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Abstract. Let M(T1, T ) be the convex set of Borel probability measures on the

Circle T1 invariant under the action of the transformation T : x 7−→ 2x mod (1).

Its projection on the complex plane by the application µ 7−→
∫

e2iπx dµ(x) is

a compact convex of the unit disc, symmetric with respect to the x-axis, called

the “Fish” by T. Bousch [3]. Seeing the boundary of the upper half-Fish as a

function, we focus on its local regularity. We show that its multifractal spectrum

is concentrated at ∞, but that every pointwise regularity α ∈ [1,∞] is realized in

a non-denumerable and dense set of points. The results rely on fine properties of

Sturm measures.

1. Introduction

Multifractal analysis describes the fine local structure of functions or measures.

On typical examples, the pointwise regularity exponent varies erratically from one

point to another, and the level sets corresponding to a given regularity are usually

fractal sets. The purpose of Multifractal analysis is to determine the Hausdorff

dimension of these sets.

The interest for multifractal analysis came from fluid mechanics and also

dynamical systems, see among many references [12, 14, 21]. Since then,

multifractal analysis has developped in many contexts, for instance in Probability

Theory [15, 1] (see [11, 2, 16] for other examples). In this article, we consider

the example of a graph naturally appearing in an optimization problem in Ergodic

Theory.

The notion of regularity we discuss in the sequel is the following. Given a real

function f ∈ L∞
loc on an open interval I and x0 ∈ I , recall that f belongs to Cα(x0),
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Figure 1. The Fish.

for some α ≥ 0, if there exist a polynomial P of degree at most bαc and a constant

C > 0 such that locally :

|f(x) − P (x − x0)| ≤ C|x − x0|α. (1)

The local regularity of f at x0 is measured by the pointwise Hölder exponent :

hf (x0) = sup{α ≥ 0 | f ∈ Cα(x0)}.

The relevant information is then provided by the spectrum of singularities df of f ,

which is the application :

df : s ∈ [0,∞] 7−→ DimH{x0 ∈ I | hf (x0) = s},

where DimH stands for the Hausdorff dimension. We adopt the convention that

DimH∅ = −∞.

We now detail the context of our example. Let T1 be the torus identified with

R/Z and equipped with the transformation T (x) = 2x mod (1). Introduce the

convex set M(T1, T ) of Borel probability measures on T1 invariant by T , endowed

with the weak∗ topology. The Fish is the compact convex subset of C, image of

the following linear map :

M(T1, T ) −→ C

µ 7−→
∫

e2iπu dµ(u).

The boundary of the Fish intersects the horizontal axis at the points (−1/2, 0)

and (1, 0) and is symmetric with respect to this axis, since T commutes with the

symmetry x 7−→ −x on T1. We shall then restrict our study to the upper half-Fish,

whose boundary is denoted by F . The function F is a concave function :

[−1/2, 1] −→ R+

x 7−→ F(x).
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The singularity spectrum of the Fish’s boundary 3

The goal of this paper is to determine the pointwise Hölder exponent and the

singularity spectrum of the function F .

As a preliminary remark, let us mention that, with respect to Fourier coefficients,

there is only one Fish. Indeed, let k ≥ 2 and consider the kth Fourier coefficient of

the elements of M(T1, T ), that is the linear map :

M(T1, T ) −→ C

µ 7−→
∫

e2iπku dµ(u).

Then the image of this map is also the Fish. This is a consequence of the fact that∫
e2iπku dµ(u) =

∫
e2iπu d(Tkµ)(u), where Tkx = kx mod (1) on T1 and Tkµ is T -

invariant. Reciprocally, fixing ν ∈ M(T1, T ), there always exists some µ invariant

under T such that Tkµ = ν, for instance we can consider

µ =
1

k

∑

0≤j≤k−1

ν(./k + j/k).

The Fish was introduced by Bousch [3] and Jenkinson [17], who considered the

question of finding maximizing measures for a degree one trigonometric polynomial

fω : x 7−→ cos 2π(x − ω), ω ∈ R/Z. More generally, fixing some continuous

f : T1 → R, the initial problematics is given by the variational problem :

β(f) = sup

{∫
f dµ | µ ∈ M(T1, T )

}
,

where one aims at describing the measures realizing the maximum. Such measures,

which always exist as M(T1, T ) is compact, are called maximizing measures for

f . The link with the Fish is simply that if zω and zx are the vectors of R2

with respective affixes e2iπω and e2iπx, then 〈zω, zx〉 = cos 2π(x − ω). Therefore a

maximizing measure µ of the function x 7−→ cos 2π(x−ω) is such that
∫

e2iπu dµ(u)

realizes the maximal orthogonal projection of the Fish on the line going through

the origin and with angle 2πω. We often adopt this point of view in the sequel.

The question of finding maximizing measures can be viewed as a statistical

approach (via the Birkhoff Ergodic Theorem) to the difficult problem of studying

the best pointwise growth of the ergodic sums (f(x) + f(Tx) + · · ·+ f(T n−1x))n≥0

of a function f . General presentations of the topic can be found in Conze-Guivarc’h

[10], Bousch-Mairesse [4] or Jenkinson [17], [18]. See also [6].

Back to the regularity of F , concavity implies that the pointwise Hölder exponent

is always larger or equal to 1 and that F is differentiable outside a at most

denumerable subset. Here is our main result.

Theorem 1.1. The singularity spectrum of F is

dF (s) =





−∞ if s ∈ [0, 1),

0 if s ≥ 1,

1 if s = +∞.

More precisely :
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4 J. Brémont, S. Seuret

1. For all x outside a zero Hausdorff-dimensional subset of [−1/2, 1], there exist

constants C > 0, 0 < ρ < 1 and 0 < K ≤ 1/2 such that :

∀h, |F(x + h) −F(x) − hF ′(x)| ≤ Cρ|h|
−K

. (2)

In particular, hF(x) = ∞.

2. For every 1 ≤ s < +∞, the level set {x : hF(x) = s} is an uncountable and

dense subset of [−1/2, 1] of Hausdorff dimension 0.

Hence, in general, F is locally exponentially close to its tangent. Hence, although

“the Fish has no edges” [3] (more precisely, it is strictly convex), its boundary is

very flat. To some extent, this also confirms a remark made by Bousch that the

Fish is well approximable by polygons with few edges. We also mention that our

proof implies that the constants C, ρ, K depend on x and cannot be fixed locally in

[−1/2, 1].

In order to compute the pointwise Hölder exponents and the singularity spectrum

of F , we use a natural parametrization of the Fish’s boundary, given by Bousch [3].

Let (νt)t∈R\Z be the family of Sturm measures on T1, where νt is the Sturm

measure with rotation number t. Precise definitions are given in the next section.

Theorem A and Corollary 2 of [3] imply that any map x 7−→ cos 2π(x − ω) admits

a unique maximizing measure which is a Sturm measure, and then that a bijective

and bicontinuous parametrization of the upper half-Fish is given by :

[0, 1/2] −→ C = R2

t 7−→
∫

e2iπu dνt(u) =: I(t) = (x(t), y(t)).

In the sequel the notations t 7−→ I(t) = (x(t), y(t)) are reserved to the above

parametrization. Remark that when t increases from 0 to 1/2, the graph of

F is described from the right side to the left side. Moreover, ν0 = δ0 and

ν1/2 = 1/2(δ1/3 + δ2/3), explaining the extremal values.

It is shown by Bousch [3] that F admits an angular point at x(t) if and only if

t ∈ [0, 1/2] ∩ Q. In particular the points (−1/2, 0) and (1, 0) are angular points of

the Fish. The symmetry of the Fish with respect to the x-axis then implies :

−∞ < F ′
−(1) < F ′

+(−1/2) < +∞. (3)

We shall use these informations in the sequel.

The set of angular points of F is denumerable and dense in [−1/2, 1]. Moreover,

at such a point x0 the Hölder exponent of F is obviously equal to 1. We next deal

with the non-angular points of F , i.e. the real numbers x(t) with t ∈ [0, 1/2]\Q. As

a preliminary step, we precise the regularity of the maps t 7−→ I(t) and t 7−→ x(t).

Theorem 1.2. Let c0 = 2
∑

n≥1 n sin(π2−n−1) > c1 =
∑

n≥1 n(1 − cos(π2−n)).

1. The map t 7−→ I(t) is c0-Lipschitz, differentiable at t ∈ [0, 1/2]\Q and left and

right-differentiable but not differentiable at t ∈ (0, 1/2) ∩ Q. Also I 7−→ I ′(t)

is continuous when restricted to [0, 1/2]\Q.
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The singularity spectrum of the Fish’s boundary 5

2. The map t 7−→ x(t) is a decreasing bi-Lipschitz homeomorphism from [0, 1/2]

onto [−1/2, 1], verifying :

for every t ∈ [0, 1/2]\Q, x′(t) ∈ 1√
1 + (F ′(x(t)))2

[−c0,−c1].

If t ∈ [0, 1/2]\Q, denote by (pn/qn)n≥0 its sequence of convergents. The

regularity of F at x(t) is then read on the Diophantine properties of t.

Theorem 1.3. Let t ∈ [0, 1/2]\Q, with convergents (pn/qn)n≥0. Introduce :

M(t) = lim inf
n→+∞

qn

log2 qn+1
.

1. We have the following relation :

1+M(t) = sup{α ≥ 0 | ∃C > 0, |F(x(t)+h)−F(x(t))−hF ′(x(t))| ≤ C hα}.

This yields hF (x(t)) ≥ 1 + M(t).

2. Equality between hF (x(t)) and 1 + M(t) holds in the following situations :

(a) M(t) = +∞.

(b) M(t) ∈ R+\{2m + 1 | m ≥ 0}.
(c) M(t) ∈ {2m + 1 | m ≥ 0} and supn

{
q

M(t)+1
n 2−qnq

M(t)
n+1

}
= ∞.

Fix M0 > 0 (resp. M0 = 0). If t ∈ [0, 1/2]\Q is highly Liouville in the sense that

qn+1 ∼ (21/M0)qn (resp. qn+1 ∼ 2q2
n), (4)

then hF(x(t)) = 1 + M0. Since it is known that the set of Liouville numbers

satisfying (4) for a given M0 > 0 (resp. M0 = 0) is an uncountable dense subset of

[−1/2, 1], item (2) of Theorem 1.1 is deduced from this remark.

2. On Sturm measures

We sum up the informations on the family of Sturm measures that are used in

the sequel. Details can be found in Morse-Hedlund [20], Bullet-Sentenac [9] and

Bousch [3]. The classical notion of rotation number for homeomorphisms of the

Circle is introduced in Katok-Hasselblatt [19]. Proofs in the below discontinuous

context are given in [7] and [5].

Definition 2.1. For 0 ≤ θ < 2, the closed semi-circle [θ/2, θ/2 + 1/2] ⊂ T1

supports one and only one Borel T -invariant probability measure. Such a measure

is ergodic and is called a Sturm measure.

Distinct semi-circles may support the same Sturm measure, so a parametrization

of these measures by the family of semi-circles is not intrinsic. In order to get a

proper parametrization, we need the notion of rotation number of a Sturm measure.
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First, a natural way of constructing the Sturm measure with support in

[θ/2, θ/2 + 1/2] is to introduce the transformations ηθ,+ and ηθ,− of T1 verifying

T ◦ ηθ,± = Id and defined by :

ηθ,±(x) =
1

2
(x + εθ(x)), ∀x 6= θ mod (1),

where εθ(x) ∈ {0, 1} is chosen so that ηθ,±(x) ∈ (θ/2, θ/2 + 1/2). Complete the

definition by setting ηθ,+(θ) = θ/2 and ηθ,−(θ) = θ/2 + 1/2. The graphs of ηθ,±

are plotted in Figure 2.

Notice that ηθ,+ is right-continuous, whereas ηθ,− is left-continuous. Concretely,

ηθ,+ acts on T1 as follows : the Circle T1 is cut into an interval at θ, is linearly

contracted by a 1/2 and then rotated to the semi-circle [θ/2, θ/2+1/2). For ηθ,−, the

image interval is this time (θ/2, θ/2+ 1/2]. The transformations ηθ,± are examples

of quasi-contracting maps. More on this topic can be found in [5, 8, 13].

It is an observation (see [5], Lemma 3.2) that a Borel measure µ on T1 is T -

invariant and with support in [θ/2, θ/2 + 1/2] if and only if it is invariant under

either ηθ,+ or ηθ,−. The maps ηθ,+ and ηθ,− are order-preserving transformations

of the Circle T1. They admit a rotation number, the same one for both, written

as t ∈ R/Z. Recall that any order-preserving transformation χ : T1 → T1 has a

rotation number τχ. This quantity measures the average speed of rotation under

iterations and is defined as :

τχ = lim
n→+∞

1

n
(χ̃)n(x) mod (1),

where χ̃ : R → R is any lift of χ. This limit is independent of x.

Reciprocally, it can be shown that for any t ∈ R/Z, there is a closed interval

of parameters θ for which the applications ηθ,+ and ηθ,− have rotation number

t. Moreover, all these applications correspond to a unique Sturm measure. This

measure will be written as νt in the sequel. Let us detail the relations between the

rational character of t, the corresponding parameters θ and the support of νt in T1:

1. When t ∈ [0, 1)\Q, there is a unique θt ∈ [0, 1) such that supp(νt) ⊂
[θt/2, θt/2 + 1/2]. In this case νt is diffusive and its support is a minimal

and uniquely ergodic Cantor set.
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The singularity spectrum of the Fish’s boundary 7

2. Suppose now that t = p/q ∈ [0, 1), p ∧ q = 1.

(a) There is a closed interval [θ−p/q , θ
+
p/q ] of length 1/(2q − 1) such that :

supp(νp/q) ⊂ [θ/2, θ/2 + 1/2], for θ ∈ [θ−p/q , θ
+
p/q].

The points θ+
p/q and θ−p/q are q-periodic and lay in the same T -orbit.

In this case, νp/q is the T -invariant periodic measure supported by this

orbit. Mention that θ+
p/q/2 is periodic under T , whereas θ+

p/q/2 + 1/2

is not. Symmetrically, θ−p/q/2 + 1/2 is periodic under T , whereas θ−p/q/2

is not. In order to unify the proofs, we set θ+
t = θ−t = θt, when

t ∈ [0, 1/2]\Q.

(b) If 0 ≤ p/q < p′/q′ < 1 are adjacent rationals, in the sense that

p′q − pq′ = 1, we will use the information that :

θ−p′/q′
− θ+

p/q = (2q − 1)−1(2q′ − 1)−1, (5)

given in the proof of Lemma 2 of Bullett-Sentenac [9]. It is a consequence

of the following relations : T q(θ−p′/q′) = θ+
p′/q′ and T q′

(θ+
p/q) = θ−p/q .

3. Another property is that ∪p/q∈[0,1),p∧q=1[θ
−
p/q , θ

+
p/q ] has full measure in [0, 1).

As a corollary, the mapping θ 7−→ t is a continuous non-decreasing Devil

staircase from [0, 1) to [0, 1)

We finally develop the connexions between the maps ηθ,± and the rational

character of the rotation number t of the Sturm measure νt. For any γ ∈ T1,

introduce first the open semi-circle Uγ = (γ/2 + 1/2, γ/2) ⊂ T1 complementary to

[γ/2, γ/2+1/2]. We sum up some results contained in Lemma 3.2 and Proposition

4.8 of [5] :

Proposition 2.1.

1. The sets (ηn
θ,+(Uθ))n≥0 are all disjoint and their union has full Lebesgue

measure in T1.

2. If t ∈ [0, 1]\Q, then the sets (ηn
θt,+(Uθt))n≥0 are intervals. Moreover, each one

can be written as ηn
θt,+

(Uθt) = (ηn+1
θt,−

(θt), η
n+1
θt,+(θt)), and has length 2−n−1.

3. Let q ≥ 1. A real number θ is in the closure of ηq−1
θ,+ (Uθ) if and only if there

exists 0 ≤ p < q with p ∧ q = 1 such that the rotation number of ηθ,+ is p/q.

This property is equivalent to saying that θ ∈ ∪0≤p<q: p∧q=1[θ
−
p/q , θ

+
p/q ]. In this

case, the sets ηq−1
θ,+ (Uθ) are not always intervals. More precisely,





0 ≤ n ≤ q − 1 : (ηθ,+)n(Uθ) =
(
(ηθ,−)n+1(θ), (ηθ,+)n+1(θ)

)

n ≥ q : (ηθ,+)n(Uθ) = ((ηθ,−)n+1(θ), (ηθ,−)n+1−q(θ)]

∪((ηθ,+)n+1−q(θ), (ηθ,+)n+1(θ)).

(6)

In the extremal cases :

ηq

θ+
p/q

,+
(θ+

p/q) = θ+
p/q and ηq

θ−

p/q
,−

(θ−p/q) = θ−p/q .
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8 J. Brémont, S. Seuret

Finally, for every θ ∈ (θ−p/q , θ
+
p/q) and n ≥ 1, we have ηn

θ,−(θ) = 2−nθ + Zn,

for some fixed Zn, which depends only on p/q.

The following result will be used several times :

Proposition 2.2.

Let t ∈ [0, 1) and fix n ≥ 1. Then ηn
θ,−(θ) tends to ηn

θ+
t ,−

(θ+
t ), as θ → θ+

t with

θ > θ+
t . If t ∈ (0, 1], then ηn

θ,+(θ) tends to ηn
θ−

t ,+
(θ−t ), as θ → θ−t with θ < θ−t .

Proof. Consider the first situation. As θ+
t is the only discontinuity of ηθ+

t ,−, the

result is clear in the case when θ+
t 6= ηk

θ+
t ,−

(θ+
t ), for 1 ≤ k ≤ n−1. Suppose then that

this is not true and let k be such that θ+
t = ηk

θ+
t ,−

(θ+
t ), whereas θ+

t 6= ηl
θ+

t ,−
(θ+

t ),

for 1 ≤ l < k. By item (3) of Proposition 2.1, t would be of the form r/k. Then,

the condition θ+
t = ηk

θ+
t ,−

(θ+
t ) implies that θ+

t = θ+
r/k = θ−r/k, which is impossible.

2

3. Preliminary results

As a first remark, F is obtained by integrating twice a sum of Dirac masses.

Lemma 3.1. In (−1/2, 1), the second derivative F ′′ of F in the sense of

Distributions is a sum of Dirac masses at the angular points of F :

F ′′ =
∑

t∈(0,1/2)∩Q

[
F ′

+(x(t)) −F ′
−(x(t))

]
δx(t).

Proof. From Corollary 1 of [3], the maximizing measure of x 7−→ cos 2π(x − ω)

is periodic for λ-almost all ω ∈ [0, 1/2]. A reformulation is that for λ-almost all

ω ∈ [0, 1/2], the maximal orthogonal projection of the Fish on the straight line

going trough 0 and with angle 2πω is realized by an angular point. Thus for

−1/2 < a < b < 1 :

∑

x(p/q)∈(a,b)

atan
(
F ′

−(x(p/q))
)
− atan

(
F ′

+(x(p/q))
)

= atan
(
F ′

+(a)
)
− atan

(
F ′

−(b)
)
,

which can be rewritten as :

∑

x(p/q)∈(a,b)

∫ F ′

−
(x(p/q))

F ′

+(x(p/q))

1

1 + u2
du =

∫ F ′

+(a)

F ′

−
(b)

1

1 + u2
du

and equivalently :

∪x(p/q)∈(a,b)

[
F ′

+(x(p/q)),F ′
−(x(p/q))

]
=
[
F ′

−(b),F ′
+(a)

]
, λ − a.s.,

where the union is disjoint. Consequently :
∑

x(p/q)∈(a,b)

F ′
−(x(p/q)) −F ′

+(x(p/q)) = F ′
+(a) −F ′

−(b),

which implies the lemma. 2
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The singularity spectrum of the Fish’s boundary 9

We now show that the angular defect of F at each angular point x(p/q), with

p ∧ q = 1, has exact order q2−q.

Proposition 3.1. There is a constant C > 0 such that for any p/q ∈ (0, 1/2),

with p ∧ q = 1 :

1

C
q2−q ≤ F ′

−(x(p/q)) −F ′
+(x(p/q)) ≤ C q2−q. (7)

The proof of Proposition 3.1 is based on the next lemma. As in Bousch [3], we

introduce the exit time Eγ(x) ∈ N ∪ {∞} of the semi-circle [γ/2, γ/2 + 1/2] for a

point x ∈ T1, under iterations of T . This map belongs to L1(T1). We denote, for

every γ ∈ [0, 1) the quantity

J(γ) =

∫
e2iπuEγ(u) du. (8)

Lemma 3.2.

1. For t ∈ [0, 1/2) :

lim
p/q→t, t<p/q, p∧q=1

2q

q

(
J(θ+

p/q) − J(θ−p/q)
)

= ξ+
t , (9)

where ξ+
t =

∑
n≥1 2−n e

2iπηn

θ
+
t ,−

(θ+
t ) (

1 − e2iπ2−n
)
.

2. For t ∈ (0, 1/2] :

lim
p/q→t, t>p/q, p∧q=1

2q

q

(
J(θ+

p/q) − J(θ−p/q)
)

= ξ−t , (10)

where ξ−t =
∑

n≥1 2−n e
2iπηn

θ
−

t ,+
(θ−

t ) (
e−2iπ2−n − 1

)
.

Proof. Fixing 0 ≤ γ < 1, we first rewrite J(γ). It is readily checked that for

u ∈ T1, Eγ(u) is the integer n ≥ 0 such that u ∈ ηn
γ,+(Uγ), quantity defined λ−a.s.

Consequently :

J(γ) =
∑

n≥1

n

∫

ηn
γ,+(Uγ)

e2iπu du. (11)

Let p/q ∈ (0, 1/2) with p ∧ q = 1 and fix γ and γ ′ such that θ−p/q < γ < γ′ < θ+
p/q.

Using (6) and (11), we write J(γ ′) − J(γ) = A + B + C, where :

A =

q−1∑

n=1

n

(∫ ηn+1

γ′,+
(γ′)

ηn+1

γ′,−
(γ′)

e2iπu du −
∫ ηn+1

γ,+ (γ)

ηn+1
γ,− (γ)

e2iπu du

)

B =
∑

n≥0

(n + q)

(∫ ηn+1

γ′,−
(γ′)

ηn+q+1

γ′,−
(γ′)

e2iπu du −
∫ ηn+1

γ,− (γ)

ηn+q+1
γ,− (γ)

e2iπu du

)

C =
∑

n≥0

(n + q)

(∫ ηn+q+1

γ′,+
(γ′)

ηn+1

γ′,+
(γ′)

e2iπu du −
∫ ηn+q+1

γ,+ (γ)

ηn+1
γ,+ (γ)

e2iπu du

)
.

Consider first A. We use two informations:
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10 J. Brémont, S. Seuret

• For γ ∈ (θ−p/q , θ
+
p/q) and n ≥ 1, ηn

γ,−(γ) = 2−nγ + Zn, by proposition 2.1.

• For γ ∈ [θ−p/q , θ
+
p/q ] and 1 ≤ n ≤ q − 1, ηn+1

γ,+ (γ) − ηn+1
γ,− (γ) = 2−n−1.

Hence

A =

q−1∑

n=1

n

(∫ 2−n−1γ′+Zn+1

2−n−1γ′+Zn+1−2−n−1

e2iπu du −
∫ 2−n−1γ+Zn+1

2−n−1γ+Zn+1−2−n−1

e2iπu du

)

=

q−1∑

n=1

ne2iπηn+1
γ,+ (γ)

(
e2iπ2−n−1(γ′−γ) − 1

)∫ 0

−2−n−1

e2iπu du.

Since |eiu − 1| ≤ |u| and γ′ − γ < θ+
p/q − θ−p/q = 1/(2q − 1), we deduce the upper-

bound :

|A| ≤ π

2(2q − 1)

∑

n≥1

n4−n. (12)

We now show that B and C have a higher order. Using the same informations as

above, we get :

B =
1

2iπ

∑

n≥0

(n + q)
[
e2iπηn+1

γ,− (γ)
(
e2iπ2−n−1(γ′−γ) − 1

)

−e2iπηn+q+1
γ,− (γ)

(
e2iπ2−n−q(γ′−γ) − 1

) ]
.

Let then t ∈ [0, 1/2) and suppose that p/q → t, with p/q > t, p ∧ q = 1. We fix

n ≥ 0. By proposition 2.2, ηn+1
γ,− (γ) → ηn+1

θ+
t ,−

(θ+
t ), when q → +∞. Moreover, still

for q → +∞, the quantity e2iπ2−n−1(γ′−γ) − 1 is equivalent to 2iπ2−n−1(γ′−γ) and

the last term in the right-hand side above has a strictly lower order.

Therefore, uniformly in θ−p/q < γ < γ′ < θ+
p/q :

B

q(γ′ − γ)
−→

∑

n≥0

2−n−1 e
2iπηn+1

θ
+
t ,−

(θ+
t )

, as p/q → t, t < p/q, p ∧ q = 1. (13)

In a similar way, uniformly in θ−p/q < γ < γ′ < θ+
p/q :

C

q(γ′ − γ)
−→ −

∑

n≥0

2−n−1 e
2iπ

„

ηn+1

θ
+
t ,−

(θ+
t )+2−n−1

«

, as p/q → t, t < p/q, p ∧ q = 1.

(14)

Using finally the fact that θ+
p/q − θ−p/q = 1/(2q − 1) with (12), (13) and (14), the

first item is proved.

The second item is shown in the same way. 2

We now move to Proposition 3.1.
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The singularity spectrum of the Fish’s boundary 11

Proof. For every irreducible rational p/q, let [ωp/q,−, ωp/q,+] be such that for every

ω ∈ [ωp/q,−, ωp/q,+], the maximizing measure of x 7−→ cos 2π(x−ω) is νp/q . Then :

ωp/q,+ − ωp/q,− = atan
(
F ′

−(x(p/q))
)
− atan

(
F ′

+(x(p/q))
)
.

Remembering (3), we have −∞ < F ′
−(1) ≤ F ′

+(x) < F ′
−(x) ≤ F ′

+(−1/2) < +∞.

Hence, ωp/q,+ − ωp/q,− is proportional to F ′
−(x(p/q))−F ′

+(x(p/q)) with constants

not depending on p/q. We thus focus on ωp/q,+ − ωp/q,−.

¿From Bousch [3], for any ω, the maximizing measure of x 7−→ cos 2π(x−ω) has

support in [γ, γ + 1/2] and the parameter ω is uniquely determined in terms of γ

by the two conditions (Proposition p. 503 and Remark p. 506 in [3]) :

e2iπ(ω+1/4) ⊥ J(γ) and |γ + 1/4− ω| ≤ 0, 111, (15)

where the first expression is a shorthand notation for orthogonality of the

corresponding vectors of the plane. It is also known that J(γ) 6= 0. Theorem

B in Bousch [3] indicates that the correspondance γ 7−→ ω is a homeomorphism

with a modulus of continuity of the form Kx log(1/x). If p/q ∈ (0, 1/2), p ∧ q = 1,

since θ+
p/q − θ−p/q = 1/(2q − 1), we get ωp/q,+ − ωp/q,− ≤ C q2−q for some universal

constant C > 0. This gives the right-hand side inequality in (7).

We now prove the other direction. Suppose that an infinite sequence of distinct

rationals (pn/qn)n≥0 in (0, 1/2), with pn∧qn = 1, is such that 2qn

qn

(
F ′

−(x(pn/qn))−
F ′

+(x(pn/qn))
)
→ 0 as n → +∞. By the remarks above, this is equivalent to :

2qn

qn

(
ωpn/qn,+ − ωpn/qn,−

)
→ 0, as n → +∞. (16)

Up to extraction, we suppose that pn/qn → t ∈ [0, 1/2), t < pn/qn, pn ∧ qn = 1.

In this case we shall use (9). The other case pn/qn → t ∈ (0, 1/2], t > pn/qn,

pn ∧ qn = 1 is treated similarly, using (10). By (15), we have
{

e2iπ(ωpn/qn,−+1/4) ⊥ J(θ−pn/qn
)

e2iπ(ωpn/qn,++1/4) ⊥ J(θ+
pn/qn

),

hence the angular variation between J(θ+
pn/qn

) and J(θ−pn/qn
) equals ωpn/qn,+ −

ωpn/qn,−. But by (9), and provided that ξ+
t 6= 0, J(θ+

pn/qn
) − J(θ−pn/qn

) is of order

qn2−qn . As both J(θ+
pn/qn

) and J(θ−pn/qn
) tend to J(θ+

t ) 6= 0 (since γ 7−→ Eγ is

continuous in L1(T), see Lemma p. 505 of [3]), it is enough to prove that ξ+
t 6= 0

and that ξ+
t and J(θ+

t ) do not have the same directions, so that (9) and (16) will

be in contradiction.

We develop a numerical argument, already used in [3]. Set :

un = e
2iπηn

θ
+
t ,−

(θ+
t ) (

1− e2iπ2−n
)

, n ≥ 1.

With these notations, ξ+
t =

∑
n≥1 2−nun. Remark that |u1| = 2 and |u2| =

√
2.

We introduce the straight line Dt supported by e2iπ(θ+
t /2) and denote by proj the
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12 J. Brémont, S. Seuret

orthogonal projection on Dt and by proj⊥ the orthogonal projection on (Dt)
⊥. One

checks that :

1 − proj(u2)/4−
∑

n≥3

2−n 2 sin(2π2−n−1) ≤ |proj(ξ+
t )|

proj⊥(u2)/4 +
∑

n≥3

2−n 2 sin(2π2−n−1) ≥ |proj⊥(ξ+
t )|.

We next show that |proj(ξ+
t )| > |proj⊥(ξ+

t )| (which implies that ξ+
t 6= 0). Since∑

n≥3 2−n 2 sin(2π2−n−1) ≤ π/24, this amounts to proving that 1 − proj(u2)/4 >

proj⊥(u2)/4+π/12. Setting α = proj(u2), we have to check that 4 > α+
√

2 − α2+

π/3, α ∈ [0,
√

2]. The right-hand side is maximal for α = 1 and the proof reduces

to 2 > π/3, which is true.

Consequently, as claimed above, |proj(ξ+
t )| > |proj⊥(ξ+

t )|. This yields :

Arg(ξ+
t ) ∈ [θ+

t /2 − 0, 125, θ+
t /2 + 0, 125] mod (1/2).

Let ωt,+ be such that the maximizing measure of x 7−→ cos 2π(x − ωt,+) has its

support contained in [θ+
t /2, θ+

t /2 + 1/2]. If ξ+
t and J(θ+

t ) have the same direction,

then ωt,+ = Arg(ξ+
t ) mod (1/2). Thus ωt,+ ∈ [θ+

t /2 − 0, 125, θ+
t /2 + 0, 125]

mod (1/2). But by (15), we get ωt,+ ∈ [θ+
t /2 + 0, 139, θ+

t /2 + 0, 361]. The two

conditions on ωt,+ are not compatible, hence the contradiction. 2

For p/q with p∧ q = 1, still denote by [ωp/q,−, ωp/q,+] the interval of ω such that

the maximizing measure of x 7−→ cos 2π(x − ω) is νp/q . As a by-product of the

proof, we obtain :

Corollary 3.1. There is a constant C > 0 such that for p/q ∈ (0, 1/2) with

p ∧ q = 1 :
1

C
q2−q ≤ ωp/q,+ − ωp/q,− ≤ C q2−q.

Moreover, if p/q → t with p ∧ q = 1 and p/q < t ∈ (0, 1/2] (or p/q > t ∈ [0, 1/2)),

then (2q/q)(ωp/q,+ − ωp/q,−) converges to a real number in (0, +∞).

Corollary 3.1 answers a question posed by Jenkinson in [17]. We now turn to

another preliminary study, concerning the analysis of the regularity of t 7−→ I(t)

and t 7−→ x(t). The next proposition implies Theorem 1.2.

Proposition 3.2.

1. Let t ∈ [0, 1/2). Then the map u 7−→ I(u) is right-differentiable at t and :

I ′+(t) =
∑

n≥1

n e
2iπηn+1

θ
+
t ,−

(θ+
t ) (

e2iπ2−n−1 − 1
)

.

2. Let t ∈ (0, 1/2]. Then u 7−→ I(u) is left-differentiable at t and :

I ′−(t) =
∑

n≥1

n e
2iπηn+1

θ
−

t ,+
(θ−

t ) (
1 − e−2iπ2−n−1

)
.
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The singularity spectrum of the Fish’s boundary 13

3. Let t ∈ [0, 1/2]\Q. Then u 7−→ I(u) is differentiable at t and :

I ′(t) =
∑

n≥1

n
(
e2iπηn+1

θt,+
(θt) − e2iπηn+1

θt,−
(θt)
)

. (17)

4. The application u 7−→ I(u) is not differentiable at t ∈ (0, 1/2) ∩ Q and

t 7−→ I ′(t) is continuous in restriction to [0, 1/2]\Q.

5. Let c0 = 2
∑

n≥1 n sin(π2−n−1) > c1 =
∑

n≥1 n(1 − cos(π2−n)). Then

t 7−→ I(t) is c0-Lipschitz. Moreover, t 7−→ x(t) is a decreasing bi-Lipschitz

homeomorphism from [0, 1/2] on [−1/2, 1], with :

x′(t) ∈ − 1√
1 + (F ′(x(t)))2

[c0, c1], t ∈ [0, 1/2]\Q.

Proof. We prove (1). Consider adjacent rationals 0 ≤ p/q < p′/q′ < 1/2, with

p′q − pq′ = 1 (therefore p/q − p′/q′ = 1/(qq′)). For a function f defined on T1 and

n ≥ 0, introduce the ergodic sum Snf(x) =
∑n−1

k=0 f(T kx). Recall that νp/q is the

T -invariant Sturm measure supported by the orbit of θ+
p/q and θ−p/q . We can write :

I(p/q) =

∫
e2iπu dνp/q(u) =

1

q′

∫ (
Sq′e2iπ .

)
(u) dνp/q(u)

=
1

qq′

∑

0≤n<q,0≤m<q′

e
2iπ2n+mθ+

p/q .

Similarly :

I(p′/q′) =
1

qq′

∑

0≤n<q,0≤m<q′

e
2iπ2n+mθ−

p′/q′ .

Combining the previous two equalities together with (5), we deduce that :

qq′(I(p/q) − I(p′/q′) =
∑

0≤n<q,0≤m<q′

e
2iπ2n+mθ+

p/q

(
1 − e

2iπ 2n+m−q−q′

(1−2−q )(1−2−q′ )

)
.

=
∑

1≤n≤q,1≤m≤q′

e
2iπ2q+q′−n−mθ+

p/q

(
1 − e

2iπ 2−n−m

(1−2−q )(1−2−q′ )

)
.

Let now t ∈ [0, 1/2). We shall show that if adjacent rationals p/q < p′/q′ verify

t < p/q < p′/q′ and tend to t, then qq′(I(p/q) − I(p′/q′)) converges.

First, the generic expression in (18) is bounded by 8π 2−n−m and the term

between brackets tends to (1 − e2iπ2−n−m

), as min{q, q′} → +∞.

Second, as recalled in the section of Sturm measures, 2q+q′

θ+
p/q = θ−p′/q′

mod (1),

which yields 2q+q′−n−mθ+
p/q = ηn+m

θ−

p′/q′
,−

(θ−p′/q′) mod (1). Then, by proposition 2.2,

for fixed n and m, ηn+m

θ−

p′/q′
,−

(θ−p′/q′) → ηn+m

θ+
t ,−

(θ+
t ).

Finally, when t < p/q < p′/q′, p′q − pq′ = 1, p′/q′ − t → 0 :

qq′(I(p/q) − I(p′/q′)) −→ −Z+
t = −

∑

n≥1,m≥1

e
2iπηn+1

θ
+
t ,−

(θ+
t ) (

e2iπ2−n−m − 1
)

= −
∑

n≥1

n e
2iπηn+1

θ
+
t ,−

(θ+
t ) (

e2iπ2−n−1 − 1
)

. (18)
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14 J. Brémont, S. Seuret

Fixing h > 0, the Farey construction of the rationals gives the existence of an

increasing bi-infinite sequence (ps/qs)s∈Z of rationals checking :






t < ps/qs < t + h, for s ∈ Z,

ps/qs → t, as s → −∞,

ps/qs → t + h, as s → +∞,

ps+1qs − psqs+1 = 1, for s ∈ Z.

We now decompose the increment I(t) − I(t + h) as :

I(t) − I(t + h) =
∑

s∈Z

I(ps/qs) − I(ps+1/qs+1)

Observe that mins∈Z qs −→ ∞ as h → 0. Consequently, combining (18) with the

fact that
∑

s∈Z
1

qsqs+1
= h by construction, the previous uniform calculus easily

implies that (I(t) − I(t + h))/h − Z+
t −→ 0 when h → 0+. Hence u 7−→ I(u) is

right-differentiable at t with right-derivative Z+
t . The proof of point (2) is similar.

Consider items (3) and (4). Let t ∈ [0, 1/2]\Q. Then θ−t = θ+
t = θt and

ηn
θt,+

(θt)− ηn
θt,−

(θt) = 2−n, n ≥ 2. Thus Z−
t = Z+

t and u 7−→ I(u) is differentiable

at t. The continuity of u 7−→ I ′(u) when restricted to [0, 1/2]\Q is a consequence

of the remark that for fixed n ≥ 2, the maps u 7−→ ηn
θu,+(θu) and u 7−→ ηn

θu,−(θu)

are continuous at t.

Assume now that t = r/s ∈ [0, 1/2] ∩ Q, r ∧ s = 1. Since (x(r/s),F(x(r/s)) is

an angular point for F , the only possibility for I to be differentiable at r/s is to

have Z+
r/s = Z−

r/s = 0. Hence, in order to show that u 7−→ I(u) is not differentiable

at r/s, it is enough to show that Z+
r/s 6= 0.

Section 2 on Sturm measures gives that for n ≥ 2, the intervals

[ηn
θ+

r/s
,−

(θ+
r/s), η

n
θ+

r/s
,−

(θ+
r/s)+2−n] are contained in [θ+

r/s/2, θ+
r/s/2+1/2]. Thus, using

(18), the orthogonal projection of the vector with affix Z+
r/s on the line spanned by

e
2iπ(θ+

r/s
/2)

is not zero. This concludes (4).

Consider (5). We first prove that t 7−→ I(t) is a Lipschitz map. Via (18), for any

adjacent rationals p/q < p′/q′, one has |I(p/q) − I(p′/q′)| ≤ 8π|p/q − p′/q′|. The

Farey construction of the rationals implies that this relation is valid between any

neighbour points on an arbitrary thin net of [0, 1/2]. This shows that t 7−→ I(t)

is 8π-Lipschitz. Consequently, t 7−→ I(t) is absolutely continuous and then the

integral of its derivative. The result follows from the remark that for every

t ∈ [0, 1/2]\Q, we easily verify using (17) that :

|I ′(t)| ≤
∑

n≥1

2n sin(2π2−n−2).

Finally, for t ∈ [0, 1/2]\Q, we have x′(t) = Re(I ′(t)). A first remark is that |I ′(t)| is

uniformly strictly positive. Indeed for every n ≥ 2, the interval
[
ηn

θt,−(θt), η
n
θt,+(θt)

]

is contained in the semi-circle [θt/2, θt/2+1/2]. Projecting orthogonally the vector
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with affix I ′(t) on the line spanned by e2iπ(θt/2) gives :

|I ′(t)| ≥
∑

n≥1

n(1 − cos(π2−n)) > 0.

Since |x′(t)| = cos(atan(F ′(x(t))))|I ′(t)| and x′(t) ≤ 0, the proof is complete. 2

4. Proof of the main Theorems

4.1. Proof of Theorem 1.1 Fix t ∈ [0, 1/2]\Q and recall that F is differentiable

at x(t). Let h ∈ R and introduce the difference for |h| small enough

∆t(h) = F(x(t)) −F(x(t + h)) + F ′(x(t)) · (x(t) − x(t + h)).

Remark that ∆t(h) ≥ 0, as F is concave. By Lemma 3.1, ∆t(h), which is a second-

order difference, depends only on the angular variation of F at the irreducible

rational points lying in [t, t + h]. This implies :

∆t(h) ≤
∑

p/q∈(t,t+h),p∧q=1

|x(p/q) − x(t + h)|
(
F ′

−(x(p/q) −F ′
+(x(p/q)

)
.

Then, using Proposition 3.1 (C > 0 is the constant appearing in (7)), we get :

∆t(h) ≤ C |x(t) − x(t + h)|
∑

p/q∈(t,t+h),p∧q=1

q2−q. (19)

Introduce the convergents (pk/qk)k≥0 of t. From Jarnik’s Theorem (see Falconer

[11]), for every t 6∈ A, where A ⊂ [0, 1/2] is a set of Hausdorff dimension 0, there

exist an integer Nt ≥ 1 and a constant Ct > 0 such that qk+1 ≤ Ct (qk)Nt , for all

k. We focus on such a t 6∈ A.

Fixing h > 0, let then k be such that t < p2k+1/q2k+1 ≤ t + h < p2k−1/q2k−1.

By definition of the convergents and k, for some universal constant C0 > 0 :
∑

p/q∈(t,t+h),p∧q=1

q2−q ≤ C0q2k+12
−q2k+1 . (20)

By Proposition 3.2, we can choose C ′ > 0 such that t 7−→ x−1(t) is C ′-

Lipschitz. Then, remembering that t → x(t) is a decreasing map, we obtain that

x(t) − x(t + h) ≥ x(t) − x(p2k+1/q2k+1), implying :

x(t) − x(t + h) ≥ C ′|t − p2k+1/q2k+1| ≥ C ′

2q2k+1q2k+2
(21)

≥
(

C ′

2Ct

)
1

(q2k+1)1+Nt
. (22)

Set next C ′′ = C ′/(2Ct). We inject relations (20) and (22) in (19), using the remark

that the map u 7−→ u2−u is decreasing for u ≥ 1/ log 2 :

∆t(h) ≤ CC0 |x(t) − x(t + h)|
(

C ′′

x(t) − x(t + h)

)1/(1+Nt)

2
−

“

C′′

x(t)−x(t+h)

”1/(1+Nt)

≤ CC0(C
′′)1/(1+Nt) |x(t) − x(t + h)|Nt/(1+Nt) 2

−
“

C′′

x(t)−x(t+h)

”1/(1+Nt)

.

≤ C ′′′ 2
−

“

C′′

x(t)−x(t+h)

”1/(1+Nt)

,
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which exactly implies (2) (C ′′′ depends on t). The case h < 0 is treated similarly.

As t 7−→ x(t) is Lipschitz (by Theorem (1.2)), the image of A by t 7−→ x(t) also

has zero Hausdorff-dimension. Hence, outside a set of Hausdorff-dimension zero,

(2) holds true. This completes the proof of item (1) of Theorem 1.1.

Recall that item (2) of Theorem 1.1. follows from Theorem 1.3 and the remarks

made in the introduction.

4.2. Proof of Theorem 1.3 Fix t ∈ [0, 1/2]\Q and consider the convergents

(pn/qn)n≥1 associated with t. Define :

E(t) = {M ≥ 0 | sup
n
{qM+1

n 2−qnqM
n+1} < +∞} (23)

and set M(t) = supE(t). Remark that this definition of M(t) coincides with the

one given in the introduction : M(t) = lim infn→+∞ qn/ log2 qn+1.

Let h > 0 and k be such that t < p2k+1/q2k+1 ≤ t + h < p2k−1/q2k−1. Again,

the case h < 0 is similar. Let now M ∈ E(t). From (21), we obtain that

|x(t) − x(t + h)|M ≥
(

C ′

2q2k+1q2k+2

)M

.

It follows then from (20) that :

∑

p/q∈(t,t+h),p∧q=1

q2−q ≤ C0
2M

(C ′)M

[
(q2k+1)

1+M (q2k+2)
M 2−q2k+1

]
(x(t)−x(t+h))M .

Since M ∈ E(t), the quantity between brackets is bounded in k, thus (19) clearly

implies that for some constant CM (depending on t and M),

∆t(h) ≤ CM |x(t) − x(t + h)|1+M .

Hence, hF(x(t)) ≥ 1 + M , for every M ∈ E(t) and finally hF (x(t)) ≥ 1 + M(t).

This obviously implies that hF(x(t)) = +∞ when M(t) = +∞ (this yields item

(2a) of Theorem 1.3).

In order to prove items (2b) and (2c) of Theorem 1.3, we now study the converse

inequality. Suppose that M(t) < +∞. Notice that it is very classical to see that

the set of points satisfying M(t) < +∞ has Hausdorff dimension 0. Assume that F
is C1+M (x(t)), for M > M(t). Let k and then h > 0 (chosen later) be such that :

t < p2k+1/q2k+1 ≤ t + h.

Consider again the difference ∆t(h). The same argument as in the proof of Theorem

1.1 also holds true here. Hence, using successively Lemma 3.1, Proposition 3.1 and

Proposition 3.2, we obtain :

∆t(h) ≥
(
F ′

−(x(p2k+1/q2k+1) −F ′
+(x(p2k+1/q2k+1)

)
|x(p2k+1/q2k+1) − x(t + h)|

≥ C ′

C
q2k+12

−q2k+1 |p2k+1/q2k+1 − (t + h)|. (24)

Prepared using etds.cls



The singularity spectrum of the Fish’s boundary 17

By hypothesis, for some constant C̃ and a polynomial P of degree at most 1+bMc :

|∆t(h) − P (x(t) − x(t + h))| ≤ C̃ |x(t) − x(t + h)|1+M . (25)

The previous study gives |∆t(h)| ≤ Cε |x(t) − x(t + h)|1+M(t)−ε, for any ε > 0.

Consequently, the polynomial P has the form P (X) =
∑1+bMc

m=1+dM(t)e αmXm. Let

M ′ be the first integer in the interval [dM(t)e, M ] such that α1+M ′ 6= 0. We deduce

that for another constant C, we have ∆t(h) ≤ C |x(t)−x(t+h)|1+min{M,M ′}. Now,

using that u 7−→ x(u) is bi-Lipschitz, we finally obtain for some C̃ :

∆t(h) ≤ C̃ |h|1+min{M,M ′}. (26)

Combining (24) with (26), there exists a constant C1, independent on h, such that :

q2k+12
−q2k+1

|p2k+1/q2k+1 − (t + h)|
h1+min{M,M ′}

≤ C1. (27)

Choose h = 2(p2k+1/q2k+1−t), so that t+h−p2k+1/q2k+1 = p2k+1/q2k+1−t. Since

1/(2q2k+1q2k+2) ≤ |p2k+1/q2k+1 − t| ≤ 1/(q2k+1q2k+2), inequality (27) becomes,

with another constant C2 :

q
1+min{M,M ′}
2k+1 2−q2k+1q

min{M,M ′}
2k+2 ≤ C2. (28)

This procedure gives the same result for the other half of indices, i.e.

q
1+min{M,M ′}
2k 2−q2kq

min{M,M ′}
2k+1 ≤ C2. (29)

Recall that M > M(t), and M ′ ≥ M(t). We distinguish some cases:

• If min(M, M ′) > M(t), then (28) and (29) contradict the definition (23)

of M(t). Hence F 6∈ C1+M (x(t)), for any M > M(t). This implies that

hF (x(t)) = 1 + M(t).

• If min(M, M ′) = M(t), then M(t) = M ′ ∈ N. If M(t) 6∈ E(t), again (28) and

(29) contradict (23). If M(t) ∈ E(t), since M ′ is the non-zero coefficient of

P of smallest degree, (25) gives :

∆t(h) ∼ α1+M(t) (x(t) − x(t + h))1+M(t), as h → 0.

– If M(t) is even, then the last equivalence is impossible since ∆t(h) is

always positive. The proof of the theorem is now complete.

– The remaining case (M(t) ∈ E(t) and M(t) odd) would require to push

further the developments, but has no influence on the result.

2
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Preprint, 2005.

[2] G. Brown, G. Michon, J. Peyrière, On the multifractal analysis of measures, J. Stat.
Phys., 66(3-4):775-790, 1992.
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