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The singularity spectrum of the Fish's boundary

. Seeing the boundary of the upper half-Fish as a function, we focus on its local regularity. We show that its multifractal spectrum is concentrated at ∞, but that every pointwise regularity α ∈ [1, ∞] is realized in a non-denumerable and dense set of points. The results rely on fine properties of Sturm measures.
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Introduction

Multifractal analysis describes the fine local structure of functions or measures.

On typical examples, the pointwise regularity exponent varies erratically from one point to another, and the level sets corresponding to a given regularity are usually fractal sets. The purpose of Multifractal analysis is to determine the Hausdorff dimension of these sets.

The interest for multifractal analysis came from fluid mechanics and also dynamical systems, see among many references [START_REF] Frisch | Fully developped turbulence and intermittency[END_REF][START_REF] Halsey | Fractal measures and their singularities: The characterization of strange sets[END_REF][START_REF] Pesin | The multifractal analysis of Gibbs measures: motivation, mathematical foundation, and examples[END_REF]. Since then, multifractal analysis has developped in many contexts, for instance in Probability Theory [START_REF] Jaffard | The multifractal nature of Lévy processes[END_REF][START_REF] Barral | The singularity spectrum of Lévy processes in multifractal time[END_REF] (see [START_REF] Falconer | Fractal Geometry, Mathematical fondations and Applications[END_REF][START_REF] Brown | On the multifractal analysis of measures[END_REF][START_REF] Jaffard | Multifractal functions : recent advances and open problems[END_REF] for other examples). In this article, we consider the example of a graph naturally appearing in an optimization problem in Ergodic Theory.

The notion of regularity we discuss in the sequel is the following. Given a real function f ∈ L ∞

loc on an open interval I and x 0 ∈ I, recall that f belongs to C α (x 0 ), for some α ≥ 0, if there exist a polynomial P of degree at most α and a constant C > 0 such that locally :

|f (x) -P (x -x 0 )| ≤ C|x -x 0 | α . (1) 
The local regularity of f at x 0 is measured by the pointwise Hölder exponent :

h f (x 0 ) = sup{α ≥ 0 | f ∈ C α (x 0 )}.
The relevant information is then provided by the spectrum of singularities d f of f , which is the application :

d f : s ∈ [0, ∞] -→ Dim H {x 0 ∈ I | h f (x 0 ) = s},
where Dim H stands for the Hausdorff dimension. We adopt the convention that Dim H ∅ = -∞.

We now detail the context of our example. Let T 1 be the torus identified with R/Z and equipped with the transformation T (x) = 2x mod [START_REF] Barral | The singularity spectrum of Lévy processes in multifractal time[END_REF]. Introduce the convex set M(T 1 , T ) of Borel probability measures on T 1 invariant by T , endowed with the weak * topology. The Fish is the compact convex subset of C, image of the following linear map :

M(T 1 , T ) -→ C µ
-→ e 2iπu dµ(u).

The boundary of the Fish intersects the horizontal axis at the points (-1/2, 0) and (1, 0) and is symmetric with respect to this axis, since T commutes with the symmetry x -→ -x on T 1 . We shall then restrict our study to the upper half-Fish, whose boundary is denoted by F. The function F is a concave function :
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The goal of this paper is to determine the pointwise Hölder exponent and the singularity spectrum of the function F.

As a preliminary remark, let us mention that, with respect to Fourier coefficients, there is only one Fish. Indeed, let k ≥ 2 and consider the k th Fourier coefficient of the elements of M(T 1 , T ), that is the linear map :

M(T 1 , T ) -→ C µ
-→ e 2iπku dµ(u).

Then the image of this map is also the Fish. This is a consequence of the fact that e 2iπku dµ(u) = e 2iπu d(T k µ)(u), where T k x = kx mod (1) on T 1 and T k µ is Tinvariant. Reciprocally, fixing ν ∈ M(T 1 , T ), there always exists some µ invariant under T such that T k µ = ν, for instance we can consider

µ = 1 k 0≤j≤k-1 ν(./k + j/k).
The Fish was introduced by Bousch [START_REF] Bousch | Le poisson n'a pas d'arêtes[END_REF] and Jenkinson [START_REF] Jenkinson | Frequency locking on the boundary of the barycenter set[END_REF], who considered the question of finding maximizing measures for a degree one trigonometric polynomial f ω : x -→ cos 2π(xω), ω ∈ R/Z. More generally, fixing some continuous f : T 1 → R, the initial problematics is given by the variational problem :

β(f ) = sup f dµ | µ ∈ M(T 1 , T ) ,
where one aims at describing the measures realizing the maximum. Such measures, which always exist as M(T 1 , T ) is compact, are called maximizing measures for f . The link with the Fish is simply that if z ω and z x are the vectors of R 2 with respective affixes e 2iπω and e 2iπx , then z ω , z x = cos 2π(xω). Therefore a maximizing measure µ of the function x -→ cos 2π(x-ω) is such that e 2iπu dµ(u) realizes the maximal orthogonal projection of the Fish on the line going through the origin and with angle 2πω. We often adopt this point of view in the sequel.

The question of finding maximizing measures can be viewed as a statistical approach (via the Birkhoff Ergodic Theorem) to the difficult problem of studying the best pointwise growth of the ergodic sums (f (x) + f (T x)

+ • • • + f (T n-1 x)) n≥0
of a function f . General presentations of the topic can be found in Conze-Guivarc'h [START_REF] Conze | Croissance des sommes ergodiques et principe variationnel[END_REF], Bousch-Mairesse [START_REF] Bousch | Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture[END_REF] or Jenkinson [START_REF] Jenkinson | Frequency locking on the boundary of the barycenter set[END_REF], [START_REF] Jenkinson | Ergodic optimization[END_REF]. See also [START_REF] Brémont | Finite flowers and maximizing measures for generic Lipschitz functions on the Circle[END_REF].

Back to the regularity of F, concavity implies that the pointwise Hölder exponent is always larger or equal to 1 and that F is differentiable outside a at most denumerable subset. Here is our main result.

Theorem 1.1. The singularity spectrum of F is

d F (s) =        -∞ if s ∈ [0, 1), 0 if s ≥ 1, 1 if s = +∞.

More precisely :
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1.

For all x outside a zero Hausdorff-dimensional subset of [-1/2, 1], there exist constants C > 0, 0 < ρ < 1 and 0 < K ≤ 1/2 such that :

∀h, |F(x + h) -F(x) -hF (x)| ≤ Cρ |h| -K . (2) 
In particular, h F (x) = ∞.

2.

For every 1 ≤ s < +∞, the level set {x : h F (x) = s} is an uncountable and dense subset of [-1/2, 1] of Hausdorff dimension 0.

Hence, in general, F is locally exponentially close to its tangent. Hence, although "the Fish has no edges" [START_REF] Bousch | Le poisson n'a pas d'arêtes[END_REF] (more precisely, it is strictly convex), its boundary is very flat. To some extent, this also confirms a remark made by Bousch that the Fish is well approximable by polygons with few edges. We also mention that our proof implies that the constants C, ρ, K depend on x and cannot be fixed locally in

[-1/2, 1].
In order to compute the pointwise Hölder exponents and the singularity spectrum of F, we use a natural parametrization of the Fish's boundary, given by Bousch [START_REF] Bousch | Le poisson n'a pas d'arêtes[END_REF].

Let (ν t ) t∈R\Z be the family of Sturm measures on T 1 , where ν t is the Sturm measure with rotation number t. Precise definitions are given in the next section. Theorem A and Corollary 2 of [START_REF] Bousch | Le poisson n'a pas d'arêtes[END_REF] imply that any map x -→ cos 2π(xω) admits a unique maximizing measure which is a Sturm measure, and then that a bijective and bicontinuous parametrization of the upper half-Fish is given by :

[0, 1/2] -→ C = R 2 t -→ e 2iπu dν t (u) =: I(t) = (x(t), y(t)).
In the sequel the notations t -→ I(t) = (x(t), y(t)) are reserved to the above parametrization. Remark that when t increases from 0 to 1/2, the graph of F is described from the right side to the left side. Moreover, ν 0 = δ 0 and ν 1/2 = 1/2(δ 1/3 + δ 2/3 ), explaining the extremal values.

It is shown by Bousch [3] that F admits an angular point at x(t) if and only if t ∈ [0, 1/2] ∩ Q. In particular the points (-1/2, 0) and (1, 0) are angular points of the Fish. The symmetry of the Fish with respect to the x-axis then implies :

-∞ < F -(1) < F + (-1/2) < +∞. (3) 
We shall use these informations in the sequel.

The set of angular points of F is denumerable and dense in [-1/2, 1]. Moreover, at such a point x 0 the Hölder exponent of F is obviously equal to 1. We next deal with the non-angular points of F, i.e. the real numbers x(t) with t ∈ [0, 1/2]\Q. As a preliminary step, we precise the regularity of the maps t -→ I(t) and t -→ x(t).

Theorem 1.2. Let c 0 = 2 n≥1 n sin(π2 -n-1 ) > c 1 = n≥1 n(1 -cos(π2 -n )). 1.
The map t -→ I(t) is c 0 -Lipschitz, differentiable at t ∈ [0, 1/2]\Q and left and right-differentiable but not differentiable at t ∈ (0, 1/2) ∩ Q. Also I -→ I (t) is continuous when restricted to [0, 1/2]\Q.

2.

The map t -→ x(t) is a decreasing bi-Lipschitz homeomorphism from [0, 1/2] onto [-1/2, 1], verifying :

for every t ∈ [0, 1/2]\Q, x (t) ∈ 1 1 + (F (x(t))) 2 [-c 0 , -c 1 ].
If t ∈ [0, 1/2]\Q, denote by (p n /q n ) n≥0 its sequence of convergents. The regularity of F at x(t) is then read on the Diophantine properties of t.

Theorem 1.3. Let t ∈ [0, 1/2]\Q, with convergents (p n /q n ) n≥0 . Introduce :

M (t) = lim inf n→+∞ q n log 2 q n+1 .
1.

We have the following relation :

1 + M (t) = sup{α ≥ 0 | ∃C > 0, |F(x(t) + h) -F(x(t)) -hF (x(t))| ≤ C h α }.
This yields h F (x(t)) ≥ 1 + M (t).

2.

Equality between h F (x(t)) and 1 + M (t) holds in the following situations :

(a) M (t) = +∞.

(b) M (t) ∈ R + \{2m + 1 | m ≥ 0}. (c) M (t) ∈ {2m + 1 | m ≥ 0} and sup n q M (t)+1 n 2 -qn q M (t) n+1 = ∞. Fix M 0 > 0 (resp. M 0 = 0). If t ∈ [0, 1/2]
\Q is highly Liouville in the sense that

q n+1 ∼ (2 1/M0 ) qn (resp. q n+1 ∼ 2 q 2 n ), (4) 
then h F (x(t)) = 1 + M 0 . Since it is known that the set of Liouville numbers satisfying (4) for a given M 0 > 0 (resp. M 0 = 0) is an uncountable dense subset of [-1/2, 1], item (2) of Theorem 1.1 is deduced from this remark.

On Sturm measures

We sum up the informations on the family of Sturm measures that are used in the sequel. Details can be found in Morse-Hedlund [START_REF] Morse | Symbolic dynamics II[END_REF], Bullet-Sentenac [START_REF] Bullett | Ordered orbits of the shift, square roots and the devil's staircase[END_REF] and Bousch [START_REF] Bousch | Le poisson n'a pas d'arêtes[END_REF]. The classical notion of rotation number for homeomorphisms of the Circle is introduced in Katok-Hasselblatt [START_REF] Katok | Introduction to the modern theory of dynamical systems[END_REF]. Proofs in the below discontinuous context are given in [START_REF] Brémont | Marches aléatoires en milieu aléatoire sur Z; dynamique d'applications localement contractantes sur le Cercle[END_REF] and [START_REF] Brémont | Dynamics of injective quasi-contractions[END_REF].

Definition 2.1. For 0 ≤ θ < 2, the closed semi-circle [θ/2, θ/2 + 1/2] ⊂ T 1
supports one and only one Borel T -invariant probability measure. Such a measure is ergodic and is called a Sturm measure.

Distinct semi-circles may support the same Sturm measure, so a parametrization of these measures by the family of semi-circles is not intrinsic. In order to get a proper parametrization, we need the notion of rotation number of a Sturm measure. First, a natural way of constructing the Sturm measure with support in [θ/2, θ/2 + 1/2] is to introduce the transformations η θ,+ and η θ,-of T 1 verifying T • η θ,± = Id and defined by :

η θ,± (x) = 1 2 (x + θ (x)), ∀x = θ mod (1)
,

where θ (x) ∈ {0, 1} is chosen so that η θ,± (x) ∈ (θ/2, θ/2 + 1/2). Complete the definition by setting η θ,+ (θ) = θ/2 and η θ,-(θ) = θ/2 + 1/2.
The graphs of η θ,± are plotted in Figure 2.

Notice that η θ,+ is right-continuous, whereas η θ,-is left-continuous. Concretely, η θ,+ acts on T 1 as follows : the Circle T 1 is cut into an interval at θ, is linearly contracted by a 1/2 and then rotated to the semi-circle [θ/2, θ/2+1/2). For η θ,-, the image interval is this time (θ/2, θ/2 + 1/2]. The transformations η θ,± are examples of quasi-contracting maps. More on this topic can be found in [START_REF] Brémont | Dynamics of injective quasi-contractions[END_REF][START_REF] Bugeaud | Dynamics of some contracting linear functions modulo 1, Noise, Oscillators and Algebraic Randomness[END_REF][START_REF] Gambaudo | On the dynamics of quasi-contractions[END_REF].

It is an observation (see [START_REF] Brémont | Dynamics of injective quasi-contractions[END_REF], Lemma 3.2) that a Borel measure µ on T 1 is Tinvariant and with support in [θ/2, θ/2 + 1/2] if and only if it is invariant under either η θ,+ or η θ,-. The maps η θ,+ and η θ,-are order-preserving transformations of the Circle T 1 . They admit a rotation number, the same one for both, written as t ∈ R/Z. Recall that any order-preserving transformation χ : T 1 → T 1 has a rotation number τ χ . This quantity measures the average speed of rotation under iterations and is defined as :

τ χ = lim n→+∞ 1 n ( χ) n (x) mod (1),
where χ : R → R is any lift of χ. This limit is independent of x.

Reciprocally, it can be shown that for any t ∈ R/Z, there is a closed interval of parameters θ for which the applications η θ,+ and η θ,-have rotation number t. Moreover, all these applications correspond to a unique Sturm measure. This measure will be written as ν t in the sequel. Let us detail the relations between the rational character of t, the corresponding parameters θ and the support of ν t in T 1 :

1.

When t ∈ [0, 1)\Q, there is a unique

θ t ∈ [0, 1) such that supp(ν t ) ⊂ [θ t /2, θ t /2 + 1/2].
In this case ν t is diffusive and its support is a minimal and uniquely ergodic Cantor set.
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Suppose now that t = p/q ∈ [0, 1), p ∧ q = 1.

(a) There is a closed interval [θ - p/q , θ + p/q ] of length 1/(2 q -1) such that :

supp(ν p/q ) ⊂ [θ/2, θ/2 + 1/2], for θ ∈ [θ - p/q , θ + p/q ].
The points θ + p/q and θ - p/q are q-periodic and lay in the same T -orbit. In this case, ν p/q is the T -invariant periodic measure supported by this orbit. Mention that θ + p/q /2 is periodic under T , whereas θ + p/q /2 + 1/2 is not. Symmetrically, θ - p/q /2 + 1/2 is periodic under T , whereas θ - p/q /2 is not. In order to unify the proofs, we set

θ + t = θ - t = θ t , when t ∈ [0, 1/2]\Q.
(b) If 0 ≤ p/q < p /q < 1 are adjacent rationals, in the sense that p qpq = 1, we will use the information that :

θ - p /q -θ + p/q = (2 q -1) -1 (2 q -1) -1 , (5) 
given in the proof of Lemma 2 of Bullett-Sentenac [START_REF] Bullett | Ordered orbits of the shift, square roots and the devil's staircase[END_REF]. It is a consequence of the following relations : T q (θ - p /q ) = θ + p /q and T q (θ + p/q ) = θ - p/q . 3.

Another property is that ∪ p/q∈[0,1),p∧q=1 [θ - p/q , θ + p/q ] has full measure in [0, 1). As a corollary, the mapping θ -→ t is a continuous non-decreasing Devil staircase from [0, 1) to [0, 1)

We finally develop the connexions between the maps η θ,± and the rational character of the rotation number t of the Sturm measure ν t . For any

γ ∈ T 1 , introduce first the open semi-circle U γ = (γ/2 + 1/2, γ/2) ⊂ T 1 complementary to [γ/2, γ/2 + 1/2].
We sum up some results contained in Lemma 3. 

1.

The sets (η n θ,+ (U θ )) n≥0 are all disjoint and their union has full Lebesgue measure in T 1 .

2.

If t ∈ [0, 1]\Q, then the sets (η n θt,+ (U θt )) n≥0 are intervals. Moreover, each one can be written as η n θt,+ (U θt ) = (η n+1 θt,-(θ t ), η n+1 θt,+ (θ t )), and has length 2 -n-1 .

3.

Let q ≥ 1. A real number θ is in the closure of η q-1 θ,+ (U θ ) if and only if there exists 0 ≤ p < q with p ∧ q = 1 such that the rotation number of η θ,+ is p/q. This property is equivalent to saying that θ ∈ ∪ 0≤p<q: p∧q=1 [θ - p/q , θ + p/q ]. In this case, the sets η q-1 θ,+ (U θ ) are not always intervals. More precisely,

       0 ≤ n ≤ q -1 : (η θ,+ ) n (U θ ) = (η θ,-) n+1 (θ), (η θ,+ ) n+1 (θ) n ≥ q : (η θ,+ ) n (U θ ) = ((η θ,-) n+1 (θ), (η θ,-) n+1-q (θ)] ∪((η θ,+ ) n+1-q (θ), (η θ,+ ) n+1 (θ)). ( 6 
)
In the extremal cases :

η q θ + p/q ,+ (θ + p/q ) = θ + p/q and η q θ - p/q ,-(θ - p/q ) = θ - p/q .
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Finally, for every θ ∈ (θ - p/q , θ + p/q ) and n ≥ 1, we have η n θ,-(θ) = 2 -n θ + Z n , for some fixed Z n , which depends only on p/q.

The following result will be used several times :

Proposition 2.2. Let t ∈ [0, 1) and fix n ≥ 1. Then η n θ,-(θ) tends to η n θ + t ,-(θ + t ), as θ → θ + t with θ > θ + t . If t ∈ (0, 1], then η n θ,+ (θ) tends to η n θ - t ,+ (θ - t ), as θ → θ - t with θ < θ - t .
Proof. Consider the first situation. As θ + t is the only discontinuity of η θ + t ,-, the result is clear in the case when

θ + t = η k θ + t ,-(θ + t ), for 1 ≤ k ≤ n-1.
Suppose then that this is not true and let k be such that

θ + t = η k θ + t ,-(θ + t ), whereas θ + t = η l θ + t ,-(θ + t ), for 1 ≤ l < k. By item (3) of Proposition 2.1, t would be of the form r/k. Then, the condition θ + t = η k θ + t ,-(θ + t ) implies that θ + t = θ + r/k = θ - r/k , which is impossible. 2 

Preliminary results

As a first remark, F is obtained by integrating twice a sum of Dirac masses.

Lemma 3.1. In (-1/2, 1), the second derivative F of F in the sense of Distributions is a sum of Dirac masses at the angular points of F :

F = t∈(0,1/2)∩Q F + (x(t)) -F -(x(t)) δ x(t) .
Proof. From Corollary 1 of [START_REF] Bousch | Le poisson n'a pas d'arêtes[END_REF], the maximizing measure of

x -→ cos 2π(x -ω) is periodic for λ-almost all ω ∈ [0, 1/2]. A reformulation is that for λ-almost all ω ∈ [0, 1/2],
the maximal orthogonal projection of the Fish on the straight line going trough 0 and with angle 2πω is realized by an angular point. Thus for -1/2 < a < b < 1 :

x(p/q)∈(a,b) atan F -(x(p/q)) -atan F + (x(p/q)) = atan F + (a) -atan F -(b) ,
which can be rewritten as :

x(p/q)∈(a,b)

F -(x(p/q)) F + (x(p/q)) 1 1 + u 2 du = F + (a) F -(b) 1 1 + u 2 du
and equivalently :

∪ x(p/q)∈(a,b) F + (x(p/q)), F -(x(p/q)) = F -(b), F + (a) , λ -a.s.,
where the union is disjoint. Consequently :

x(p/q)∈(a,b) F -(x(p/q)) -F + (x(p/q)) = F + (a) -F -(b),
which implies the lemma.

We now show that the angular defect of F at each angular point x(p/q), with p ∧ q = 1, has exact order q2 -q . Proposition 3.1. There is a constant C > 0 such that for any p/q ∈ (0, 1/2), with p ∧ q = 1 :

1 C q2 -q ≤ F -(x(p/q)) -F + (x(p/q)) ≤ C q2 -q . ( 7 
)
The proof of Proposition 3.1 is based on the next lemma. As in Bousch [START_REF] Bousch | Le poisson n'a pas d'arêtes[END_REF], we introduce the exit time E γ (x) ∈ N ∪ {∞} of the semi-circle [γ/2, γ/2 + 1/2] for a point x ∈ T 1 , under iterations of T . This map belongs to L 1 (T 1 ). We denote, for every γ ∈ [0, 1) the quantity

J(γ) = e 2iπu E γ (u) du. ( 8 
)
Lemma 3.2.

1.

For t ∈ [0, 1/2) :

lim p/q→t, t<p/q, p∧q=1 2 q q J(θ + p/q ) -J(θ - p/q ) = ξ + t , (9) 
where

ξ + t = n≥1 2 -n e 2iπη n θ + t ,- (θ + t )
1e 2iπ2 -n .

2.

For t ∈ (0, 1/2] :

lim p/q→t, t>p/q, p∧q=1 2 q q J(θ + p/q ) -J(θ - p/q ) = ξ - t , (10) 
where

ξ - t = n≥1 2 -n e 2iπη n θ - t ,+ (θ - t )
e -2iπ2 -n -1 .

Proof. Fixing 0 ≤ γ < 1, we first rewrite J(γ). It is readily checked that for u ∈ T 1 , E γ (u) is the integer n ≥ 0 such that u ∈ η n γ,+ (U γ ), quantity defined λa.s. Consequently :

J(γ) = n≥1 n η n γ,+ (Uγ ) e 2iπu du. (11) 
Let p/q ∈ (0, 1/2) with p ∧ q = 1 and fix γ and γ such that θ - p/q < γ < γ < θ + p/q . Using ( 6) and ( 11), we write J(γ ) -J(γ) = A + B + C, where :

A = q-1 n=1 n η n+1 γ ,+ (γ ) η n+1 γ ,- (γ ) 
e 2iπu du -

η n+1 γ,+ (γ) η n+1 γ,- (γ) 
e 2iπu du B = n≥0 (n + q) η n+1 γ ,-(γ ) η n+q+1 γ ,- (γ ) 
e 2iπu du -

η n+1 γ,-(γ) η n+q+1 γ,- (γ) 
e 2iπu du C = n≥0 (n + q) η n+q+1 γ ,+ (γ ) 
η n+1 γ ,+ (γ ) 
e 2iπu du -

η n+q+1 γ,+ (γ) 
η n+1 γ,+ (γ) 
e 2iπu du .

Consider first A. We use two informations:
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• For γ ∈ (θ - p/q , θ + p/q ) and n ≥ 1, η n γ,-(γ) = 2 -n γ + Z n , by proposition 2.1.

• For γ ∈ [θ - p/q , θ + p/q ] and 1

≤ n ≤ q -1, η n+1 γ,+ (γ) -η n+1 γ,-(γ) = 2 -n-1 . Hence A = q-1 n=1 n 2 -n-1 γ +Zn+1 2 -n-1 γ +Zn+1-2 -n-1
e 2iπu du -

2 -n-1 γ+Zn+1 2 -n-1 γ+Zn+1-2 -n-1 e 2iπu du = q-1 n=1 ne 2iπη n+1 γ,+ (γ) e 2iπ2 -n-1 (γ -γ) -1 0 -2 -n-1 e 2iπu du.
Since |e iu -1| ≤ |u| and γγ < θ + p/qθ - p/q = 1/(2 q -1), we deduce the upperbound :

|A| ≤ π 2(2 q -1) n≥1 n4 -n . ( 12 
)
We now show that B and C have a higher order. Using the same informations as above, we get :

B = 1 2iπ n≥0 (n + q) e 2iπη n+1 γ,-(γ) e 2iπ2 -n-1 (γ -γ) -1 -e 2iπη n+q+1 γ,- (γ) 
e 2iπ2 -n-q (γ -γ) -1 .

Let then t ∈ [0, 1/2) and suppose that p/q → t, with p/q > t, p ∧ q = 1. We fix n ≥ 0. By proposition 2.2, η n+1 γ,-(γ) → η n+1 θ + t ,-(θ + t ), when q → +∞. Moreover, still for q → +∞, the quantity e 2iπ2 -n-1 (γ -γ) -1 is equivalent to 2iπ2 -n-1 (γγ) and the last term in the right-hand side above has a strictly lower order.

Therefore, uniformly in θ - p/q < γ < γ < θ + p/q :

B q(γ -γ) -→ n≥0 2 -n-1 e 2iπη n+1 θ + t ,- (θ + t )
, as p/q → t, t < p/q, p ∧ q = 1.

In a similar way, uniformly in θ - p/q < γ < γ < θ + p/q :

C q(γ -γ) -→ - n≥0 2 -n-1 e 2iπ " η n+1 θ + t ,- (θ + t )+2 -n-1 «
, as p/q → t, t < p/q, p ∧ q = 1.

(

) 14 
Using finally the fact that θ + p/qθ - p/q = 1/(2 q -1) with ( 12), ( 13) and ( 14), the first item is proved.

The second item is shown in the same way.

2

We now move to Proposition 3.1.
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Proof. For every irreducible rational p/q, let [ω p/q,-, ω p/q,+ ] be such that for every ω ∈ [ω p/q,-, ω p/q,+ ], the maximizing measure of x -→ cos 2π(xω) is ν p/q . Then : ω p/q,+ω p/q,-= atan F -(x(p/q))atan F + (x(p/q)) .

Remembering (3), we have -∞ < F -(1) ≤ F + (x) < F -(x) ≤ F + (-1/2) < +∞.
Hence, ω p/q,+ω p/q,-is proportional to F -(x(p/q)) -F + (x(p/q)) with constants not depending on p/q. We thus focus on ω p/q,+ω p/q,-.

¿From Bousch [START_REF] Bousch | Le poisson n'a pas d'arêtes[END_REF], for any ω, the maximizing measure of x -→ cos 2π(xω) has support in [γ, γ + 1/2] and the parameter ω is uniquely determined in terms of γ by the two conditions (Proposition p. 503 and Remark p. 506 in [START_REF] Bousch | Le poisson n'a pas d'arêtes[END_REF]) : e 2iπ(ω+1/4) ⊥ J(γ) and |γ + 1/4 -ω| ≤ 0, 111, [START_REF] Jaffard | The multifractal nature of Lévy processes[END_REF] where the first expression is a shorthand notation for orthogonality of the corresponding vectors of the plane. It is also known that J(γ) = 0. Theorem B in Bousch [START_REF] Bousch | Le poisson n'a pas d'arêtes[END_REF] indicates that the correspondance γ -→ ω is a homeomorphism with a modulus of continuity of the form Kx log(1/x). If p/q ∈ (0, 1/2), p ∧ q = 1, since θ + p/qθ - p/q = 1/(2 q -1), we get ω p/q,+ω p/q,-≤ C q2 -q for some universal constant C > 0. This gives the right-hand side inequality in [START_REF] Brémont | Marches aléatoires en milieu aléatoire sur Z; dynamique d'applications localement contractantes sur le Cercle[END_REF].

We now prove the other direction. Suppose that an infinite sequence of distinct rationals (p n /q n ) n≥0 in (0, 1/2), with p n ∧ q n = 1, is such that 2 qn qn F -(x(p n /q n )) -F + (x(p n /q n )) → 0 as n → +∞. By the remarks above, this is equivalent to :

2 qn q n ω pn/qn,+ -ω pn/qn,-→ 0, as n → +∞. ( 16 
)
Up to extraction, we suppose that p n /q n → t ∈ [0, 1/2), t < p n /q n , p n ∧ q n = 1. In this case we shall use [START_REF] Bullett | Ordered orbits of the shift, square roots and the devil's staircase[END_REF]. The other case p n /q n → t ∈ (0, 1/2], t > p n /q n , p n ∧ q n = 1 is treated similarly, using [START_REF] Conze | Croissance des sommes ergodiques et principe variationnel[END_REF]. By [START_REF] Jaffard | The multifractal nature of Lévy processes[END_REF], we have e 2iπ(ω pn/qn,-+1/4) ⊥ J(θ - pn/qn ) e 2iπ(ω pn/qn,+ +1/4) ⊥ J(θ + pn/qn ), hence the angular variation between J(θ + pn/qn ) and J(θ - pn/qn ) equals ω pn/qn,+ω pn/qn,-. But by [START_REF] Bullett | Ordered orbits of the shift, square roots and the devil's staircase[END_REF], and provided that ξ + t = 0, J(θ + pn/qn ) -J(θ - pn/qn ) is of order q n 2 -qn . As both J(θ + pn/qn ) and J(θ - pn/qn ) tend to J(θ + t ) = 0 (since γ -→ E γ is continuous in L 1 (T), see Lemma p. 505 of [START_REF] Bousch | Le poisson n'a pas d'arêtes[END_REF]), it is enough to prove that ξ + t = 0 and that ξ + t and J(θ + t ) do not have the same directions, so that ( 9) and ( 16) will be in contradiction.

We develop a numerical argument, already used in [START_REF] Bousch | Le poisson n'a pas d'arêtes[END_REF]. Set :

u n = e 2iπη n θ + t ,- (θ + t )
1e 2iπ2 -n , n ≥ 1.

With these notations,

ξ + t = n≥1 2 -n u n . Remark that |u 1 | = 2 and |u 2 | = √ 2.
We introduce the straight line D t supported by e 2iπ(θ + t /2) and denote by proj the orthogonal projection on D t and by proj ⊥ the orthogonal projection on (D t ) ⊥ . One checks that :

1 -proj(u 2 )/4 - n≥3 2 -n 2 sin(2π2 -n-1 ) ≤ |proj(ξ + t )| proj ⊥ (u 2 )/4 + n≥3 2 -n 2 sin(2π2 -n-1 ) ≥ |proj ⊥ (ξ + t )|.
We next show that |proj(ξ + t )| > |proj ⊥ (ξ + t )| (which implies that ξ + t = 0). Since n≥3 2 -n 2 sin(2π2 -n-1 ) ≤ π/24, this amounts to proving that 1proj(u 2 )/4 > proj ⊥ (u 2 )/4+π/12. Setting α = proj(u 2 ), we have to check that 4 > α+

√ 2 -α 2 + π/3, α ∈ [0, √ 2 
]. The right-hand side is maximal for α = 1 and the proof reduces to 2 > π/3, which is true.

Consequently, as claimed above, |proj(ξ

+ t )| > |proj ⊥ (ξ + t )|.
This yields :

Arg(ξ + t ) ∈ [θ + t /2 -0, 125, θ + t /2 + 0, 125] mod (1/2).
Let ω t,+ be such that the maximizing measure of x -→ cos 2π(x For p/q with p ∧ q = 1, still denote by [ω p/q,-, ω p/q,+ ] the interval of ω such that the maximizing measure of x -→ cos 2π(xω) is ν p/q . As a by-product of the proof, we obtain : Corollary 3.1. There is a constant C > 0 such that for p/q ∈ (0, 1/2) with p ∧ q = 1 :

-
1 C q2 -q ≤ ω p/q,+ω p/q,-≤ C q2 -q .

Moreover, if p/q → t with p ∧ q = 1 and p/q < t ∈ (0, 1/2] (or p/q > t ∈ [0, 1/2)), then (2 q /q)(ω p/q,+ω p/q,-) converges to a real number in (0, +∞).

Corollary 3.1 answers a question posed by Jenkinson in [START_REF] Jenkinson | Frequency locking on the boundary of the barycenter set[END_REF]. We now turn to another preliminary study, concerning the analysis of the regularity of t -→ I(t) and t -→ x(t). The next proposition implies Theorem 1.2. Proposition 3.2.

1.

Let t ∈ [0, 1/2). Then the map u -→ I(u) is right-differentiable at t and :

I + (t) = n≥1 n e 2iπη n+1 θ + t ,- (θ + t ) e 2iπ2 -n-1 -1 .

2.

Let t ∈ (0, 1/2]. Then u -→ I(u) is left-differentiable at t and :

I -(t) = n≥1 n e 2iπη n+1 θ - t ,+ (θ - t )
1e -2iπ2 -n-1 .
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Let t ∈ [0, 1/2]\Q. Then u -→ I(u) is differentiable at t and :

I (t) = n≥1 n e 2iπη n+1 θ t ,+ (θt) -e 2iπη n+1 θ t ,-(θt) . (17) 4. 
The application u -→ I(u) is not differentiable at t ∈ (0, 1/2) ∩ Q and t -→ I (t) is continuous in restriction to [0, 1/2]\Q.

5.

Let

c 0 = 2 n≥1 n sin(π2 -n-1 ) > c 1 = n≥1 n(1 -cos(π2 -n )). Then t -→ I(t) is c 0 -Lipschitz. Moreover, t -→ x(t) is a decreasing bi-Lipschitz homeomorphism from [0, 1/2] on [-1/2, 1], with : x (t) ∈ - 1 1 + (F (x(t))) 2 [c 0 , c 1 ], t ∈ [0, 1/2]\Q.
Proof. We prove [START_REF] Barral | The singularity spectrum of Lévy processes in multifractal time[END_REF]. Consider adjacent rationals 0 ≤ p/q < p /q < 1/2, with p qpq = 1 (therefore p/qp /q = 1/(qq )). For a function f defined on T 1 and n ≥ 0, introduce the ergodic sum S n f (x) = n-1 k=0 f (T k x). Recall that ν p/q is the T -invariant Sturm measure supported by the orbit of θ + p/q and θ - p/q . We can write :

I(p/q) = e 2iπu dν p/q (u) = 1 q S q e 2iπ . (u) dν p/q (u) = 1 qq 0≤n<q,0≤m<q e 2iπ2 n+m θ + p/q .

Similarly :

I(p /q ) = 1 qq 0≤n<q,0≤m<q e 2iπ2 n+m θ - p /q .
Combining the previous two equalities together with (5), we deduce that :

qq (I(p/q) -I(p /q ) = 0≤n<q,0≤m<q e 2iπ2 n+m θ + p/q 1 -e 2iπ 2 n+m-q-q (1-2 -q )(1-2 -q ) . = 1≤n≤q,1≤m≤q e 2iπ2 q+q -n-m θ + p/q 1 -e 2iπ 2 -n-m (1-2 -q )(1-2 -q )
. Let now t ∈ [0, 1/2). We shall show that if adjacent rationals p/q < p /q verify t < p/q < p /q and tend to t, then qq (I(p/q) -I(p /q )) converges.

First, the generic expression in [START_REF] Jenkinson | Ergodic optimization[END_REF] is bounded by 8π 2 -n-m and the term between brackets tends to (1e 2iπ2 -n-m ), as min{q, q } → +∞.

Second, as recalled in the section of Sturm measures, 2 q+q θ + p/q = θ - p /q mod (1), which yields 2 q+q -n-m θ + p/q = η n+m θ - p /q ,-(θ - p /q ) mod (1). Then, by proposition 2.2, for fixed n and m, η n+m θ - p /q ,-(θ - p /q ) → η n+m θ + t ,-(θ + t ). Finally, when t < p/q < p /q , p qpq = 1, p /qt → 0 :

qq (I(p/q) -I(p /q )) -→ -Z + t = - n≥1,m≥1 e 2iπη n+1 θ + t ,- (θ + t ) e 2iπ2 -n-m -1 = - n≥1 n e 2iπη n+1 θ + t ,- (θ + t ) e 2iπ2 -n-1 -1 . ( 18 
)
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Fixing h > 0, the Farey construction of the rationals gives the existence of an increasing bi-infinite sequence (p s /q s ) s∈Z of rationals checking :        t < p s /q s < t + h, for s ∈ Z, p s /q s → t, as s → -∞, p s /q s → t + h, as s → +∞, p s+1 q sp s q s+1 = 1, for s ∈ Z.

We now decompose the increment I(t) -I(t + h) as :

I(t) -I(t + h) = s∈Z I(p s /q s ) -I(p s+1 /q s+1 )
Observe that min s∈Z q s -→ ∞ as h → 0. Consequently, combining [START_REF] Jenkinson | Ergodic optimization[END_REF] with the fact that s∈Z 1 qsqs+1 = h by construction, the previous uniform calculus easily implies that (I(t) -I(t + h))/h -Z + t -→ 0 when h → 0 + . Hence u -→ I(u) is right-differentiable at t with right-derivative Z + t . The proof of ( 2) is similar.

Consider items (3) and ( 4). Let t ∈ [0, 1/2]\Q. Then θ - t = θ + t = θ t and η n θt,+ (θ t )η n θt,-(θ t ) = 2 -n , n ≥ 2. Thus Z - t = Z + t and u -→ I(u) is differentiable at t. The continuity of u -→ I (u) when restricted to [0, 1/2]\Q is a consequence of the remark that for fixed n ≥ 2, the maps u -→ η n θu,+ (θ u ) and u -→ η n θu,-(θ u ) are continuous at t.

Assume now that t = r/s ∈ [0, 1/2] ∩ Q, r ∧ s = 1. Since (x(r/s), F(x(r/s)) is an angular point for F, the only possibility for I to be differentiable at r/s is to have Z + r/s = Z - r/s = 0. Hence, in order to show that u -→ I(u) is not differentiable at r/s, it is enough to show that Z + r/s = 0. Section 2 on Sturm measures gives that for n ≥ 2, the intervals [η n θ + r/s ,-(θ + r/s ), η n θ + r/s ,-(θ + r/s )+2 -n ] are contained in [θ + r/s /2, θ + r/s /2+1/2]. Thus, using [START_REF] Jenkinson | Ergodic optimization[END_REF], the orthogonal projection of the vector with affix Z + r/s on the line spanned by e 2iπ(θ + r/s /2) is not zero. This concludes (4).

Consider [START_REF] Brémont | Dynamics of injective quasi-contractions[END_REF]. We first prove that t -→ I(t) is a Lipschitz map. Via [START_REF] Jenkinson | Ergodic optimization[END_REF], for any adjacent rationals p/q < p /q , one has |I(p/q) -I(p /q )| ≤ 8π|p/qp /q |. The Farey construction of the rationals implies that this relation is valid between any neighbour points on an arbitrary thin net of [0, 1/2]. This shows that t -→ I(t) is 8π-Lipschitz. Consequently, t -→ I(t) is absolutely continuous and then the integral of its derivative. The result follows from the remark that for every t ∈ [0, 1/2]\Q, we easily verify using (17) that :

|I (t)| ≤ n≥1 2n sin(2π2 -n-2 ).
Finally, for t ∈ [0, 1/2]\Q, we have x (t) = Re(I (t)). A first remark is that |I (t)| is uniformly strictly positive. Indeed for every n ≥ 2, the interval η n θt,-(θ t ), η n θt,+ (θ t ) is contained in the semi-circle [θ t /2, θ t /2 + 1/2]. Projecting orthogonally the vector Prepared using etds.cls

The singularity spectrum of the Fish's boundary 15 with affix I (t) on the line spanned by e 2iπ(θt/2) gives :

|I (t)| ≥ n≥1 n(1 -cos(π2 -n )) > 0.
Since |x (t)| = cos(atan(F (x(t))))|I (t)| and x (t) ≤ 0, the proof is complete. 

|x(p/q) -x(t + h)| F -(x(p/q) -F + (x(p/q) .
Then, using Proposition 3.1 (C > 0 is the constant appearing in ( 7)), we get :

∆ t (h) ≤ C |x(t) -x(t + h)| p/q∈(t,t+h),p∧q=1 q2 -q . ( 19 
)
Introduce the convergents (p k /q k ) k≥0 of t. From Jarnik's Theorem (see Falconer [START_REF] Falconer | Fractal Geometry, Mathematical fondations and Applications[END_REF]), for every t ∈ A, where A ⊂ [0, 1/2] is a set of Hausdorff dimension 0, there exist an integer N t ≥ 1 and a constant C t > 0 such that q k+1 ≤ C t (q k ) Nt , for all k. We focus on such a t ∈ A.

Fixing h > 0, let then k be such that t < p 2k+1 /q 2k+1 ≤ t + h < p 2k-1 /q 2k-1 . By definition of the convergents and k, for some universal constant C 0 > 0 : p/q∈(t,t+h),p∧q=1 q2 -q ≤ C 0 q 2k+1 2 -q 2k+1 .

(20)

By Proposition 3.2, we can choose C > 0 such that t -→ x -1 (t) is C -Lipschitz. Then, remembering that t → x(t) is a decreasing map, we obtain that x(t)x(t + h) ≥ x(t)x(p 2k+1 /q 2k+1 ), implying :

x(t) -x(t + h) ≥ C |t -p 2k+1 /q 2k+1 | ≥ C 2q 2k+1 q 2k+2 (21) 
≥ C 2C t 1 (q 2k+1 ) 1+Nt . ( 22 
)
Set next C = C /(2C t ). We inject relations ( 20) and ( 22) in [START_REF] Katok | Introduction to the modern theory of dynamical systems[END_REF], using the remark that the map u -→ u2 -u is decreasing for u ≥ 1/ log 2 : (25)

∆ t (h) ≤ CC 0 |x(t) -x(t + h)| C x(t) -x(t + h) 1/(1+Nt)
The previous study gives |∆ t (h)| ≤ C ε |x(t)x(t + h)| 1+M (t)-ε , for any ε > 0.

Consequently, the polynomial P has the form P (X) =

1+ M m=1+ M (t) α m X m . Let M be the first integer in the interval [ M (t) , M ] such that α 1+M = 0. We deduce that for another constant C, we have ∆ t (h) ≤ C |x(t)x(t + h)| 1+min{M,M } . Now, using that u -→ x(u) is bi-Lipschitz, we finally obtain for some C :

∆ t (h) ≤ C |h| 1+min{M,M } . ( 26 
)
Combining ( 24) with (26), there exists a constant C 1 , independent on h, such that :

q 2k+1 2 -q 2k+1 |p 2k+1 /q 2k+1 -(t + h)| h 1+min{M,M } ≤ C 1 . (27) 
Choose h = 2(p 2k+1 /q 2k+1 -t), so that t+h-p 2k+1 /q 2k+1 = p 2k+1 /q 2k+1 -t. Since 1/(2q 2k+1 q 2k+2 ) ≤ |p 2k+1 /q 2k+1 -t| ≤ 1/(q 2k+1 q 2k+2 ), inequality (27) becomes, with another constant C 2 :

q 1+min{M,M } 2k+1 2 -q 2k+1 q min{M,M } 2k+2 ≤ C 2 . ( 28 
)
This procedure gives the same result for the other half of indices, i.e. q 1+min{M,M } 2k

2 -q 2k q min{M,M } 2k+1 ≤ C 2 . (29) 
Recall that M > M (t), and M ≥ M (t). We distinguish some cases:

• If min(M, M ) > M (t), then (28) and (29) contradict the definition (23) of M (t). Hence F ∈ C 1+M (x(t)), for any M > M (t). This implies that h F (x(t)) = 1 + M (t).

• If min(M, M ) = M (t), then M (t) = M ∈ N. If M (t) ∈ E(t), again (28) and (29) contradict (23). If M (t) ∈ E(t), since M is the non-zero coefficient of P of smallest degree, (25) gives :

∆ t (h) ∼ α 1+M (t) (x(t)x(t + h)) 1+M (t) , as h → 0.

-If M (t) is even, then the last equivalence is impossible since ∆ t (h) is always positive. The proof of the theorem is now complete.

-The remaining case (M (t) ∈ E(t) and M (t) odd) would require to push further the developments, but has no influence on the result.

Figure 1 .

 1 Figure 1. The Fish.
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 2 Figure 2. Graphs of η θ,+ and η θ,-.
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  Prepared using etds.clsBy hypothesis, for some constant C and a polynomial P of degree at most 1+ M :|∆ t (h) -P (x(t)x(t + h))| ≤ C |x(t)x(t + h)| 1+M .

  ω t,+ ) has its support contained in [θ + t /2, θ + t /2 + 1/2]. If ξ + t and J(θ + t ) have the same direction, then ω t,+ = Arg(ξ + t ) mod (1/2). Thus ω t,+ ∈ [θ + t /2 -0, 125, θ + t /2 + 0, 125] mod (1/2). But by (15), we get ω t,+ ∈ [θ + t /2 + 0, 139, θ + t /2 + 0, 361]. The two conditions on ω t,+ are not compatible, hence the contradiction. 2

2 4 .

 4 Proof of the main Theorems 4.1. Proof of Theorem 1.1 Fix t ∈ [0, 1/2]\Q and recall that F is differentiable at x(t). Let h ∈ R and introduce the difference for |h| small enough Remark that ∆ t (h) ≥ 0, as F is concave. By Lemma 3.1, ∆ t (h), which is a secondorder difference, depends only on the angular variation of F at the irreducible rational points lying in [t, t + h]. This implies :

	∆ t (h) = F(x(t)) -F(x(t + h)) + F (x(t)) • (x(t) -x(t + h)).
	∆ t (h) ≤	p/q∈(t,t+h),p∧q=1
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which exactly implies (2) (C depends on t). The case h < 0 is treated similarly.

As t -→ x(t) is Lipschitz (by Theorem (1.2)), the image of A by t -→ x(t) also has zero Hausdorff-dimension. Hence, outside a set of Hausdorff-dimension zero, (2) holds true. This completes the proof of item (1) of Theorem 1.1.

Recall that item (2) of Theorem 1.1. follows from Theorem 1.3 and the remarks made in the introduction. 4.2. Proof of Theorem 1.3 Fix t ∈ [0, 1/2]\Q and consider the convergents (p n /q n ) n≥1 associated with t. Define :

and set M (t) = sup E(t). Remark that this definition of M (t) coincides with the one given in the introduction : M (t) = lim inf n→+∞ q n / log 2 q n+1 . Let h > 0 and k be such that t < p 2k+1 /q 2k+1 ≤ t + h < p 2k-1 /q 2k-1 . Again, the case h < 0 is similar. Let now M ∈ E(t). From ( 21), we obtain that

It follows then from (20) that :

Since M ∈ E(t), the quantity between brackets is bounded in k, thus [START_REF] Katok | Introduction to the modern theory of dynamical systems[END_REF] clearly implies that for some constant C M (depending on t and M ),

Hence, h F (x(t)) ≥ 1 + M , for every M ∈ E(t) and finally h F (x(t)) ≥ 1 + M (t). This obviously implies that h F (x(t)) = +∞ when M (t) = +∞ (this yields item (2a) of Theorem 1.3).

In order to prove items (2b) and (2c) of Theorem 1.3, we now study the converse inequality. Suppose that M (t) < +∞. Notice that it is very classical to see that the set of points satisfying M (t) < +∞ has Hausdorff dimension 0. Assume that F is C 1+M (x(t)), for M > M (t). Let k and then h > 0 (chosen later) be such that :

Consider again the difference ∆ t (h). The same argument as in the proof of Theorem 1.1 also holds true here. Hence, using successively Lemma 3.1, Proposition 3.1 and Proposition 3.2, we obtain :
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