ(3n)α)) ≤

(aθ(3n)+1 + 1)qθ(3n)

2qθ(3n)+1
≤ 3

4
,

for large n, since aθ(3n)+1 → +∞. Consequently, there is a subsequence (n′), κ 6= 0 and ζ so that
along this subsequence :

Φ1
tn′

(x) = (κ+ o(1)) sin(2πqθ(3n′)(x+ ζ)) + o(1), (4.2)

where each o(1) is uniform. Since (tn)n≥1 is a rigid sequence, by lemma 2.2 we deduce that TΦ1 :
T1 × R→ T1 × R is ergodic.
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Step 2. We now focus on 2-essential values for Φ. Let un = 2nqθ(3n+1), for n ≥ 1. A similar
computation gives fun(x)→ 0, uniformly as n→ +∞. Consider next :

Φ2
un(x) = (1 + o(1))

∑
0≤k<un

T k(ge−f )e−
P
l≥1 sin(πqθ(3l)kα) sin(πqθ(3l)(2x+kα)).

Set Sn(k) =
∑
l>n sin(πqθ(3l)kα) sin(πqθ(3l)(2x+ kα)). Clearly |Sn(k)| ≤ C2nqθ(3n+1)/qθ(3n+3),

when 0 ≤ k < un. As a consequence :

|
∑

0≤k<un

T k(ge−f )e−
P

1≤l≤n sin(πqθ(3l)kα) sin(πqθ(3l)(2x+kα))(e−Sn(k) − 1)|

≤ C
(2nqθ(3n+1))2en

qθ(3n+3)
≤ C

(2nqθ(3n+1))2en

33n+3q2
θ(3n+2)

→n→+∞ 0.

Since sin(πqθ(3l)kα) sin(πqθ(3l)(2x+ kα)) = (cos(2πqθ(3l)x)− cos(2πqθ(3l)(x+ kα)))/2, we thus ob-
tain Φ2

un = (1 + o(1))Ψn + o(1), where :

Ψn(x) = e−
1
2

Pn
l=1 cos(2πqθ(3l)x)

un−1∑
k=0

(ge−f )(x+ kα)e
1
2

Pn
l=1 cos(2πqθ(3l)(x+kα))

= e−
1
2

Pn
l=1 cos(2πqθ(3l)x)

∑
r≥1

2nqθ(3n+1)−1∑
k=0

T k
(

sin(2πqθ(3r+1)x)
2rqθ(3r+1)

e
1
2 (
Pn
l=1−

Pr
l=1) cos(2πqθ(3l)x)

)
.

Decompose Ψn = Un + Vn +Wn, according to indices r respectively satisfying r > n, r < n and
r = n. Clearly :

|Un| ≤ Cen/2
∑
r>n

2nqθ(3n+1)

2rqθ(3r+1)
er/2 ≤ Cen/2

qθ(3n+1)e
n/2

33nq2
θ(3n+2)

→n→+∞ 0.

Next :

|Vn| ≤ Cen/2
∑

1≤r<n

1
2rqθ(3r+1)

|X(n, r)| , (4.3)

where :

X(n, r) = Im
2nqθ(3n+1)−1∑

k=0

e2iπqθ(3r+1)(x+kα)e
1
2

Pn
l=r+1 cos(2πqθ(3l)(x+kα))

= Im
2nqθ(3n+1)−1∑

k=0

e2iπqθ(3r+1)(x+kα)e
1
4

Pn
l=r+1

“
e
2iπqθ(3l)(x+kα)

+e
−2iπqθ(3l)(x+kα)

”

= Im
∑

sl,tl≥0, r<l≤n

1∏
r<l≤n 4sl+tlsl!tl!

2nqθ(3n+1)−1∑
k=0

e2iπ(qθ(3r+1)+
P
r<l≤n(sl−tl)qθ(3l))(x+kα).

Set Rr,n((sl, tl)) = qθ(3r+1) +
∑n
l=r+1(sl − tl)qθ(3l). Remark that in the last sum of the right-hand

side, a term such that Rr,n((sl, tl)) = 0 does not intervene, since we take the imaginary part.

Decompose next X(n, r) = X1(n, r) +X2(n, r), whether the condition Rr,n((sl, tl)) < qθ(3n+1) is
satisfied or not.

In the first case, we use that ((Rr,n((sl, tl))α)) > ((qθ(3n+1)−1α)) > 1/(2qθ(3n+1)) and
Rr,n((sl, tl)) ≤ Cqθ(3n)

∏
r<l≤n(sl ∨ 1)(tl ∨ 1). Since

∑
s≥0(s ∨ 1)/(4ss!) = 1 + e1/4/4, we obtain :
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|X1(n, r)| ≤ C

 ∑
Rr,n((sl,tl))<qθ(3n+1)

∏
r<l≤n(sl ∨ 1)(tl ∨ 1)∏
r<l≤n 4sl+tlsl!tl!

 2n((qθ(3n+1)α))qθ(3n)qθ(3n+1).

≤ C2n
(

1 +
e1/4

4

)n−r
qθ(3n)

aθ(3n+1)+1
.

In the second case and when n is large enough, there is some sl or tl larger that qθ(3n+1)/(nqθ(3n)).
Consequently :

|X2(n, r)| ≤ C2nqθ(3n+1)e
(n−r)/2n

∑
s>qθ(3n+1)/(nqθ(3n))

1
4ss!

.

Finally, from (4.3) we obtain :

|Vn| ≤ C(2
√
e)n

(1 +
e1/4

4

)n
qθ(3n)

aθ(3n+1)+1
+ nqθ(3n+1)

∑
s>qθ(3n+1)/(nqθ(3n))

1
4ss!


≤ C

(
6n(7/4)n

27n
+ 6n

qθ(3n+1)n
3q2
θ(3n)

q2
θ(3n+1)

)
→n→+∞ 0.

The conclusion of these calculations is that :

Φ2
un = (1 + o(1))e−

1
2

Pn
l=1 cos(2πqθ(3l)x)

2nqθ(3n+1)−1∑
k=0

sin(2πqθ(3n+1)(x+ kα))
2nqθ(3n+1)

+ o(1),

= δn(1 + o(1))e−
1
2

Pn
l=1 cos(2πqθ(3l)x) sin(2πqθ(3n+1)x) + o(1), (4.4)

for some fixed sequence δn ∈ {±1} and uniform o(1). Similar computations give Φ3
un = o(1),

uniformly.

Step 3. We prove that F2(Φ) = R. Recall from lemma 4.2 that F2(Φ) is a closed subgroup of
(R,+). Let c ∈ [0, 1] and suppose that sin(2πc) 6∈ F2(Φ). Let then ε > 0 and B be a Borel set with
µ(B) > 0 such that :

µ(B ∩ T−nB ∩ {Φn ∈ Vε(0, sin(2πc), 0)}) = 0, ∀n ∈ Z. (4.5)

Define By,η = B ∩ [y − η/2, y + η/2], for η > 0. By lemma 4.4 stated and proved below, the
sequence (

∑n
l=1 cos(2πqθ(3l)x), δnqθ(3n+1)x)n≥1 is dense in R× T1 for almost-every x. Since µ(B) >

0, take a Lebesgue density point y0 ∈ B and then a sequence (kn) = (kn(y0)) verifying the
conditions :

µ (By0,η)
η

→η→0 1 and

 ∑
1≤l≤kn

cos(2πqθ(3l)x), δnqθ(3kn+1)x

→n→+∞ (0, c) ∈ R× T1.

For all n ≥ 1 and η > 0, we get from (4.5) :

µ(By0,η ∩ T−uknBy0,η ∩ {Φukn ∈ Vε(0, sin(2πc), 0)}) = 0.

Set ηn = n−1/2q−1
θ(3ukn+1). Via (4.4), Φukn → (0, sin(2πc), 0), uniformly on By0,ηn . Consequently :

By0,ηn ⊂ {Φukn ∈ Vε(0, sin(2πc), 0)},



ERGODIC NON-ABELIAN SMOOTH EXTENSIONS Page 19 of 20

for n large enough. Thus µ(By0,ηn ∩ T−uknBy0,ηn) = 0, for large n. Clearly, we have the inequality
((uknα)) < 1/(nqθ(3ukn+1)). Using µ(A ∩B) = µ(A) + µ(B)− µ(A ∪B), a contradiction is then :

µ(By0,ηn ∩ T−uknBy0,ηn) ≥ 2ηn(1 + o(1))− (ηn + ((uknα)))

≥ q−1
θ(3ukn+1)

(
1

n1/2
(1 + o(1))− 1

n

)
> 0,

for n large enough.

This proves that sin(2πc) ∈ F2(Φ). Since this is true for all c, we get F2(Φ) = R. The treatment
of F3(Φ) is symmetric, using this time the sequence (2nqθ(3n+2)n≥1, giving also F3(Φ) = R. By
Step 1 and lemma 4.2, we conclude that TΦ is ergodic. This ends the proof of the theorem.

�

When proving theorem 4.3, we have used the following result, which does not exactly enter
classical schemes. We give an elementary proof.

Lemma 4.4.
Let (δn)n≥1 be a sequence such that δn ∈ {±1} for all n. Then (

∑n
l=1 cos(2πqθ(3l)x), δnqθ(3n+1)x)n≥1

is dense in R× T1 for almost-every x.

Proof of the lemma :
We only use that

∑
l≥1 qθ(l)/qθ(l+1) < +∞. Set Xl(x) = cos(2πqθ(3l)x) and Sn = X1 + · · ·+Xn.

The (Xn) are asymptotically iid, but do not form a stationary process.

A first property is that Sn/
√
n converges in law to N0,1/2, as n→ +∞. Introduce the

characteristic function ϕ(t) = E(eitX1), t ∈ R, where E is for the expectation under µ. Fix t ∈ R.

We consider the partition Fn = σ{[k/qθ(3n), (k + 1)/qθ(3n)), 0 ≤ k < qθ(3n)}. Since |S′n| =
O(qθ(3n)), uniformly in n, we have for some constant C independent of t and n :∣∣eitSn − E[eitSn | Fn+1]

∣∣ ≤ C|t| qθ(3n)

qθ(3(n+1))
.

Using repeatedly this inequality, we obtain, with a uniform O(.) :

E[e
it√
n
Sn ] = E[E[e

it√
n
Sn−1 | Fn]e

it√
n
Xn ] +O

(
qθ(3(n−1))√
nqθ(3n)

)
= E[E[e

it√
n
Sn−1 | Fn]E[e

it√
n
Xn | Fn]] +O

(
qθ(3(n−1))√
nqθ(3n)

)
= ϕ(t/

√
n)E(e

it√
n
Sn−1) +O

(
qθ(3(n−1))√
nqθ(3n)

)
.

= ϕ(t/
√
n)n +O

 1√
n

∑
0≤l<n

qθ(3l)

qθ(3(l+1))

 −→n→+∞ e−t
2/4,

when setting qθ(0) = 1. This proves the first assertion.

We next show that lim inf Sn(x) = −∞ and lim supSn(x) = +∞ for almost every x. Define
M(x) = supn Sn(x). Since |Xl(x)−Xl(Tx)| ≤ C((qθ(3l)α)) and this quantity is summable in l, the
set {M(x) < +∞} is T -invariant and thus has measure zero or one. In the second case, we get
µ(M(x) ≥ n)→ 0, as n→ +∞, but this contradicts the CLT, because :

µ(M(x) ≥ n) ≥ µ(Sn2 ≥ n)→n→+∞ N0,1/2[1,+∞) > 0.

As a result, lim supSn(x) = +∞ almost surely. Idem, lim inf Sn(x) = −∞ almost surely.
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Suppose by contradiction that the result is not true. The separability of R× T1 implies that
there exist (a, b) ∈ R× T1, ε > 0 and a Borel set A ⊂ T1 with µ(A) > 0 such that for x ∈ A,
(Sn(x), δnqθ(3n+1)x) 6∈ Vε(a, b), for all n ≥ 0.

Using the previous remarks, denote for almost-every x by (τn(x))n≥1 the random infinite sequence
so that |Sτn(x)(x)− a| < 1/2. Choose a density point x0 in A with such an associated sequence.

Since |S′k(x)| ≤ 2π
∑k
l=1 qθ(3l) = o(qθ(3(k+1))), as k → +∞, in the ball B(x0, 1/qθ(3(τn(x0)+1))) the

set of x such that Sτn(x0)+1(x) ∈ Vε/2(a) contains an interval of length Cε/qθ(3(τn(x0)+1)), for some
constant C > 0. On this interval, the proportion of x such that, modulo one, δnqθ(3(τn(x0)+1)+1)x ∈
Vε/2(c) is larger than C ′ε, for another constant C ′ > 0.

Consequently, a proportion at least CC ′ε2 of x in B(x0, 1/qθ(3(τn(x0)+1))) have the property that
(Sn(x), δnqθ(3n+1)x) ∈ Vε(a, b) for some n ≥ 0. This contradicts the fact that x0 is a density point
in A and concludes the proof of the lemma.

�
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