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Abstract

The subject of this paper is the estimation of a probability measure on R
d from data

observed with an additive noise, under the Wasserstein metric of order p (with p ≥ 1). We
assume that the distribution of the errors is known and belongs to a class of supersmooth
distributions, and we give optimal rates of convergence for the Wasserstein metric of order
p. In particular, we show how to use the existing lower bounds for the estimation of the
cumulative distribution function in dimension one to find lower bounds for the Wasserstein
deconvolution in any dimension.
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1 Introduction

We observe n random vectors Yi in R
d sampled according to the convolution model:

Yi = Xi + εi (1)

where the random vectors Xi = (Xi,1, . . . ,Xi,j , . . . ,Xi,d)
′ are i.i.d. and distributed according

to an unknown probability measure µ. The random vectors εi = (εi,1, . . . , εi,j , . . . , εi,d)
′ are

i.i.d. and distributed according to a known probability measure µε. The distribution of the
observations Yi on R

d is then the convolution µ ⋆µε. Here, we shall assume that there exists an
invertible matrix A such that the coordinates of the vector Aε1 are independent (that is: the
image measure of µε by A is the product of its marginals).

This paper is about minimax optimal rates of convergence for estimating the measure µ
under Wasserstein metrics. For p ≥ 1, the Wasserstein distance Wp between µ and µ′ is defined
by:

Wp(µ, µ
′) = inf

π∈Π(µ,µ′)

(∫

Rd×Rd

‖x− y‖pπ(dx, dy)
)

1

p

,

where Π(µ, µ′) is the set of probability measures on R
d × R

d with marginals µ and µ′ and p
is a real number in [1,∞( (see [RR98] or [Vil08]). The norm ‖.‖ is the euclidean norm in R

d

corresponding to the inner product < ·, · >.
The Wasserstein deconvolution problem is interesting in itself since Wp are natural distances

for comparing measures (without assuming densities for instance). Moreover, it is also related to
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recent results in geometric inference. Indeed, in 2011, [CCSM11] have defined a distance function
to measures to answer geometric inference problems in a probabilistic setting. According to their
result, the topological properties of a shape can be recovered by using the distance to a known
measure µ̃, if µ̃ is close enough to a measure µ concentrated on this shape with respect to
the Wasserstein distance W2. This fact motivates the study of the Wasserstein deconvolution
problem, since in practice the data can be observed with noise.

In the paper [CCDM11], the authors consider a slight modification of the classical kernel
deconvolution estimator, and they provide some upper bounds for the rate of convergence of
this estimator for the W2 distance, for several noise distributions. Nevertheless the question of
optimal rates of convergence in the minimax sense was left open in this previous work. The
main contribution of the present paper is to find optimal rates of convergence for a class of
supersmooth distributions, for any dimension under any Wasserstein metric Wp. In particular
we prove that the deconvolution estimator of µ under the W2 metric introduced in [CCDM11]
is minimax optimal for a class of supersmooth distributions.

The rates of convergence for deconvolving a density have been deeply studied for other met-
rics. Minimax rates in the univariate context can be found for instance in [Fan91b, BT08a,
BT08b] and in the recent monograph [Mei09]. The multivariate problem has also been investi-
gated in [Tan94, CL11]. All these contributions concern pointwise convergences or L

2 conver-
gences; rates of convergence for the Wasserstein metrics have been studied only by [CCDM11].
In Section 2 of the present paper, we shall see that, in the supersmooth case, lower bounds for
the Wasserstein deconvolution problem in any dimension can be deduced from lower bounds for
the deconvolution of the cumulative distribution function (c.d.f.) in dimension one.

Another interesting related work is [GPPVW12]. In this recent paper, the authors find
lower and upper bounds for the risk of estimating a manifold in Hausdorff distance under
several noise assumptions. They consider in particular the additive noise model (1) with a
standard multivariate Gaussian noise.

Before giving the main result of our paper, we need some notations. Let ν be a measure on
R
d with density g and let m be another measure on R

d. In the following we shall denote by
m ⋆ g the density of m ⋆ ν, that is

m ⋆ g(x) =

∫

Rd

g(x− z)m(dz) .

We also denote by µ∗ (respectively f∗) the Fourier transform of the probability measure µ
(respectively of the integrable function f), that is:

µ∗(x) =

∫

Rd

ei<t,x>µ(dt) and f∗(x) =

∫

Rd

ei<t,x>f(t)dt .

For M > 0 and p ≥ 1, let DA(M,p) be the set of measures µ on R
d for which

sup
1≤j≤d

Eµ

(

(1 + |(AX1)j |2p+2)
∏

1≤ℓ≤d, ℓ 6=j

(1 + (AX1)
2
ℓ )
)

≤ M < ∞.

Let us give the main result of our paper when ε1 is a non degenerate Gaussian random
vector (by non degenerate, we mean that its covariance matrix is not equal to zero).

Theorem 1. Assume that we observe Y1, . . . , Yn in the multivariate convolution model (1),
where ε1 is a non degenerate Gaussian random vector. Let A be an invertible matrix such that
the coordinates of Aε1 are independent. Let M > 0 and p ≥ 1. Then
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1. There exists a constant C > 0 such that for any estimator µ̃n of the measure µ:

lim inf
n→∞

(log n)p/2 sup
µ∈DA(M,p)

E(µ⋆µε)⊗n(W p
p (µ̃n, µ)) ≥ C.

2. One can build an estimator µ̂n of µ such that

sup
n≥1

sup
µ∈DA(M,p)

(log n)p/2 E(µ⋆µε)⊗n(W p
p (µ̂n, µ)) ≤ K ,

for some positive constant K.

Note that in Theorem 1 the random vector ε1 may have all its coordinates, excepts one,
equal to zero almost surely. In other words, a Gaussian noise in one direction leads to the same
rate of convergence as an isotropic Gaussian noise.

The paper is organized as follows. The proof of the lower bound is given in Section 2. In
Section 3 we then give the corresponding upper bound in the same context by generalizing the
results of [CCDM11] for all p ≥ 1. We finally discuss the Wp deconvolution problem for ordinary
smooth case in Section 4. Some additional technical results are given in Appendix.

2 Lower bounds

2.1 Main result

The following theorem is the main result of this section. It gives a lower bound on the rates of
convergence of measure estimators in the supersmooth case for any dimension and under any
metric Wp.

Theorem 2. Let M > 0, p ≥ 1. Assume that we observe Y1, . . . , Yn in the multivariate
convolution model (1). Assume that there exists j0 ∈ {1, . . . , d} such that the coordinate (Aε1)j0
has a density g with respect to the Lebesgue measure satisfying for all w ∈ R:

|g∗(w)|(1 + |w|)−β̃ exp(|w|β/γ1) ≤ c1 (2)

for some β > 0 and some β̃ ∈ R. Also assume that there exist some constants κ1 ∈ (0, 1) and
κ2 > 1 such that

P (|(Aε1)j0 − t| ≤ |t|κ1) = O(|t|−κ2) as |t| → ∞ (3)

and

max

(

p+ 2 ,
κ2
2κ1

+
1

2

)

< κ2. (4)

Then there exists a constant C > 0 such that for all estimator µ̃n of the measure µ:

lim inf
n→∞

(log n)p/β sup
µ∈DA(M,p)

E(µ⋆µε)⊗n W p
p (µ̃n, µ) ≥ C.

The assumption about the random variable (Aε1)j0 means that the noise is supersmooth in
at least one direction. Indeed, as shown in Section 2.1.1, the lower bound for the multivariate
problem can be deduced from the lower bound for the L

1 estimation of the c.d.f. of (Aε1)j0 .
If the distribution of the noise is supersmooth in several directions then one may choose the
direction with the greatest coefficient β.

The assumption (3) is classical in the deconvolution setting, see for instance [Fan91b, Fan92].
The technical assumption (4) summarizes the conditions on p and κ2. The condition

κ2

2κ1
+ 1

2 < κ2
is also required in [Fan91b] and [Fan92]. The additional condition p + 2 < κ2 is a consequence
of the moment assumption on µ.

If g has a polynomial decay rate at infinity, we can state the following lemma:
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Lemma 1. Assume that the density g of (Aε1)j0 satisfies |g(t)| = O(|t|−a) as t tends to infinity,
for some a ≥ p+3. Then one can find κ1 ∈ (0, 1) and κ2 > 1 such that Conditions (3) and (4)
are satisfied.

Proof. For t > 0 large enough

P (|(Aε1)j0 − t| ≤ tκ1) =

∫ t+tκ1

t−tκ1
g(u)du

= O
(

(t− tκ1)−p−2 − (t+ tκ1)−p−2
)

= O
(

t−(p+3−κ1)
)

.

We choose κ1 = 3/5 and we take κ2 = p+ 3− κ1 = p+12/5. Note that κ1 ∈ (0, 1), κ2 > 1 and
that (3) is satisfied. Moreover, κ2 > p+2 and κ2 − κ2/(2κ1)− 1

2 ≥ 1/3 > 0 and thus Condition
(4) is also satisfied.

2.1.1 Wasserstein deconvolution and c.d.f. deconvolution

It is well known that the Wasserstein distance W1 between two measures µ and µ′ on R can be
computed using the cumulative distribution functions: Let µ and µ′ be two probability measures
on R, then

W1(µ, µ
′) =

∫

R

|Fµ(x)− Fµ′(x)| dx.

According to this property, lower bounds on the rates of convergence for estimating µ in the
one dimensional convolution model (1) for the metric W1 can be directly deduced from lower
bounds on the rates of convergence for the estimation of the c.d.f. of µ using the integrated risk
R(F̂ ) :=

∫

R
|Fµ(t) − F̂ (t)|dt. This last problem has been less studied than pointwise rates in

the deconvolution context but some results can be found in the literature. For instance [Fan92]
gives the optimal rate of convergence in the supersmooth case for an integrated (weighted) Lp

risk under similar smoothness conditions as for the pointwise case (studied in [Fan91b]). The
cubical method followed in [Fan92] to compute the integrated lower bound is also detailed in
[Fan93]. It is based on a multiple hypothesis strategy, see [Tsy09] for other examples of using
multiple hypothesis schema for computing lower bounds for integrated risks.

For M > 0 and p ≥ 1, we consider the set CA(M,p) of the measures µ in DA(M,p) for which
the coordinates of AX1 are independent. Thus, for µ ∈ CA(M,p):

sup
1≤j≤d

(

Eµ(1 + |(AX1)j |2p+2)
∏

1≤ℓ≤d, ℓ 6=j

Eµ(1 + (AX1)
2
ℓ )
)

≤ M < ∞.

Moreover we simply use the notation C(M,p) if A = Id.
The following theorem gives lower bounds for W1(µ̃n, µ) in the d-dimensional case, which

are derived from lower bounds on the rates of convergence of c.d.f. estimators in R.

Theorem 3. Under the same assumptions as in Theorem 2, there exists C > 0 such that for
all estimator µ̃n of the measure µ:

lim inf
n→∞

(log n)1/β sup
µ∈CA(M,p)

E(µ⋆µε)⊗n W1(µ̃n, µ) ≥ C.

Theorem 2 is a corollary of Theorem 3 because

1. CA(M,p) is a subset of DA(M,p).

2. For any p ≥ 1, E(µ⋆µε)⊗n W p
1 (µ̃n, µ) ≥

(

E(µ⋆µε)⊗n W1(µ̃n, µ)
)p
.

3. W1 is the smallest among all the Wasserstein distances: for any p ≥ 1 and any measures
µ and µ′ on R

d: Wp(µ, µ
′) ≥ W1(µ, µ

′).
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2.2 Proof of Theorem 3

Since the works of Le Cam, it is well known that rates of convergence of estimators on some
probably measure space P can be lower bounded by introducing some convenient finite subset of
P whose elements are close enough for the total variation distance or for the Hellinger distance.
In the deconvolution setting, χ2 distance are preferable to these last metrics. Here, the following
definition of the χ2 distance will be sufficient: for two positive densities h1 and h2 with respect
to the Lebesgue measure on R

d, the χ2 distance between h1 and h2 is defined by

χ2(h1, h2) =

∫

Rd

{(h1(x)− h2(x)}2
h1(x)

dx.

The main arguments for proving Theorem 3 comes from [Fan91b, Fan92, Fan93]. However
some modifications are necessary to compute the lower bounds under the moment assumption
CA(M,p). Furthermore, we note that Theorem 1 in [Fan93] cannot be directly applied in this
multivariate context.

Without loss of generality, we take j0 = 1. We shall first prove Theorem 3 in the case where
ε1 has independent coordinates.

2.2.1 Errors with independent coordinates

In this section, we observe Y1, . . . , Yn in the multivariate convolution model (1) and we assume
that the random variables (ε1,j)1≤j≤d are independent. This means that A = Id and that ε1 has
the distribution µε = µε,1 ⊗ µε,2 ⊗ · · · ⊗ µε,d.

Definition of a finite family in C(M,p). Let us introduce a finite class of probability measures
in C(M,p) which are absolutely continuous with respect to the Lebesgue measure λd. First, we
define some densities

f0,r(t) := Cr(1 + t2)−r (5)

with some r > 0 such that

max

(

p+
3

2
,
1

2

κ2
κ1

)

< r < κ2 −
1

2
. (6)

Note that this is possible according to (4). Moreover, f0,r has a finite (2p + 2)-th moment.
Next, let bn be the sequence

bn :=
[(1

η
log n

)1/β]

∨ 1 , (7)

where [·] is the integer part, and η =
(

1− 2r
2κ2−1

)

/γ. Note that bn is correctly defined in this

way since κ2 − 1
2 > r. For any θ ∈ {0, 1}bn , let

fθ(t) = f0,r(t) +A

bn
∑

s=1

θsH (bn(t− ts,n)) , t ∈ R, (8)

where A is a positive constant and ts,n = (s − 1)/bn. The function H is a bounded function
whose integral on the line is 0. Moreover, we may choose a function H such that (see for instance
[Fan91b] or [Fan93]):

(A1)
∫ +∞
−∞ H dt = 0 and

∫ 1
0 |H(−1)| dt > 0,

(A2) |H(t)| ≤ c(1 + t2)−r,
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(A3) H∗(z) = 0 outside [1, 2]

where H(−1)(t) :=
∫ t
−∞H(u) du is a primitive of H.

Using (A2) and Lemma 3 of Appendix A, we choose A > 0 small enough in such a way
that fθ is a density on R. Note that by replacing H by H/A in the following, we finally can
take A = 1 in (8). Using (A2) and Lemma 3 again, we get that for M large enough, for all
θ ∈ {0, 1}bn :

∫

R

(

1 + t2 ∨ t2p+2
)

fθ(t) dt ≤ M1/d. (9)

We finally use these univariate densities fθ to define a finite family of probability measures
on R

d which is included in C(M,p). For θ ∈ {0, 1}bn , let us define the probability measure on
R
d:

µθ := (fθ · dλ)⊗ (f0,r · dλ)⊗ · · · ⊗ (f0,r · dλ) . (10)

For any j ∈ {1, . . . , d}, according to (9) :

(

Eµθ
(1 +X2p+2

1,j )
∏

2≤ℓ≤d

Eµθ
(1 +X2

1,ℓ)
)

≤ M

and thus µθ ∈ C(M,p).

Lower bound. Let µ̃n be an estimator of µ and let (µ̃n)1 be the marginal distribution of
µ̃n on the first coordinate (conditionally to the sample Y1, . . . , Yn). According to Lemma 6 of
Appendix B:

sup
µ∈C(M,p)

E(µ⋆µε)⊗nW1 (µ, µ̃n) ≥ sup
θ∈{0,1}n

E(µθ⋆µε)⊗nW1 (µθ, µ̃n)

≥ sup
θ∈{0,1}n

E(µθ⋆µε)⊗nW1 (fθ · dλ , (µ̃n)1)

≥ inf
f̂n

sup
θ∈{0,1}n

E(µθ⋆µε)⊗nW1

(

fθ · dλ , f̂n
)

where the infimum of the last line is taken over all the probability measure estimators of fθ ·dλ.
Following [Fan93] (see also the proof of Theorem 2.14 in [Mei09]), we now introduce a

random vector θ̃ whose components θ̃s are i.i.d. Bernoulli random variables θ̃1, . . . , θ̃bn such
that P (θ̃s = 1) = 1

2 . The density fθ̃ is thus a random density taking its values in the set of

densities defined by (8). Let E be the expectation according to the law of θ̃. For any probability
estimator f̂n:

sup
µ∈C(M,p)

E(µ⋆µε)⊗nW1 (µ, µ̃n) ≥ E E(µ
θ̃
⋆µε)⊗n

[

W1

(

fθ̃ · dλ , f̂n
)]

≥
∫

R

E E(µ
θ̃
⋆µε)⊗n

(

|Fθ̃(t)− F̂n(t)|
)

dt (11)

where F̂ and Fθ are the c.d.f. of the distributions f̂n and fθ · dλ. For θ ∈ {0, 1}bn and
s ∈ {1, . . . , bn}, let us define

fθ,s,0 := f(θ1,...,θs−1,0,θs+1,...,θbn )
and fθ,s,1 := f(θ1,...,θs−1,1,θs+1,...,θbn)

and the corresponding probability measures µθ,s,0 and µθ,s,1 on R
d defined by (10) for fθ = fθ,s,0

or fθ,s,1. Let h̄θ,s,0 and h̄θ,s,1 be the densities of µθ,s,0⋆µε and µθ,s,1⋆µε for the Lebesgue measure
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on R
d. Since the margins of µθ and µε are independent, for any yi = (yi,1, . . . , yi,j, . . . , yi,d) ∈ R

d

(u = 0 or 1), we have:

h̄θ,s,u(yi) = hθ,s,u(yi,1)
∏

j=2,...,d

f0,r ⋆ µε,j(yi,j) (12)

where hθ,s,u = fθ,s,u ⋆ g. Let Fθ,s,0 and Fθ,s,1 be the c.d.f of fθ,s,0 and fθ,s,1. For t ∈ [ts,n, ts+1,n]
where s in {1, . . . , bn}, by conditioning by θ̃s, we find that

E E(µ
θ̃
⋆µε)⊗n

(

|Fθ̃(t)− F̂n(t)|
)

=

1

2
E

[

Eh̄⊗n

θ̃,s,0

(

|Fθ̃,s,0(t)− F̂n(t)|
)

+ Eh̄⊗n

θ̃,s,1

(

|Fθ̃,s,1(t)− F̂n(t)|
)

]

.

Hence

E E(µ
θ̃
⋆µε)⊗n

(

|Fθ̃(t)− F̂n(t)|
)

≥ 1

2
E

∫

Rd

. . .

∫

Rd

{

|Fθ̃,s,0(t)− F̂n(t)|+ |Fθ̃,s,1(t)− F̂n(t)|
}

min

(

n
∏

i=1

h̄θ̃,s,0(yi),
n
∏

i=1

h̄θ̃,s,1(yi)

)

dy1 . . . dyn ,

and consequently, according to (12),

E E(µ
θ̃
⋆µε)⊗n

(

|Fθ̃(t)− F̂n(t)|
)

≥ 1

2
E

∫

Rd

. . .

∫

Rd

|Fθ̃,s,0(t)− Fθ̃,s,1(t)|

min

(

n
∏

i=1

hθ̃,s,0(yi,1),
n
∏

i=1

hθ̃,s,1(yi,1)

)







d
∏

j=2

f0,r ⋆ µε,j(yi,j)







dy1 . . . dyn .

By using Fubini, it follows that

E E(µ
θ̃
⋆µε)⊗n

(

|Fθ̃(t)− F̂n(t)|
)

≥

1

2
E

∫

R

. . .

∫

R

|Fθ̃,s,0(t)− Fθ̃,s,1(t)|min

(

n
∏

i=1

hθ̃,s,0(yi,1),

n
∏

i=1

hθ̃,s,1(yi,1)

)

dy1,1 . . . dyn,1 .

Note that for any θ ∈ {0, 1}bn , |Fθ̃,s,0(t)− Fθ̃,s,1(t)| = b−1
n

∣

∣H(−1) (bn(t− ts,n))
∣

∣, thus

E E(µ
θ̃
⋆µε)⊗n

(

|Fθ̃(t)− F̂n(t)|
)

≥
∣

∣H(−1) (bn(t− ts,n))
∣

∣

2bn
E

∫

Rn

min

(

n
∏

i=1

hθ̃,s,0(yi,1),

n
∏

i=1

hθ̃,s,1(yi,1)

)

dy1,1 . . . dyn,1. (13)

According to Le Cam’s Lemma (see Lemma 7 of Appendix B), for any θ ∈ {0, 1}bn :
∫

Rn

min

(

n
∏

i=1

hθ,s,0(yi,1),

n
∏

i=1

hθ,s,1(yi,1)

)

dy1,1 . . . dyn,1

≥ 1

2





∫

Rn

{

n
∏

i=1

hθ,s,0(yi,1)

}
1

2
{

n
∏

i=1

hθ,s,1(yi,1)

}
1

2

dy1,1 . . . dyn,1





2

≥ 1

2

[
∫

R

√

hθ,s,0(y1,1)hθ,s,1(y1,1)dy1,1

]2n

≥ 1

2

[

1− 1

2
χ2 (hθ,s,0 , hθ,s,1)

]2n

(14)
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where we have used Lemma 8 of Appendix B for the last inequality. Assume for the moment
that there exists a constant c > 0 such that for any θ ∈ {0, 1}bn :

χ2 (hθ,s,0 , hθ,s,1) ≤
c

n
. (15)

Then, using (11), (13), (14) and (15), we find that there exists a constant C > 0 such that

sup
µ∈C(M,p)

E(µ⋆µε)⊗nW1 (µ, µ̃n) ≥
C

bn

bn
∑

s=1

∫ ts+1,n

ts,n

∣

∣

∣H(−1) (bn(t− ts,n))
∣

∣

∣ dt ≥ C

bn

∫ 1

0

∣

∣

∣H(−1)(u)
∣

∣

∣ du .

Take bn as in (7) and the theorem is thus proved (for A = Id) since the last term is positive
according to (A1).

Proof of (15). Let C be a positive constant which may vary from line to line. We follow
[Fan92] to show that (15) is valid for bn chosen as in (7). Recall that we have chosen the
function H such that, by Lemma 3 of Appendix A, fθ ≥ Cf0,r. Thus,

χ2 (hθ,s,0 , hθ,s,1) ≤
∫ +∞

−∞

{

∫ +∞
−∞ H [bn(t− u− ts,n)] g(u) du

}2

fθ,s,0 ⋆ g(t)
dt

≤ C

∫ +∞

−∞

{

∫ +∞
−∞ H [bn(t− u− ts,n)] g(u) du

}2

f0,r ⋆ g(t)
dt

≤ C

∫ +∞

−∞

{

∫ +∞
−∞ H [bn(t

′ − u)] g(u) du
}2

∫ +∞
−∞ f0,r(t′ + ts,n − u)g(u) du

dt′.

Moreover, there exists a positive constant C such that for any t ∈ R and any s ∈ {1, . . . , bn},
f0,r(t+ ts,n) ≥ Cf0,r(t). Then,

χ2 (hθ,s,0 , hθ,s,1) ≤ C

∫ +∞

−∞

{

∫ +∞
−∞ H [bn(t

′ − u)] g(u) du
}2

∫ +∞
−∞ f0,r(t′ − u)g(u) du

dt′

≤ Cb−1
n

∫ +∞

−∞

{

∫ +∞
−∞ H(v − y)g(y/bn) dy/bn

}2

f0,r ⋆ g(v/bn)
dv. (16)

The right side of (16) is typically the kind of χ2 divergence that is upper bounded in the
proof of Theorem 4 in [Fan91b] for computing pointwise rates of convergence. However, a
slight modification of the proof of Fan is necessary since we can not assume here that r <
min(1, κ2 − 0.5) (because r > p+ 3/2). It is shown in the proof of Theorem 4 in [Fan91b] that

∫ +∞

−∞

{
∫ +∞

−∞
H(v − y)g(y/bn) dy/bn

}2

dv = O
(

b2β̃n exp(−2bβn/γ)
)

. (17)

According to Lemma 4 of Appendix A, there exist t0 > 0, C1 > 0 and C2 > 0 such that for any
t ∈ R:

f0,r ⋆ g(t) ≥ C11|t|≤t0 +
C2

t2r
1|t|>t0 (18)
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Note that we can apply Lemma 5 of appendix A since r satisfies (6). Then, using (17), (18)
and Lemma 5 of Appendix A, for T > t0 we have:

∫ +∞

−∞

{

∫ +∞
−∞ H(v − y)g(y/bn) dy/bn

}2

f0,r ⋆ g(v/bn)
dv

=

∫

|v|/bn≤T

{

∫ +∞
−∞ H(v − y)g(y/bn) dy/bn

}2

f0,r ⋆ g(v/bn)
dv +

∫

|v|/bn>T

{

∫ +∞
−∞ H(v − y)g(y/bn) dy/bn

}2

f0,r ⋆ g(v/bn)
dv

≤ (C1 ∧ C2T
−2r)−1

∫ +∞

−∞

{
∫ +∞

−∞
H(v − y)g(y/bn) dy/bn

}2

dv + Cr

∫

|v|/bn>T

(|v|/bn)−2κ2

(|v|/bn)−2r
dv

≤ O
(

T 2rb2β̃n exp(−2bβn/γ)
)

+O
(

b2(r−κ2)
n T 2(r−κ2)+1

)

for T large enough. By taking T = Tn = b
2r−2κ2−2β̃

2κ2−1

n exp
(

2bβn
γ(2κ2−1)

)

in this bound and according

to (16), we find that for n large enough:

χ2(hθ,s,0 , hθ,s,1) = O

(

b
2β̃+4r

r−κ2−β̃

2κ2−1

n exp

{

−2bβn
γ

[

1− 2r

2κ2 − 1

]

})

= O
(

exp(−ηbβn)
)

= O

(

1

n

)

for bn defined by (7).

2.2.2 The general case

We now assume, as in the introduction, that there exists a invertible matrix A such that the
coordinates of the vector Aε1 are independent. Let µ ∈ CA(M,p) and let µ̂n be an estimator of
the probability measure µ. Let µA and µ̂A

n be the image measures of µ and µ̂ by A. Then,

W1(µ̂
A
n , µ

A) = min
π∈Π(µ̂A

n ,µA)

∫

Rd×Rd

‖x− y‖π(dx, dy)

= min
τ∈Π(µ̂n,µ)

∫

Rd×Rd

‖Ax−Ay‖ τ(dx, dy)

≤ ‖A‖W1 (µ̂n, µ) ,

where ‖A‖ = sup‖x‖=1 ‖Ax‖. Consequently W1 (µ̂n, µ) ≥ ‖A‖−1W1(µ̂
A
n , µ

A).

The image measure of µ ⋆ µε by A is equal to µA ⋆ µA
ε , where µA

ε is the image measure of
µε by A. Moreover, the probability measure estimator µ̂A

n can be written µ̂A
n = m(Z1, . . . , Zn)

where Zi = AYi and m is a measurable function from (Rd)n into the set of probability measures
on R

d. Thus,

E(µ⋆µε)⊗n W1

(

µ̂A, µA
)

= E(µA⋆µA
ε )⊗n W1

(

m(Z1, . . . , Zn), µ
A
)

.

Since µ ∈ CA(M,p) ⇔ µA ∈ C(M,p), we obtain that

sup
µ∈CA(M,p)

E(µ⋆µε)⊗n W1(µ̂n, µ) ≥ ‖A‖−1 sup
µA∈C(M,p)

E(µA⋆µA
ε )⊗n W1

(

m(Z1, . . . , Zn) , µ
A
)

. (19)

Note that, in the model Zi = AXi + Aεi, the error η = Aε has independent coordinates and
satisfies the assumptions of Theorem 2 for A = Id.
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We now apply the lower bound obtained in Section 2.2.1 , which gives that there exists a
positive constant C such that

lim inf
n→∞

(log n)1/β sup
ν∈C(M,p)

E(ν⋆µη)⊗n W1 (m(Z1, . . . , Zn) , ν) ≥ C. (20)

The result follows from (20) and (19).

3 Upper bounds

In this section, we generalize the results of [CCDM11] by proving an upper bound on the rates
of convergence for the estimation of the probability µ under any metric Wp.

3.1 Errors with independent coordinates

In this section, we assume that the random variables (ε1,j)1≤j≤d are independent, which means
that ε1 has the distribution µε = µε,1 ⊗ · · · ⊗ µε,d.

Let p ∈ [1,∞[ and denote by ⌈p⌉ the smallest integer greater than p. We first define a
kernel k whose Fourier transform is smooth enough and compactly supported over [−1, 1]. Such
kernels can be defined by considering powers of the sinc function. More precisely, let

k(x) = cp

{

(2⌈p/2⌉ + 2) sin x
2⌈p/2⌉+2

x

}2⌈p/2⌉+2

.

where cp is such that
∫

k(x)dx = 1. The kernel k is a symmetric density, and k∗ is supported
over [−1, 1]. Moreover k∗ is ⌈p⌉ times differentiable with Lipschitz ⌈p⌉-th derivative. For any
j ∈ {1, · · · , d} and any hj > 0, let

k̃j,hj
(x) =

1

2π

∫

eiux
k∗(u)

µ∗
j (u/hj)

du .

A preliminary estimator f̂n is given by

f̂n(x1, . . . , xd) =
1

n

n
∑

i=1

∏

j=1...d

1

h j
k̃j,hj

(xj − Yi,j

hj

)

. (21)

The estimator (21) is the multivariate version of the standard deconvolution kernel density
estimator which was first introduced in [CH88]. This estimator has been the subject of many
works in the one dimensional case, but only few authors have studied the multidimensional
deconvolution problem, see [Tan94], [CL11] and [CCDM11].

The estimator f̂n is not necessarily a density, since it has no reason to be non negative.
Since our estimator has to be a probability measure, we define

ĝn(x) = αnf̂
+
n (x), where αn =

1
∫

Rd f̂
+
n (x)dx

and f̂+
n = max{0, f̂n} .

The estimator µ̂n of µ is then the probability measure with density ĝn.
The next theorem gives the rates of convergence of the estimator µ̂n under some assumptions

on the derivatives of the functions rj := 1/µ∗
ε,j.

10



Theorem 4. Let M > 0. Assume that we observe a n-sample Y1 . . . , Yn in the multivariate
convolution model (1). Also assume that there exists β > 0, β̃ ≥ 0, γ2 > 0 and c2 > 0 such that
for every j ∈ {1, . . . , d}, every ℓ ∈ {0, 1 . . . , ⌈p⌉+ 1} and every t ∈ R:

∣

∣

∣
r
(ℓ)
j (t)

∣

∣

∣
≤ c2(1 + |t|β̃) exp

(

|t|β/γ2
)

. (22)

Taking h1 = · · · = hd = (4d/(γ2 log(n))
1/β , there exists a positive constant C such that

sup
µ∈D(M,p)

E(µ⋆µε)⊗n

(

W p
p (µ, µ̂n)

)

≤ C (log n)
− p

β .

3.1.1 Proof of Theorem 4

Let H = (h1, h2, . . . , hd). We follow the proof of Proposition 2 in [CCDM11]. First we have the
bias-variance decomposition

E(µ⋆µε)⊗n(W p
p (µ̂n, µ)) ≤ 2p−1B(H) + 22(p−1)

∫

Rd

(2p−1C(H) + ‖x‖p)
√

Var(f̂n(x))dx ,

where

B(H) =

∫

‖Htx‖pK(x)dx and C(H) = B(H) +

∫

‖x‖pµ(dx) .

The proof of this inequality is the same as that of Proposition 1 in [CCDM11], by using Theorem
6.15 in [Vil08].

Note that B(H) is such that B(H) ≤ dp−1β(hp1+ · · ·+hpd), with β =
∫

|u|pk(u)du. To ensure
the consistency of the estimator, the bias term B(H) has to tend to zero as n tends to infinity.
Without loss of generality, we assume in the following that H is such that B(H) ≤ 1. Hence,
the variance term

Vn = 22(p−1)

∫

Rd

(2p−1C(H) + ‖x‖p)
√

Var(f̂n(x))dx

is such that

Vn ≤ C

∫

Rd

(

1 +

d
∑

j=1

|xj |p
)

√

Var(f̂n(x1, . . . , xn)) dx1 . . . dxd

for some positive constant C. Now

√

Var(f̂n(x1, . . . , xn)) ≤
1√
n

√

√

√

√

√E(µ⋆µε)⊗n











d
∏

j=1

1

hj
k̃j,hj

(xj − Y1,j

hj

)







2

 .

Applying Cauchy-Schwarz’s inequality d-times, we obtain that

∫

Rd

√

Var(f̂n(x1, . . . , xn)) dx1 . . . dxd

≤ D1√
n

√

√

√

√E(µ⋆µε)⊗n

(

d
∏

j=1

∫

(1 ∨ x2j )
( 1

hj
k̃j,hj

(xj − Y1,j

hj

))2
dxj

)

≤ D2√
n

√

√

√

√E(µ⋆µε)⊗n

(

d
∏

j=1

(1 ∨ Y 2
1,j)
)

d
∏

j=1

∫

(1 + u2jh
2
j)

1

hj
(k̃j,hj

(uj))2duj
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where D1 and D2 are positive constants depending on d. Now, by independence of X1 and ε1,
and by independence of the coordinates of ε1,

Eµ⋆µε

(

d
∏

j=1

(1 ∨ Y 2
1,j)
)

≤ Eµ

(

d
∏

j=1

(1 +X2
1,j)
)

d
∏

j=1

(1 + Eµε(ε
2
1,j)).

Since µ ∈ D(M,p), it follows that

∫

Rd

√

Var(f̂n(x)) dx ≤ A0√
n

√

√

√

√

d
∏

j=1

∫

(1 + u2jh
2
j )

1

hj
(k̃j,hj

(uj))2duj . (23)

In the same way, using again that µ ∈ D(M,p), we obtain that

∫

Rd

|xℓ|p
√

Var(f̂n(x1, . . . , xn)) dx1 . . . dxd

≤ Aℓ√
n

√

√

√

√

∫

(1 + |uℓ|2p+2h2p+2
ℓ )

1

hℓ
(k̃ℓ,hℓ

(uℓ))2duℓ
∏

j 6=ℓ

∫

(1 + u2jh
2
j )

1

hj
(k̃j,hj

(uj))2duj .

Starting from these computations, one can prove the following Proposition.

Proposition 1. Let (h1, . . . , hd) ∈ [0, 1]d. The following upper bound holds

E(µ⋆µε)⊗n(W p
p (µ̂n, µ)) ≤ (2d)p−1β(hp1+ · · ·+hpd)+

L√
n





d
∏

j=1

Ij(hj) +
d
∑

ℓ=1

Jℓ(hℓ)
(

d
∏

j=1,j 6=ℓ

Ij(hj)
)





where L is some positive constant L and

Ij(h) ≤
√

∫ 1/h

−1/h
(rj(u))2 + (r′j(u))

2du ,

Jj(h) ≤
√

∫ 1/h

−1/h
(rj(u))2 + (r

(⌈p⌉+1)
j (u))2du

+

⌈p⌉
∑

k=1

h⌈p⌉+1−k

√

∫ 1/h

−1/h
(r

(k)
j (u))2du .

Let us finish the proof of Theorem 4 before proving Proposition 1. Take h1 = . . . = hd = h.
The condition (22) on the derivatives of rj leads to the upper bounds

E(µ⋆µε)⊗n(W p
p (µ̂n, µ)) ≤ C

(

hp +
1

√
nhd(2β̃+1)/2

exp(d/(γ2h
β))
)

.

The choice h = (4d/(γ2 log(n))
1/β gives the desired result.

Proof of Proposition 1. It follows the proof of Proposition 2 in [CCDM11]. By Plancherel’s
identity,

∫

1

h
(k̃j,h(u))

2du =
1

2π

∫

1

h

(k∗(u))2

(µ∗
ε,j(u/h))

2
du =

1

2π

∫

(k∗(hu))2

(µ∗
ε,j(u))

2
du

≤ 1

2π

∫ 1/h

−1/h
r2j (u)du .
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the last upper bound being true because k∗ is supported over [−1, 1] and bounded by 1.
Let C be a positive constant, which may vary from line to line. Let qj,h(u) = rj(u/h)k

∗(u).
Since qj,h is differentiable with compactly supported derivative, we have that

−iu2πk̃j,h(u) = (q′j,h)
∗(u) .

Applying Plancherel’s identity again,
∫

hu2(k̃j,h(u))
2du =

1

2π

∫

h(q′j,h(u))
2du

≤ C
(

∫ 1/h

−1/h
(r′j(u))

2du+ h2
∫ 1/h

−1/h
r2j (u)du

)

,

the last inequality being true because k∗ and (k∗)′ are compactly supported over [−1, 1]. Con-
sequently

√

∫

(1 + u2jh
2
j )

1

hj
(k̃j,hj

(uj))2duj ≤ CIj(hj) .

In the same way

(−iu)⌈p⌉+12πk̃j,h(u) = (q
(⌈p⌉+1)
j,h )∗(u)

and
∫

h2⌈p⌉+1u2⌈p⌉+2(k̃j,h(u))
2du =

1

2π

∫

h2⌈p⌉+1(q
(⌈p⌉+1)
j,h (u))2du.

Now, since k∗, (k∗)′, . . . , (k∗)(⌈p⌉+1) are compactly supported over [−1, 1],

∫

h2⌈p⌉+1(q
(⌈p⌉+1)
j,h (u))2du ≤ C

⌈p⌉+1
∑

k=0

h2(⌈p⌉+1−k)

∫ 1/h

−1/h
(r

(k)
j (u))2du .

Consequently

∫

(1 + |uℓ|2p+2h2p+2
ℓ )

1

hℓ
(k̃ℓ,hℓ

(uℓ))
2duℓ

≤ 2

∫

(1 + |uℓ|2⌈p⌉+2h
2⌈p⌉+2
ℓ )

1

hℓ
(k̃ℓ,hℓ

(uℓ))
2duℓ ≤ CJℓ(hℓ) .

The results follows. �

3.2 The general case

Here, as in the introduction, we shall assume that there exists an invertible matrix A such that
the coordinates of the vector Aε1 are independent. Applying A to the random variables Yi in
(1), we obtain the new model

AYi = AXi +Aεi ,

that is: a convolution model in which each error vector ηi = Aεi has independent coordinates.
To estimate the image measure µA of µ by A, we use the preliminary estimator (21), that is

f̂n,A(x1, . . . , xd) =
1

n

n
∑

i=1

∏

j=1...d

1

h j
k̃j,hj

(xj − (AYi)j
hj

)

,

and the estimator µ̂n,A of µA is deduced from f̂n,A as in Section 3.1. This estimator µ̂n,A has
the density ĝn,A with respect to the Lebesgue measure.
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To estimate µ, we define µ̂n = µ̂A−1

n,A as the image measure of µ̂n,A by A−1. This estimator
has the density ĝn = |A|ĝn,A ◦A with respect to the Lebesgue measure. It can be deduced from

the preliminary estimator f̂n = |A|f̂n,A ◦A as in Section 3.1. Now

W p
p (µ̂n, µ) = min

λ∈Π(µ̂n,µ)

∫

‖x− y‖pλ(dx, dy)

= min
π∈Π(µ̂n,A,µA)

∫

‖A−1(x− y)‖pπ(dx, dy) .

Consequently, if ‖A−1‖ = sup‖x‖=1 ‖A−1x‖, we obtain that

W p
p (µ̂n, µ) ≤ ‖A−1‖pW p

p (µ̂n,A, µ
A) , (24)

which is an equality if A is an unitary matrix. Note also that µ ∈ DA(M,p) if and only if
µA ∈ D(M,p).

Let µη be the distribution of the ηi’s. Since the coordinates of the ηi’s are independent,
µη can be written as µη = µη,1 ⊗ · · · ⊗ µη,d. As in Section 3.1, let rj := 1/µ∗

η,j . Assume
that the rj’s satisfy the condition (22). It follows from (24) and Theorem 4 that, taking
h1 = · · · = hd = (4d/(γ2 log(n))

1/β , there exists a positive constant C such that

sup
µ∈DA(M,p)

E(µ⋆µε)⊗n

(

W p
p (µ, µ̂n)

)

≤ C (log n)
− p

β .

3.3 Examples of rates of convergence

Gaussian noise. Assume that we observe Y1, . . . , Yn in the multivariate convolution model
(1), where ε is a centered non degenerate Gaussian random vector. In that case, there always
exists an invertible matrix A such that the coordinates of Aε1 are independent. The distribution
of (Aε1)j is a either a Dirac mass at zero or a centered Gaussian random variable with positive
variance. Since ε is non degenerate, there exists at least one index j0 for which (Aε1)j0 is non
zero.

Now, the distribution of (Aε1)j0 satisfies the assumptions of Theorem 2, for any p ≥ 1
and β = 2 (Conditions (3) and (4) follow from Lemma 1). Moreover, denoting by µη,j the
distribution of η1,j = (Aε1)j , then the quantity r∗j = 1/µ∗

η,j satisfies (22) for any p ≥ 1 and
β = 2. Theorem 1 follows then from Theorems 2 and 4 (more precisely, the estimator µ̂n of
Theorem 1 is constructed as in Section 3.2).

Other supersmooth distributions. For α ∈]0, 2[, we denote by sα the symmetric α-stable
density, whose Fourier transform qα is given by

s∗α(x) = qα(x) = exp (−|x|α) .

Let qα,1 = qα and qα,2 = qα ⋆ qα. For any positive integer k > 2, define by induction qα,k =
qα,k−1 ⋆ qα.

Lemma 2. Let k be a positive integer. The function qα,k satisfies the following properties

1. qα,k is k − 1 times differentiable, and q
(k−1)
α,k is absolutely continuous, with almost sure

derivative q
(k)
α,k. Moreover, if α ∈]0, 1[ then q

(k−1)
α,k is bounded, and if α ∈ [1, 2[ then q

(k)
α,k is

bounded.
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2. There exists two positive constants aα,k and bα,k such that for any x ∈ R,

aα,k exp (−|x|α) ≤ qα,k(x) ≤ bα,k exp

(

− |x|α
2(k−1)α

)

.

The proof of Lemma 2 is given in Appendix C. Next, for any integer k ≥ 2, we introduce
the supersmooth density

fα,k(x) =
(sα(x))

k

∫

(sα(x))kdx
,

and we note that f∗
α,k = qα,k/qα,k(0) and fα,k(x) = O(|x|−k(α+1)). Let rα,k = 1/f∗

α,k. According
to Lemma 2, it follows that r is k times differentiable with

|r(ℓ)α,k(x)| ≤ Cℓ

ℓ
∑

i=1

|(f∗
α,k)

(i)(x)|
(f∗

α,k(x))
ℓ+2−i

for 1 ≤ ℓ ≤ k.

Applying Lemma 2 we see that: if α ∈]0, 1[, then for any ℓ ∈ {0, . . . , k − 1}

|r(ℓ)α,k(x)| ≤ Kα,ℓ exp(|x|α) , (25)

and the same holds for any ℓ ∈ {0, . . . , k} if α ∈ [1, 2[. Moreover, we also have the lower bound

|rα,k(x)| ≥ cα,k exp

( |x|α
2(k−1)α

)

. (26)

Now, assume that we observe Y1, . . . , Yn in the multivariate convolution model (1). Let
p ≥ 1, assume that there exists an invertible matrix A such that, for any j ∈ {1, . . . , d}, (Aε1)j
has the distribution fαj ,kj for some αj ∈]0, 2[ and such that kj ≥ ⌈p⌉ + 1 + 21αj∈]0,1[. Let
α = max1≤j≤d αj .

Inequality (26) gives Condition (2) in Theorem 4 for β = α. Lemma 1 can be applied with
a = (⌈p⌉+1+21α∈]0,1[)(α+1) and then Conditions (3) and (4) of Theorem 2 are also satisfied.
Next, according to (25), Condition (22) in Theorem 4 is satisfied for β = α. Theorems 2 and 4
finally give the following result:

1. There exists a constant C > 0 such that for all estimator µ̃n of the measure µ:

lim inf
n→∞

(log n)p/α sup
µ∈DA(M,p)

E(µ⋆µε)⊗n(W p
p (µ̃n, µ)) ≥ C.

2. The estimator µ̂n of µ constructed in Section 3.2 is such that

sup
n≥1

sup
µ∈DA(M,p)

(log n)p/α E(µ⋆µε)⊗n(W p
p (µ̂n, µ)) ≤ K ,

for some positive constant K.

Mixtures of distributions. Of course, the independent coordinates of Aε1 need not all be
Gaussian or even supersmooth.

For instance if there exists j0 such that (Aε1)j0 is a non degenerate Gaussian random variable,
and the other coordinates have distribution which is either a Dirac mass at 0 or a Laplace
distribution, or a supersmooth distribution fα,k for some α ∈]0, 2[ and k ≥ ⌈p⌉ + 1 + 21α∈]0,1[
(this list in non exhaustive), then the estimator µ̂n of µ constructed in Section 3.2 is such that

sup
n≥1

sup
µ∈DA(M,p)

(log n)p/2 E(µ⋆µε)⊗n(W p
p (µ̂n, µ)) ≤ K ,
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and this rate is minimax.
In the same way if there exists j0 such that (Aε1)j0 is supersmooth with density fα,k for

some α ∈]0, 2[ and k ≥ ⌈p⌉+1+ 21α∈]0,1[, and the other coordinates have distribution which is
either a Dirac mass at 0 or a Laplace distribution, or a supersmooth distribution fβ,m for some
β ∈]0, α] and m ≥ ⌈p⌉ + 1 + 21β∈]0,1[, then the estimator µ̂n of µ constructed in Section 3.2 is
such that

sup
n≥1

sup
µ∈DA(M,p)

(log n)p/α E(µ⋆µε)⊗n(W p
p (µ̂n, µ)) ≤ K ,

and this rate is minimax.

4 Discussion

In the supersmooth case, we have seen that lower bounds for the Wasserstein deconvolution
problem in any dimension can be deduced from lower bounds for the deconvolution of the c.d.f
in dimension one. But this method cannot work in the ordinary smooth case for d > 1, because,
contrary to the supersmooth case, the rates of convergence depends on the dimension.

Let us briefly discuss the case where d = 1 and the error distribution is ordinary smooth.
It is actually well known that establishing optimal rates of convergence in the ordinary smooth
case is more difficult than in the supersmooth case, even for pointwise estimation, as noticed by
Fan in [Fan91b]. When the density is m times differentiable, Fan gives in this paper pointwise
lower and upper bounds for the estimation of the c.d.f. in both the supersmooth case and the
ordinary smooth case. He finds the optimal rates in the supersmooth case and he conjectures
that his upper bound is actually optimal in the ordinary smooth case (see his Remark 3).
Optimal pointwise rates for the deconvolution of the c.d.f. in the ordinary smooth case was
an open question until recently. This problem has been solved in [DGJ11] when the density
belongs to a Sobolev class.

When d = 1 and the error distribution is ordinary smooth, some results about integrated
rates of convergence for the density (and its derivatives) can be found in [Fan93, Fan91a] but the
case of the c.d.f. (for the integrated risk) is not studied in these papers. However, some lower
bounds can be easily computed by following the method of [Fan93] and using the pointwise
rates of [Fan91b] : for a class of ordinary smooth noise densities of order β and assuming only
that the unknown distribution µ has a moment of order 4, we find that the minimax integrated
risk is lower bounded by n−1/(2β+1) and we then obtain the same lower bound for W1. As for
the pointwise estimation described in [Fan91b], these rates do not match with the upper bounds
given by Proposition 1 for W1. For instance, for Laplace errors (β = 2), the rate of convergence
of the kernel estimator under W1 is upper bounded by n−1/7. We are currently working on this
issue, and we conjecture that the minimax rates of convergence for W1 when d = 1 is of order
n−1/(2β+2) for a class of ordinary smooth errors distributions of order β. If this conjecture is
correct, it means that the existing lower and upper bounds have to be improved.

A Some known lemmas

The following lemma is given in [FT93] (Lemma 1):

Lemma 3. Let H be a function such that

|H(t)| ≤ C(1 + t2)−r
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for some C > 0 and some r > 0.5. Then there exists a positive constant C̃ such that for any
sequence bn → ∞,

bn
∑

s=1

|H (bn(t− s/n)) | ≤ C̃(1 + t2)−r.

Let f0,r be the function defined in (5). The following lemma can be found in [Fan91b] (Lemma 5.1):

Lemma 4. For any probability measure µ, there exists a constant Cr > 0 such that

f0,r ⋆ µ(t) ≥ Crt
−2r as |t| tends to infinity.

The following lemma is rewritten from [Fan91b] (Lemma 5.2):

Lemma 5. Let r > 0. Suppose that P (|ε′1 − t| ≤ |t|κ1) = O(|t|−κ2) as |t| tends to infinity for
some 0 < κ1 < 1 and κ2 > 1. Let H be a bounded function such that |H(t)| ≤ O(|t|−2r) for
some r > κ2/(2κ1). Then there exists a large T and a constant C such that when |v|/bn ≥ T :

∫ +∞

−∞
H(v − y)g(y/bn) dy/bn ≤ C(|v|/bn)−κ2 .

B Distances between probability measures

The first lemma follows straightforwardly from the definition of W1.

Lemma 6. Let µ and µ̃ be two measures on R
d with finite first moments, and let µ1 and µ̃1 be

their first marginals. Then W1(µ, µ̃) ≥ W1 (µ1, µ̃1).

The following Lemma is a particular case of the famous Le Cam’s inequalities. See for instance
Section 2.4 in [Tsy09] for more details.

Lemma 7. Let h and h̃ be two densities on R
n, then

∫

Rn

min
(

h(x), h̃(x)
)

dx ≥ 1

2

{∫

Rn

√

h(x)h̃(x)dx

}2

.

The next lemma can be found for instance in Section 2.4 of [Tsy09].

Lemma 8. Let h and h̃ be two densities for the Lebesgue measure on R, then

∫

R

√

h(y) h̃(y) dy ≥ 1− 1

2
χ2(h, h̃).

C Auxiliary results

Proof of Lemma 2 The proof of Item 1 is standard. Note first that qα is bounded and
absolutely continuous with almost sure derivative q′α, which is bounded as soon as α ∈ [1, 2[.
This proves the result for k = 1. It follows that qα ⋆ qα is differentiable with derivative qα ⋆ q′α.
This derivative is absolutely continuous with almost sure derivative q′α ⋆ q

′
α. Moreover qα ⋆ q

′
α is

bounded (because q′α is integrable and qα is bounded), and if α ∈ [1, 2[ then q′α ⋆ q′α is bounded
(because in that case q′α is bounded). This proves Item 1 for k = 2. The general case follows
by induction.
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In the same way, it suffices to prove Item 2 for k = 2, and the general case follows by
induction. Since qα ⋆ qα is symmetric, it suffices to prove the result for x > 0. Now, for any
x > 0,

qα ⋆ qα(x) = 2

∫ +∞

x/2
exp (−|x− t|α − tα) dt

≤ aα,2 exp (−(x/2)α) .

On the other hand, for any x > 1, there exist a positive constant cα such that

qα ⋆ qα(x) ≥
∫ x

x/2
exp (−|x− t|α − tα) dt

≥ exp (−xα)

∫ x/2

0
exp (−uα) du

≥ cα exp (−xα) . (27)

The function x 7→ qα ⋆ qα(x) exp (x
α) is continuous and positive on [0, 1] and thus (27) is

also true on [0, 1] for some other positive constant c′α. The lower bound follows by taking
bα,2 = min{cα, c′α}.
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