Inversion of weighted Radon transforms via finite Fourier series weight approximations
 Jean-Pol Guillement, Roman Novikov

To cite this version:

Jean-Pol Guillement, Roman Novikov. Inversion of weighted Radon transforms via finite Fourier series weight approximations. Inverse Problems in Science and Engineering, 2014, 22 (5), pp.787-802. hal-00794083

HAL Id: hal-00794083

https://hal.science/hal-00794083

Submitted on 25 Feb 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Inversion of weighted Radon transforms via finite Fourier series weight approximations

J.-P. Guillement ${ }^{1}$, R.G. Novikov ${ }^{2}$

${ }^{1}$ CNRS, Laboratoire de Mathématiques Jean Leray (UMR 6629), Université de Nantes, BP 92208, 44322, Nantes cedex 03, France
e-mail: guillement@math.univ-nantes.fr
${ }^{2}$ CNRS (UMR 7641), Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau, France; IEPT RAS, 117997 Moscow, Russia
e-mail: novikov@cmap.polytechnique.fr
Abstract. We consider weighted Radon transforms on the plane. We show that the Chang approximate inversion formula for these transforms admits a principal refinement as inversion via finite Fourier series weight approximations. We illustrate this inversion approach by numerical examples for the case of the attenuated Radon transforms in the framework of the single-photon emission computed tomography (SPECT).

1. Introduction

A basic problem of many tomographies consists in finding an unknown function f on \mathbb{R}^{2} from its weighted ray transform $P_{W} f$ on $\mathbb{R} \times \mathbb{S}^{1}$ for some known weight W, where

$$
\begin{align*}
& P_{W} f(s, \theta)=\int_{\mathbb{R}} W\left(s \theta^{\perp}+t \theta, \theta\right) f\left(s \theta^{\perp}+t \theta\right) d t \tag{1.1}\\
& s \in \mathbb{R}, \quad \theta=\left(\theta_{1}, \theta_{2}\right) \in \mathbb{S}^{1}, \quad \theta^{\perp}=\left(-\theta_{2}, \theta_{1}\right)
\end{align*}
$$

where $f=f(x), W=W(x, \theta), x \in \mathbb{R}^{2}$. Up to change of variables, the operator P_{W} is known also in the literature as the weighted Radon transform on the plane. In this work we always assume that

$$
\begin{align*}
& W \in C\left(\mathbb{R}^{2} \times \mathbb{S}^{1}\right) \cap L^{\infty}\left(\mathbb{R}^{2} \times \mathbb{S}^{1}\right) \\
& w_{0}(x) \stackrel{\text { def }}{=} \frac{1}{2 \pi} \int_{\mathbb{S}^{1}} W(x, \theta) d \theta \neq 0, \quad x \in \mathbb{R}^{2}, \tag{1.2}
\end{align*}
$$

where W is complex-valued, in general, and $d \theta$ is the standard element of arc length on \mathbb{S}^{1}. Additional assumptions on W will be formulated in the framework of context. In particular, in important particular cases W is real-valued and strictly positive:

$$
\begin{equation*}
W=\bar{W}, \quad W \geq c>0 \tag{1.3}
\end{equation*}
$$

In addition, for this work one can always assume that

$$
\begin{equation*}
f \in L^{\infty}\left(\mathbb{R}^{2}\right), \quad \operatorname{supp} f \subset D, \tag{1.4}
\end{equation*}
$$

where f is complex-valued, in general, and D is an open bounded domain (which is fixed a priori).

In definition (1.1) the product $\mathbb{R} \times \mathbb{S}^{1}$ is interpreted as the set of all oriented straight lines in \mathbb{R}^{2}. If $\gamma=(s, \theta) \in \mathbb{R} \times \mathbb{S}^{1}$, then $\gamma=\left\{x \in \mathbb{R}^{2}: x=s \theta^{\perp}+t \theta, t \in \mathbb{R}\right\}$ (modulo orientation) and θ gives the orientation of γ.

If $W \equiv 1$, then P_{W} is reduced to the classical ray (or Radon) transform on the plane. If

$$
\begin{equation*}
W(x, \theta)=\exp \left(-\int_{0}^{+\infty} a(x+t \theta) d t\right) \tag{1.5}
\end{equation*}
$$

where a is a complex-valued sufficiently regular function on \mathbb{R}^{2} with sufficient decay at infinity, then P_{W} is known in the literature as the attenuated ray (or Radon) transform on the plane.

The classical ray transform arises, in particular, in X-ray transmission tomography, see e.g. [Na]. The attenuated ray transform (at least, with real-valued $a \geq 0$) arises, in particular, in single-photon emission computed tomography (SPECT), see e.g. [Na], [Ku]. Transforms P_{W} with some other weights also arise in applications, see e.g. [Q], $[\mathrm{Ku}],[\mathrm{MP}]$, [Ba].

Exact and simultaneously explicit inversion formulas for the classical and attenuated ray (or Radon) transforms on the plane were given for the first time in [Ra] and [No1], respectively. For some other weights W, exact and simultaneously explicit inversion formulas were given in [TM], [BS], [G], [No2]. Note that we say that an inversion method for P_{W} is an explicit inversion formula if its complexity is comparable with complexity of the aforementioned Radon inversion formula of [Ra].

Apparently, for general P_{W}, under assumptions (1.2), (1.3), explicit and simultaneously exact (modulo $\operatorname{Ker} P_{W}$) inversion formulas are impossible. In addition, [Bo] gives an example of infinitely smooth W satisfying (1.2), (1.3) and such that $\operatorname{Ker} P_{W} \neq 0$ in the space of infinitely smooth compactly supported functions on \mathbb{R}^{2}. But, due to $[\mathrm{BQ}]$, $\operatorname{Ker} P_{W}=0$ in the space of continuous compactly supported functions on \mathbb{R}^{2} for realanalytic W satisfying (1.3).

On the other hand, the following Chang approximate (but explicit) inversion formula for P_{W}, where W is given by (1.5) with $a \geq 0$, has been used for a long time (see e.g. [Ch], [Ku], [No2]):

$$
\begin{equation*}
f_{\text {appr }}=\left(w_{0}\right)^{-1} P^{-1} P_{W} f \tag{1.6}
\end{equation*}
$$

where w_{0} is defined in (1.2), P^{-1} denotes the classical Radon inversion realized via the formula

$$
\begin{align*}
& P^{-1} q(x)=\frac{1}{4 \pi} \int_{\mathbb{S}^{1}} \theta^{\perp} \nabla_{x}\left(\frac{1}{\pi} p \cdot v \cdot \int_{\mathbb{R}} \frac{q(t, \theta)}{x \theta^{\perp}-t} d t\right) d \theta, \quad x \in \mathbb{R}^{2} \tag{1.7}\\
& \theta^{\perp} \nabla_{x}=-\theta_{2} \partial / \partial x_{1}+\theta_{1} \partial / \partial x_{2}, \quad x \theta^{\perp}=-\theta_{2} x_{1}+\theta_{1} x_{2}, \quad \theta=\left(\theta_{1}, \theta_{2}\right), \quad x=\left(x_{1}, x_{2}\right),
\end{align*}
$$

where q is a test function on $\mathbb{R} \times \mathbb{S}^{1}$. It is known that formula (1.6) is efficient for the first approximation in SPECT reconstructions and, in particular, is sufficiently stable for reconstructions from discrete data with strong Poisson noise. The exact inversion formula

Inversion of weighted Radon transforms via finite Fourier series weight approximations
of [No1] for the attenuated ray transform is considerably less stable in this respect. For more information in this connection see [GN2].

Formula (1.6), under assumptions (1.2), can be considered as approximate inversion of P_{W} via the approximation

$$
\begin{equation*}
W(x, \theta) \approx w_{0}(x), \quad x \in \mathbb{R}^{2}, \quad \theta \in \mathbb{S}^{1} \tag{1.8}
\end{equation*}
$$

i.e. via the zero term Fourier approximation for W in angle variable. In addition, due to [Ra], formula (1.5) is exact if

$$
\begin{equation*}
W(x, \theta) \equiv w_{0}(x), \quad x \in \mathbb{R}^{2}, \quad \theta \in \mathbb{S}^{1} \tag{1.9}
\end{equation*}
$$

Besides, due to [No2], formula (1.5) is exact if and only if

$$
\begin{equation*}
W(x, \theta)-w_{0}(x) \equiv w_{0}(x)-W(x,-\theta), \quad x \in \mathbb{R}^{2}, \quad \theta \in \mathbb{S}^{1} \tag{1.10}
\end{equation*}
$$

However, already for W of (1.5) property (1.10) is not fulfilled, in general.
In the present work we consider approximate inversion of P_{W} via the approximations

$$
\begin{align*}
& W(x, \theta(\varphi)) \approx \sum_{n=-N}^{N} e^{i n \varphi} w_{n}(x), \\
& w_{n}(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i n \varphi} W(x, \theta(\varphi)) d \varphi \tag{1.11}\\
& x \in \mathbb{R}^{2}, \theta(\varphi)=(\cos \varphi, \sin \varphi), \quad \varphi \in[-\pi, \pi], \quad N \in \mathbb{N} \cup 0 .
\end{align*}
$$

One can see that for $N=0$ approximation (1.11) is reduced to (1.8).
Our approximate inversion algorithms for P_{W} on functions of (1.4), under assumptions (1.2), are presented in Subsection 2.4 of Section 2. In these considerations we proceed from [Ku] and [No3].

In Section 3, our approximate inversions (2.20), (2.22) of Subsection 2.4 are illustrated by numerical examples for W given by (1.5) with $a \geq 0$ in the framework of SPECT.

2. Approximate inversion of P_{W}

2.1. Symmetrization of W. Let

$$
\begin{equation*}
A_{W} f=P^{-1} P_{W} f \tag{2.1}
\end{equation*}
$$

where P^{-1} is defined by (1.7). Let

$$
\begin{equation*}
W_{\text {sym }}(x, \theta)=\frac{1}{2}(W(x, \theta)+W(x,-\theta)), \quad x \in \mathbb{R}^{2}, \quad \theta \in \mathbb{S}^{1} \tag{2.2}
\end{equation*}
$$

We consider also the Fourier series

$$
\begin{equation*}
W(x, \theta(\varphi))=\sum_{n=-\infty}^{+\infty} e^{i n \varphi} w_{n}(x), \quad x \in \mathbb{R}^{2}, \quad \varphi \in[-\pi, \pi] \tag{2.3}
\end{equation*}
$$

where w_{n} are defined in (1.11), $\theta(\varphi)=(\cos \varphi, \sin \varphi)$.
The following formulas hold (see [Ku], [No2]):

$$
\begin{align*}
& \frac{1}{2}\left(P_{W} f(s, \theta)+P_{W} f(-s,-\theta)\right)=P_{W_{s y m}} f(s, \theta), \quad(s, \theta) \in \mathbb{R} \times \mathbb{S}^{1} \tag{2.4}\\
& A_{W} f=P^{-1} P_{W_{s y m}} f \tag{2.5}\\
& W_{s y m}(x, \theta(\varphi))=\sum_{l=-\infty}^{+\infty} e^{i 2 l \varphi} w_{2 l}(x), \quad x \in \mathbb{R}^{2}, \quad \varphi \in[-\pi, \pi] \tag{2.6}
\end{align*}
$$

Actually, using (2.4)-(2.6) we reduce inversion of P_{W} to inversion of $P_{W_{s y m}}$. In particular, using (2.1), (2.5), (2.6), one can see that such a reduction arises already in the framework of (1.6).
2.2. Operators $Q_{W, D, m}$ and numbers $\sigma_{W, D, m}$. Consider

$$
\begin{equation*}
z=x_{1}+i x_{2}, \quad \bar{z}=x_{1}-i x_{2}, \quad x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} . \tag{2.7}
\end{equation*}
$$

Using (2.7) we identify \mathbb{R}^{2} with \mathbb{C}.
Let $\Pi, \bar{\Pi}$ denote the linear integral operators on \mathbb{R}^{2} identified with \mathbb{C} such that

$$
\begin{align*}
& \Pi u(z)=-\frac{1}{\pi} \int_{\mathbb{C}} \frac{u(\zeta)}{(\zeta-z)^{2}} d \operatorname{Re} \zeta d \operatorname{Im} \zeta \\
& \bar{\Pi} u(z)=-\frac{1}{\pi} \int_{\mathbb{C}} \frac{u(\zeta)}{(\bar{\zeta}-\bar{z})^{2}} d \operatorname{Re} \zeta d \operatorname{Im} \zeta \tag{2.8}
\end{align*}
$$

where u is a test function, $z \in \mathbb{C}$; see e.g. [V] for detailed properties of these operators.
Let D be the domain of (1.4).
Let χ_{D} denote the characteristic function of D, i.e.

$$
\begin{equation*}
\chi_{D} \equiv 1 \quad \text { on } \quad D, \quad \chi_{D} \equiv 0 \quad \text { on } \mathbb{R}^{2} \backslash D \tag{2.9}
\end{equation*}
$$

Let

$$
\begin{align*}
& Q_{W, D, m}=\sum_{l=1}^{m}\left((-\bar{\Pi})^{l} \frac{w_{2 l}}{w_{0}}+(-\Pi)^{l} \frac{w_{-2 l}}{w_{0}}\right) \chi_{D} \text { for } m \in \mathbb{N}, \tag{2.10}\\
& Q_{W, D, m}=0 \text { for } m=0
\end{align*}
$$

where $w_{0}, w_{2 l}$ are the Fourier coefficients of (2.3), (2.6) and $w_{ \pm 2 l} / w_{0}, \chi_{D}$ are considered as the multiplication operators on \mathbb{R}^{2}.

Let

$$
\begin{align*}
& \sigma_{W, D, m}=\sum_{l=1}^{m}\left(\sup _{x \in D}\left|\frac{w_{2 l}(x)}{w_{0}(x)}\right|+\sup _{x \in D}\left|\frac{w_{-2 l}(x)}{w_{0}(x)}\right|\right) \text { for } m \in \mathbb{N}, \tag{2.11}\\
& \sigma_{W, D, m}=0 \text { for } m=0
\end{align*}
$$

Inversion of weighted Radon transforms via finite Fourier series weight approximations
According to [No3] we have that

$$
\begin{equation*}
\left\|Q_{W, D, m}\right\|_{L^{2}\left(\mathbb{R}^{2}\right) \rightarrow L^{2}\left(\mathbb{R}^{2}\right)} \leq \sigma_{W, D, m} \tag{2.12}
\end{equation*}
$$

2.3. Exact inversion for finite Fourier series weights. Let conditions (1.2), (1.4) be fulfilled and

$$
\begin{align*}
& W\left(x, \theta(\varphi)=\sum_{n=-N}^{N} e^{i n \varphi} w_{n}(x),\right. \tag{2.13}\\
& x \in \mathbb{R}^{2}, \quad \theta(\varphi)=(\cos \varphi, \sin \varphi), \quad \varphi \in[-\pi, \pi], \quad N \in \mathbb{N} \cup 0
\end{align*}
$$

Suppose also that

$$
\begin{equation*}
\sigma_{W, D, m}<1 \text { for } m=[N / 2], \tag{2.14}
\end{equation*}
$$

where $[N / 2]$ denotes the integer part of $N / 2$. Then according to [No3] we have the following exact inversion for P_{W} :

$$
\begin{equation*}
f=\left(w_{0}\right)^{-1}\left(I+Q_{W, D, m}\right)^{-1} P^{-1} P_{W} f \tag{2.15}
\end{equation*}
$$

where I is the identity operator on \mathbb{R}^{2}, P^{-1} is defined by (1.7). In addition, in view of (2.12), (2.14) we have that

$$
\begin{equation*}
\left(I+Q_{W, D, m}\right)^{-1}=I+\sum_{j=1}^{+\infty}\left(-Q_{W, D, m}\right)^{j} \tag{2.16}
\end{equation*}
$$

In addition, under our assumptions, we have that (see [No3]):

$$
\begin{equation*}
A_{W} f=P^{-1} P_{W} f \in L^{2}\left(\mathbb{R}^{2}\right) \tag{2.17}
\end{equation*}
$$

2.4. Approximate inversion for general weights. Let conditions (1.2), (1.4) be fulfilled and

$$
\begin{equation*}
\sum_{l=1}^{\infty}\left(\left\|\frac{w_{2 l}}{w_{0}}\right\|_{L^{2}(D)}+\left\|\frac{w_{-2 l}}{w_{0}}\right\|_{L^{2}(D)}\right)<+\infty \tag{2.18}
\end{equation*}
$$

where w_{n} are defined by (2.11). Suppose that

$$
\begin{equation*}
\sigma_{W, D, m}<1 \text { for fixed } m \in \mathbb{N} \cup 0 . \tag{2.19}
\end{equation*}
$$

Then we consider that

$$
\begin{align*}
& f \approx f_{m} \tag{2.20a}\\
& f_{m}=\left(w_{0}\right)^{-1}\left(I+Q_{W, D, m}\right)^{-1} P^{-1} P_{W} f \tag{2.20b}
\end{align*}
$$

where I is the identity operator, $Q_{W, D, m}$ is defined by (2.10), P^{-1} is defined by (1.7). Note that the right-hand side of (2.20b) is well-defined: in particular, in view of (2.12), (2.19) we have formula (2.16) in norm $\|\cdot\|_{L^{2}\left(\mathbb{R}^{2}\right) \rightarrow L^{2}\left(\mathbb{R}^{2}\right)}$ and using (2.18) one can show that

$$
\begin{equation*}
P^{-1} P_{W} f \in L^{2}\left(\mathbb{R}^{2}\right) \tag{2.21}
\end{equation*}
$$

Formula (2.20) is a natural extension of the Chang formula (1.6). In particular, (2.20) for $m=0$ coincides with (1.6).

In addition, if (2.19) is fulfilled for some $m \geq 1$, then f_{m} is a refinement of the Chang approximation f_{0} and, more generally, f_{j} is a refinement of f_{i} for $0 \leq i<j \leq m$. But of course $f_{j}=f_{i}$ if $w_{2 l} \equiv 0, w_{-2 l} \equiv 0$ for $i<l \leq j$.

Actually, in many important examples condition (2.19) is efficiently fulfilled for small m (e.g. $m=2$) and is not fulfilled for great m. Therefore, in the present work we propose the following approximate reconstruction of f from $P_{W} f$:
find maximal m such that (2.19) is still efficiently fulfilled and approximately reconstruct f via (2.20) using (2.12), (2.16).

In Section 3 we illustrate this approximate reconstruction by numerical examples in the framework of SPECT. In particular, these numerical examples show that stability properties of this approximate reconstruction f_{m} are similar to stability properties of the Chang approximate reconstruction f_{0} but f_{m} is more precise than f_{0} if $m>0$.

Using considerations of Subsection 2.3 one can see also that

$$
\begin{equation*}
f=f_{m}-\left(w_{0}\right)^{-1}\left(I+Q_{W, D, m}\right)^{-1} P^{-1} P_{\delta W_{m}} f \tag{2.23}
\end{equation*}
$$

where

$$
\begin{align*}
& \delta W_{m}(x, \theta(\varphi)) \stackrel{\text { def }}{=} W(x, \theta(\varphi))-\sum_{n=-2 m-1}^{2 m+1} e^{i n \varphi} w_{n}(x) \tag{2.23}\\
& x \in \mathbb{R}^{2}, \quad \theta(\varphi)=(\cos \varphi, \sin \varphi), \quad \varphi \in[-\pi, \pi], \quad m \in \mathbb{N} \cup 0 \tag{2.24}
\end{align*}
$$

where w_{n} are defined by (1.11). One can use (2.23) for estimating the error $f-f_{m}$. One can also consider (2.23) as an integral equation for finding f from f_{m}. Note also that equation (2.23) for $m=0$ is, actually, well-known, see e.g. $[\mathrm{Ku}]$.
2.5. Relations with [Ku]. Let conditions (1.2), (1.4) be fulfilled and

$$
\begin{equation*}
\lim _{m \rightarrow+\infty} \sigma_{W, D, m}=\sigma_{W, D}<+\infty \tag{2.25}
\end{equation*}
$$

Then we can consider

$$
\begin{equation*}
Q_{W, D}=\lim _{m \rightarrow+\infty} Q_{W, D, m} \text { in }\|\cdot\|_{L^{2}\left(\mathbb{R}^{2}\right) \rightarrow L^{2}\left(\mathbb{R}^{2}\right)} \tag{2.26}
\end{equation*}
$$

Inversion of weighted Radon transforms via finite Fourier series weight approximations

In addition, if

$$
\begin{equation*}
\sigma_{W, D}<1 \tag{2.27}
\end{equation*}
$$

then

$$
\begin{align*}
& f=\left(w_{0}\right)^{-1}\left(I+Q_{W, D}\right)^{-1} P^{-1} P_{W} f \tag{2.28}\\
& \left(I+Q_{W, D}\right)^{-1}=I+\sum_{j=1}^{+\infty}\left(-Q_{W, D}\right)^{j} \tag{2.29}
\end{align*}
$$

Actually, (2.28) is a linear integral equation for exact reconstruction of f from $P_{W} f$ under assumptions (1.2), (1.4), (2.27). In addition, (2.29) can be interpreted as the method of successive approximations for solving this equation.

It is possible to show that the reconstruction of f from $P_{W} f$ of $[\mathrm{Ku}]$ (or, more precisely, the linear integral equation on ε on page 814 of $[K u]$) can be transformed into (2.28).

In $[\mathrm{Ku}]$ (under the assumption that $0<W<1$) it was shown that this equation on ε of $[\mathrm{Ku}]$ is uniquely solvable if

$$
\begin{align*}
\lim _{m \rightarrow+\infty} & \rho_{W, D, m}=\rho_{W, D}<1 \\
\rho_{W, D, m} & \stackrel{\text { def }}{=} \frac{\sum_{l=1}^{m}\left(\sup _{x \in D}\left|w_{2 l}(x)\right|+\sup _{x \in D}\left|w_{-2 l}(x)\right|\right)}{\min _{x \in D}\left|w_{0}(x)\right|} \tag{2.30}
\end{align*}
$$

One can see that in many cases $\sigma_{W, D, m}$ is much smaller than $\rho_{W, D, m}$ and condition (2.27) is much less restrictive than (2.30).

Actually, in order to relate considerations of $[\mathrm{Ku}]$ on one hand with considerations of [No3] and the present work on the other hand, we use the following formulas

$$
\begin{gather*}
\mathcal{F}\left(\Pi^{l} u\right)(\xi)=\left(\frac{\xi_{1}-i \xi_{2}}{\xi_{1}+i \xi_{2}}\right)^{l} \mathcal{F} u(\xi), \\
\mathcal{F}\left(\bar{\Pi}^{l} u\right)(\xi)=\left(\frac{\xi_{1}+i \xi_{2}}{\xi_{1}-i \xi_{2}}\right)^{l} \mathcal{F} u(\xi), \tag{2.31}\\
\xi=\left(\xi_{1}, \xi_{2}\right) \in \mathbb{R}^{2}, \quad l \in \mathbb{N}, \\
Q_{W, D, m} u(x)=P^{-1}\left(P_{W, D, m} u\right)(x), \\
P_{W, D, m} u(s, \theta) \stackrel{\text { def }}{=} \int_{\mathbb{R}}\left(\left(\sum_{l=-m}^{-1}+\sum_{l=1}^{m}\right) \frac{w_{2 l}\left(s \theta^{\perp}+t \theta\right)}{w_{0}\left(s \theta^{\perp}+t \theta\right)}\left(\theta_{1}+i \theta_{2}\right)^{2 l}\right) \times \tag{2.32}\\
\chi_{D}\left(s \theta^{\perp}+t \theta\right) u\left(s \theta^{\perp}+t \theta\right) d t, \\
x \in \mathbb{R}^{2}, \quad s \in \mathbb{R}, \quad \theta=\left(\theta_{1}, \theta_{2}\right) \in \mathbb{S}^{1}, m \in \mathbb{N}
\end{gather*}
$$

where \mathcal{F} denotes the $2 D$ Fourier transform operator, Π, $\bar{\Pi}$ are defined by (2.8), Q_{m} is defined by (2.10), P^{-1} is defined by (1.7), u is a test function.

Finally, note that in our numerical examples of Section 3 the approximate reconstruction (2.20) is realized numerically using formula (2.32).

3. Numerical examples

3.1. Framework of SPECT. All numerical examples of this work are given in the framework of SPECT. In particular, we assume that W is given by (1.5), where $a \geq 0$. We recall that in SPECT, after restricting the problem to a fixed $2 D$ plane, the functions $P_{W} f, a, f$ are interpreted as follows:

- f is distribution of radioactive isotopes emitting photons;
- a is photon attenuation coefficient;
- in addition, it is assumed that supp $a \subseteq D, \operatorname{supp} f \subseteq D$, where D is some known compact domain;
- $P_{W} f$ describes the expected radiation outside D.

In addition, in some approximation, measured SPECT data are modeled as $P_{W} f$ with Poisson noise on some discrete subset Γ of $\mathbb{R} \times \mathbb{S}^{1}$. Usually, it is also assumed that:

- $D \subset \mathcal{B}_{R}=\left\{x \in \mathbb{R}^{2}:|x| \leq R\right\}$, where R is the radius of image support,
- Γ is a uniform $n \times n$ sampling of

$$
\begin{equation*}
T_{R}=\left\{\gamma \in \mathbb{R} \times \mathbb{S}^{1}: \gamma \cap \mathcal{B}_{R} \neq 0\right\}=\left\{(s, \theta) \in \mathbb{R} \times \mathbb{S}^{1}:|s| \leq R\right\} \tag{3.1}
\end{equation*}
$$

For more information on SPECT see e.g. [Na], [Br], [GN1] and references therein.
3.2. Image parameters. All $2 D$ images of this work are considered on $n \times n$ grids (X and Γ), where $n=128$. We assume that X is a uniform $n \times n$ sampling of

$$
\begin{equation*}
\mathcal{D}_{R}=\left\{x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}:\left|x_{1}\right| \leq R, \quad\left|x_{2}\right| \leq R\right\} \tag{3.2}
\end{equation*}
$$

and Γ is a uniform $n \times n$ sampling of T_{R}, where R is the radius of the image support.
In addition, all $2 D$ images of this work are drawn using a linear greyscale in such a way that the dark grey color represents zero (or negative values, if any) and white corresponds to the maximum value of the imaged function.
3.3. Numerical phantoms. We consider two numerical phantoms (phantom 1 and phantom 2). Attenuation maps a, emitter activities f, noiseless emission data $g=P_{W} f$ and noisy emission data p for these phantoms are shown in figures 1 and 2 .

Figure 1. Attenuation map a (a), emitter activity $f(\mathrm{~b})$, noiseless emission data $g=P_{W} f(\mathrm{c})$, noisy emission data $p(\mathrm{~d})$ for phantom 1. (See Subsections 3.1, 3.3)

Figure 2. Attenuation map a (a), emitter activity f (b), noiseless emission data $g=P_{W} f(\mathrm{c})$, noisy emission data $p(\mathrm{~d})$ for phantom 2. (See Subsections 3.1, 3.3)

Phantom 1 is a version of the elliptical chest phantom (used for numerical simulations of cardiac SPECT imaging; see e.g. [Br], [GN1], [GN2]). Actually, this version is the same as in [GN1], [GN2] and, in addition to figure 1, its description includes the following information:

- the major axis of the ellipse representing the body is 30 cm ,
- attenuation coefficient a is $0.04 \mathrm{~cm}^{-1}$ in the lung region (modeled as two interior ellipses), $0.15 \mathrm{~cm}^{-1}$ elsewhere within the body ellipse, and zero outside the body,
- emitter activity f is in the ratio 8:0:1:0 in myocardium (represented as a ring), lungs, elsewhere within the body, and outside the body,
- noisy emission data p contain 30 percents of the Poisson noise in the sense of L^{2}-norm and the total number of photons is 125450 .

Phantom 2 is a simulated numerical version of the Utah phantom (designed at the $2^{\text {nd }}$ International Meeting on fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Snowbird, Utah, 1993). A real non simulated version of this phantom was considered, in particular, in [GJKNT]. However, in the present work we consider its simulated numerical version in order to see clearly different reconstruction errors. In addition to figure 2, the description of phantom 2 includes the following information:

- geometrically the phantom consists of a large disk containing two small disks, where the radius of the large disks 10 cm ,
- attenuation coefficient a is $0.16 \mathrm{~cm}^{-1}$ in the large disk outside the small disks, $0.63 \mathrm{~cm}^{-1}$ in the left small disk, $0.31 \mathrm{~cm}^{-1}$ in the right small disk, and zero outside the large disk, - emitter activity f is a positive constant in the large disk outside the small disks and zero elsewhere
- noisy emission data p contain 30 percents of the Poisson noise in the sense of L^{2}-norm and the total number of photons is 89350 .

Note also that all computations of the present work are fulfilled using the same numerical realizations of basic formulas as in [GJKNT], [GN1], [GN2].
3.4. Results for the bounds $\sigma_{W, D, m}$ and $\rho_{W, D, m}$. The bound numbers $\sigma_{W, D, m}, \rho_{W, D, m}$ of (2.11), (2.30) for phantoms 1 and 2 are shown in tables 1 and 2 , where $D=\mathcal{B}_{R}$.

Table 1. Numbers $\sigma_{W, D, m}, \rho_{W, D, m}$ of (2.11), (2.30) for phantom 1, where $D=\mathcal{B}_{R}$.

	$m=1 \mid$	$m=2 \mid$	$m=3 \mid$	$m=20 \mid$
$\sigma_{W, D, m} \mid$	$0.390 \mid$	$0.584 \mid$	$0.739 \mid$	$1.320 \mid$
$\rho_{W, D, m} \mid$	1.399	$2.025 \mid$	2.494	$4.532 \mid$

Table 2. Numbers $\sigma_{W, D, m}, \rho_{W, D, m}$ of (2.11), (2.30) for phantom 2, where $D=\mathcal{B}_{R}$.

$$
\begin{array}{cllll}
& m=1 \mid & m=2 \mid & m=3 \mid & m=20 \mid \\
\sigma_{W, D, m} \mid & 0.489 \mid & 0.694 \mid & 0.803 \mid & 1.296 \\
\rho_{W, D, m} \mid & 3.112 \mid & 4.567 \mid & 5.436 \mid & 9.719
\end{array}
$$

For phantoms 1 and 2 , tables 1 and 2 show that condition (2.19) is efficiently fulfilled, at least, for $m=1$ and $m=2$, whereas $\rho_{W, D, m}>1$ already for $m=1$.
3.5. Reconstruction results. For phantoms 1 and 2 we consider the approximate reconstructions f_{m} realized numerically via (2.20b) (using the method of successive approximations i.e. using (2.16)) from the noiseless data g and filtered noisy data \tilde{p}. In addition:

- we consider f_{m}, mainly, under the condition that $\sigma_{W, D, m} \leq 0.7$,
- we consider $\tilde{p}=\mathcal{W} p$ for $\mathcal{W}=\mathcal{A}_{8,8}^{\text {sym }}$, where $\mathcal{W}=\mathcal{A}_{l_{1}, l_{2}}^{\text {sym }}$ is the approximately optimal space-variant Wiener-type filter of Section 5.3 of [GN1].

In addition to f_{m} we consider also their non-negative parts f_{m}^{+}, where

$$
f_{m}^{+}(x)=f_{m}(x) \text { if } f_{m}(x) \geq 0 \text { and } f_{m}^{+}(x)=0 \text { if } f_{m}(x)<0
$$

For phantoms 1 and 2, tables 1 and 2 show that $\sigma_{W, D, m} \leq 0.7$ is fulfilled for $m=0,1,2$ only.

To study reconstruction errors we consider, in particular,

$$
\begin{equation*}
\eta\left(u_{2}, u_{1}, X\right)=\frac{\left\|u_{2}-u_{1}\right\|_{L^{2}(X)}}{\left\|u_{1}\right\|_{L^{2}(X)}} \tag{3.3}
\end{equation*}
$$

where u_{1}, u_{2} are test functions on X.
The approximate reconstructions f_{0}, f_{2} with their central horizontal profiles from the noiseless data g for phantoms 1 and 2 are shown in figures 3 and 4 .

Figure 3. Approximate reconstructions $f_{0}(\mathrm{a})$ and f_{2} (c) with their central horizontal profiles (b) and (d) from the noiseless data g for phantom 1. (See Subsections 3.3, 3.5)

Figure 4. Approximate reconstructions $f_{0}(\mathrm{a})$ and $f_{2}(\mathrm{c})$ with their central horizontal profiles (b) and (d) from the noiseless data g for phantom 2. (See Subsections 3.3, 3.5)

Tables 3 and 4 show the relative errors $\eta\left(f_{m}, f, X\right)$ and $\eta\left(f_{m}^{+}, f, X\right)$ in L^{2} - norm for the approximate reconstructions f_{m} with respect to precise f for the noiseless case for phantoms 1 and 2.

Table 3. Relative reconstruction errors $\eta\left(f_{m}, f, X\right), \eta\left(f_{m}^{+}, f, X\right)$ for the noiseless case for phantom 1 .

$$
\begin{array}{llll}
& m=0 \mid & m=1 \mid & m=2 \mid l \\
\eta\left(f_{m}, f, X\right) \mid & 0.331 \mid & 0.305 \mid & 0.295 \mid \\
\eta\left(f_{m}^{+}, f, X\right) \mid & 0.331 \mid & 0.305 & 0.295
\end{array}
$$

Table 4. Relative reconstruction errors $\eta\left(f_{m}, f, X\right), \eta\left(f_{m}^{+}, f, X\right)$ for the noiseless case for phantom 2 .

$$
\left.\begin{array}{llll}
& m=0 \mid & m=1 \mid & m=2 \mid \\
\eta\left(f_{m}, f, X\right) \mid & 0.292 \mid & 0.179 \mid & 0.152 \mid \\
\eta\left(f_{m}^{+}, f, X\right) \mid & 0.168 \mid & 0.151 \mid & 0.138 \mid \\
\hline 0.141
\end{array} \right\rvert\,
$$

Figures 3,4 and tables 3,4 show that for phantoms 1 and 2 for the noiseless case the approximations f_{1}, f_{2} are considerably more precise than the classical Chang approximation f_{0}.

The approximate reconstructions f_{0}, f_{2} with their central horizontal profiles from the filtered noisy data $\tilde{p}=\mathcal{A}_{8,8}^{s y m} p$ for phantoms 1 and 2 are shown in figures 5 and 6 , where $\mathcal{A}_{l_{1}, l_{2}}^{s y m}$ is the aforementioned filter of [GN1].

Figure 5. Approximate reconstructions f_{0} (a) and f_{2} (c) with their central horizontal profiles (b) and (d) from the filtered noisy data $\tilde{p}=\mathcal{A}_{8,8}^{\text {sym }} p$ for phantom 1.

Figure 6. Approximate reconstructions $f_{0}(\mathrm{a})$ and f_{2} (c) with their central horizontal profiles (b) and (d) from the filtered noisy data $\tilde{p}=\mathcal{A}_{8,8}^{\text {sym }} p$ for phantom 2.

Tables 5 and 6 show the relative errors $\eta\left(f_{m}, f, X\right)$ and $\eta\left(f_{m}^{+}, f, X\right)$ in L^{2} - norm for f_{m} reconstructed from filtered noisy data $\tilde{p}=\mathcal{A}_{8,8}^{\text {sym }} p$ for phantoms 1 and 2.

Table 5. Relative errors $\eta\left(f_{m}, f, X\right), \eta\left(f_{m}^{+}, f, X\right)$ for f_{m} reconstructed from $\tilde{p}=\mathcal{A}_{8,8}^{\text {sym }} p$ for phantom 1 .

	$m=0 \mid$	$m=1 \mid$	$m=2 \mid$	$m=3 \mid$
$\eta\left(f_{m}, f, X\right) \mid$	$0.398 \mid$	$0.380 \mid$	$0.374 \mid$	$0.373 \mid$
$\eta\left(f_{m}^{+}, f, X\right) \mid$	0.398	0.379	$0.373 \mid$	$0.371 \mid$

Table 6. Relative errors $\eta\left(f_{m}, f, X\right), \eta\left(f_{m}^{+}, f, X\right)$ for f_{m} reconstructed from $\tilde{p}=\mathcal{A}_{8,8}^{\text {sym }} p$ for phantom 2.

$$
\begin{array}{llll}
& m=0 \mid & m=1 \mid & m=2 \mid \\
\eta\left(f_{m}, f, X\right) \mid & 0.268 \mid & 0.218 \mid & 0.218 \mid \\
\eta\left(f_{m}^{+}, f, X\right) \mid & 0.214 \mid & 0.209 \mid & 0.213 \mid \\
\hline 0.221 \mid
\end{array}
$$

Figures 5, 6 and tables 5, 6 show that for phantoms 1 and 2 for the noisy case the approximations f_{1}, f_{2} are also more correct than the classical Chang approximation f_{0}.

4. Conclusions

In this work we showed that the classical Chang approximate inversion formula (1.6) admits a very natural extention into inversion via finite Fourier series weight approximations or, more precisely, into inversion via (2.20) considered under assumption (2.19). Related theoretical considerations are presented in Sections 1 and 2 and numerical examples in the framework of SPECT are given in Section 3. Our examples of Section 3 include comparisons with the approximate Chang reconstruction f_{0} and show numerical efficiency (with respect to precision and stability) of our approximate reconstructions f_{m} for $m>0$, under the condition that inequality (2.19) is efficiently fulfilled.

Note also that considerations of Subsections 2.5 and 3.4 explain convergence of the iterative inversion of $[\mathrm{Ku}]$ for many cases when the inequality of (2.30) is not fulfilled. The point is that less restrictive inequality (2.27) is sufficient for this convergence.

Acknowledgements

The second author was partially supported by TFP No 14.A18.21.0866 of Ministry of Education and Science of Russian Federation (at Faculty of Control and Applied Mathematics of Moscow Institute of Physics and Technology).

References

[Ba] G. Bal, Inverse transport theory and applications, Inverse Problems 25 (2009), 053001 (48pp)
[Bo] J. Boman, An example of non-uniqueness for a generalized Radon transform, J. Anal. Math. 61 (1993), 395-401
[BQ] J. Boman and E.T. Quinto, Support theorems for real-analytic Radon transforms, Duke Math. J. 55 (1987), 943-948
[BS] J. Boman and J.O. Strömberg, Novikov's inversion formula for the attenuated Radon transform - a new approach, J.Geom.Anal. 14 (2004), 185-198
[Br] A.V. Bronnikov, Reconstruction of the attenuation map using discrete consistency conditions, IEEE Trans. Med. Imaging 19 (2000), 451-462
[Ch] L.T. Chang, A method for attenuation correction in radionuclide computed tomography, IEEE Trans. Nucl. Sci. NS-25 (1978), 638-643
[G] S. Gindikin, A remark on the weighted Radon transform on the plane, Inverse Problems and Imaging 4 (2010), 649-653
[GJKNT] J.-P. Guillement, F. Jauberteau, L. Kunyansky, R. Novikov and R. Trebossen, On single-photon emission computed tomography imaging based on an exact formula for the nonuniform attenuation correction, Inverse Problems 18 (2002), L11-L19
[GN1] J.-P. Guillement and R.G. Novikov, On Wiener type filters in SPECT, Inverse Problems 24 (2008), 025001
[GN2] J.-P. Guillement and R.G. Novikov, Optimized analytic reconstruction for SPECT, J. Inv. Ill-Posed Problems, 20 (2012), 489-500
[Ku] L.A. Kunyansky, Generalized and attenuated Radon transforms: restorative approach to the numerical inversion, Inverse Problems 8 (1992), 809-819
[MP] E.X. Miqueles and A.R. De Pierro, Fluorescence tomography: reconstruction by iterative methods, ISBI (2008), 760-763
[Na] F. Natterer, The Mathematics of Computerized Tomography (Stuttgart: Teubner), 1986
[No1] R.G. Novikov, An inversion formula for the attenuated X-ray transformation, Ark. Mat. 40 (2002), 145-167
[No2] R.G. Novikov, Weighted Radon transforms for which Chang's approximate inversion formula is exact, Uspekhi Mat. Nauk 66 (2) (2011), 237-238
[No3] R.G. Novikov, Weighted Radon transforms and first order differential systems on the plane, e-print: http://hal.archives-ouvertes.fr/hal-00714524
[Q] E.T. Quinto, The invertibility of rotation invariant Radon transforms, J. Math. Anal. Appl. 91 (1983), 510-522
[Ra] J. Radon, Uber die Bestimmung von Funktionen durch ihre Integralwerte langs gewisser Mannigfaltigkeiten, Ber. Verh. Sachs. Akad. Wiss. Leipzig, Math-Nat., K 169 (1917), 262-267
[TM] O.J. Tretiak and C. Metz, The exponential Radon transform, SIAM J. Appl. Math. 39 (1980), 341-354
[V] I.N. Vekua, Generalized Analytic Functions, Pergamon Press Ltd. 1962

