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Inversion of weighted Radon transforms via finite Fourier series weight approximations

We consider weighted Radon transforms on the plane. We show that the Chang approximate inversion formula for these transforms admits a principal refinement as inversion via finite Fourier series weight approximations. We illustrate this inversion approach by numerical examples for the case of the attenuated Radon transforms in the framework of the single-photon emission computed tomography (SPECT).

Introduction

A basic problem of many tomographies consists in finding an unknown function f on R 2 from its weighted ray transform P W f on R × S 1 for some known weight W , where

P W f (s, θ) = R W (sθ ⊥ + tθ, θ)f (sθ ⊥ + tθ)dt, s ∈ R, θ = (θ 1 , θ 2 ) ∈ S 1 , θ ⊥ = (-θ 2 , θ 1 ), (1.1)
where f = f (x), W = W (x, θ), x ∈ R 2 . Up to change of variables, the operator P W is known also in the literature as the weighted Radon transform on the plane. In this work we always assume that

W ∈ C(R 2 × S 1 ) ∩ L ∞ (R 2 × S 1 ), w 0 (x) def = 1 2π S 1 W (x, θ)dθ = 0, x ∈ R 2 , (1.2)
where W is complex-valued, in general, and dθ is the standard element of arc length on S 1 . Additional assumptions on W will be formulated in the framework of context. In particular, in important particular cases W is real-valued and strictly positive:

W = W , W ≥ c > 0.
(1.3)

In addition, for this work one can always assume that

f ∈ L ∞ (R 2 ), supp f ⊂ D, (1.4)
where f is complex-valued, in general, and D is an open bounded domain (which is fixed a priori).

In definition (1.1) the product R × S 1 is interpreted as the set of all oriented straight lines in R 2 . If γ = (s, θ) ∈ R × S 1 , then γ = {x ∈ R 2 : x = sθ ⊥ + tθ, t ∈ R} (modulo orientation) and θ gives the orientation of γ.

If W ≡ 1, then P W is reduced to the classical ray (or Radon) transform on the plane. If W (x, θ) = exp -+∞ 0 a(x + tθ)dt ,

(1.5)

where a is a complex-valued sufficiently regular function on R 2 with sufficient decay at infinity, then P W is known in the literature as the attenuated ray (or Radon) transform on the plane. The classical ray transform arises, in particular, in X-ray transmission tomography, see e.g. [Na]. The attenuated ray transform (at least, with real-valued a ≥ 0) arises, in particular, in single-photon emission computed tomography (SPECT), see e.g. [Na], [Ku]. Transforms P W with some other weights also arise in applications, see e.g. [Q], [Ku], [MP], [Ba].

Exact and simultaneously explicit inversion formulas for the classical and attenuated ray (or Radon) transforms on the plane were given for the first time in [Ra] and [START_REF] Novikov | An inversion formula for the attenuated X-ray transformation[END_REF], respectively. For some other weights W , exact and simultaneously explicit inversion formulas were given in [TM], [BS], [G], [START_REF] Novikov | Weighted Radon transforms for which Chang's approximate inversion formula is exact[END_REF]. Note that we say that an inversion method for P W is an explicit inversion formula if its complexity is comparable with complexity of the aforementioned Radon inversion formula of [Ra].

Apparently, for general P W , under assumptions (1.2), (1.3), explicit and simultaneously exact (modulo Ker P W ) inversion formulas are impossible. In addition, [Bo] gives an example of infinitely smooth W satisfying (1.2), (1.3) and such that Ker P W = 0 in the space of infinitely smooth compactly supported functions on R 2 . But, due to [BQ], Ker P W = 0 in the space of continuous compactly supported functions on R 2 for realanalytic W satisfying (1.3).

On the other hand, the following Chang approximate (but explicit) inversion formula for P W , where W is given by (1.5) with a ≥ 0, has been used for a long time (see e.g. [Ch], [Ku], [START_REF] Novikov | Weighted Radon transforms for which Chang's approximate inversion formula is exact[END_REF]):

f appr = (w 0 ) -1 P -1 P W f, (1.6)
where w 0 is defined in (1.2), P -1 denotes the classical Radon inversion realized via the formula

P -1 q(x) = 1 4π S 1 θ ⊥ ∇ x 1 π p.v. R q(t, θ) xθ ⊥ -t dt dθ, x ∈ R 2 , θ ⊥ ∇ x = -θ 2 ∂/∂x 1 + θ 1 ∂/∂x 2 , xθ ⊥ = -θ 2 x 1 + θ 1 x 2 , θ = (θ 1 , θ 2 ), x = (x 1 , x 2 ), (1.7)
where q is a test function on R × S 1 . It is known that formula (1.6) is efficient for the first approximation in SPECT reconstructions and, in particular, is sufficiently stable for reconstructions from discrete data with strong Poisson noise. The exact inversion formula of [START_REF] Novikov | An inversion formula for the attenuated X-ray transformation[END_REF] for the attenuated ray transform is considerably less stable in this respect. For more information in this connection see [START_REF] Guillement | Optimized analytic reconstruction for SPECT[END_REF]. Formula (1.6), under assumptions (1.2), can be considered as approximate inversion of P W via the approximation (1.8) i.e. via the zero term Fourier approximation for W in angle variable. In addition, due to [Ra], formula (1.5) is exact if

W (x, θ) ≈ w 0 (x), x ∈ R 2 , θ ∈ S 1 ,
W (x, θ) ≡ w 0 (x), x ∈ R 2 , θ ∈ S 1 .
(1.9)

Besides, due to [START_REF] Novikov | Weighted Radon transforms for which Chang's approximate inversion formula is exact[END_REF], formula (1.5) is exact if and only if

W (x, θ) -w 0 (x) ≡ w 0 (x) -W (x, -θ), x ∈ R 2 , θ ∈ S 1 .
(1.10) However, already for W of (1.5) property (1.10) is not fulfilled, in general.

In the present work we consider approximate inversion of P W via the approximations

W (x, θ(ϕ)) ≈ N n=-N e inϕ w n (x), w n (x) = 1 2π π -π e -inϕ W (x, θ(ϕ))dϕ, x ∈ R 2 , θ(ϕ) = (cos ϕ, sin ϕ), ϕ ∈ [-π, π], N ∈ N ∪ 0.
(1.11)

One can see that for N = 0 approximation (1.11) is reduced to (1.8). Our approximate inversion algorithms for P W on functions of (1.4), under assumptions (1.2), are presented in Subsection 2.4 of Section 2. In these considerations we proceed from [Ku] and [START_REF] Novikov | Weighted Radon transforms and first order differential systems on the plane[END_REF].

In Section 3, our approximate inversions (2.20), (2.22) of Subsection 2.4 are illustrated by numerical examples for W given by (1.5) with a ≥ 0 in the framework of SPECT.

Approximate inversion of P

W 2.1. Symmetrization of W . Let A W f = P -1 P W f, (2.1)
where P -1 is defined by (1.7). Let

W sym (x, θ) = 1 2 (W (x, θ) + W (x, -θ)), x ∈ R 2 , θ ∈ S 1 . (2.2)
We consider also the Fourier series

W (x, θ(ϕ)) = +∞ n=-∞ e inϕ w n (x), x ∈ R 2 , ϕ ∈ [-π, π], (2.3) 
where w n are defined in (1.11), θ(ϕ) = (cos ϕ, sin ϕ).

The following formulas hold (see [Ku], [START_REF] Novikov | Weighted Radon transforms for which Chang's approximate inversion formula is exact[END_REF]):

1 2 P W f (s, θ) + P W f (-s, -θ) = P W sym f (s, θ), (s, θ) ∈ R × S 1 , (2.4) A W f = P -1 P W sym f, (2.5) W sym (x, θ(ϕ)) = +∞ l=-∞ e i2lϕ w 2l (x), x ∈ R 2 , ϕ ∈ [-π, π].
(2.6)

Actually, using (2.4)-(2.6) we reduce inversion of P W to inversion of P W sym . In particular, using (2.1), (2.5), (2.6), one can see that such a reduction arises already in the framework of (1.6).

Operators

Q W,D,m and numbers σ W,D,m . Consider z = x 1 + ix 2 , z = x 1 -ix 2 , x = (x 1 , x 2 ) ∈ R 2 .
(2.7)

Using (2.7) we identify R 2 with C. Let Π, Π denote the linear integral operators on R 2 identified with C such that Πu(z) = - 1 π C u(ζ) (ζ -z) 2 dRe ζ dIm ζ, Πu(z) = - 1 π C u(ζ) ( ζ -z) 2 dRe ζ dIm ζ, (2.8)
where u is a test function, z ∈ C; see e.g. [V] for detailed properties of these operators.

Let D be the domain of (1.4). Let χ D denote the characteristic function of D, i.e.

χ D ≡ 1 on D, χ D ≡ 0 on R 2 \D. (2.9) Let Q W,D,m = m l=1 (-Π) l w 2l w 0 + (-Π) l w -2l w 0 χ D for m ∈ N, Q W,D,m = 0 for m = 0, (2.10)
where w 0 , w 2l are the Fourier coefficients of (2.3), (2.6) and w ±2l /w 0 , χ D are considered as the multiplication operators on R 2 . Let

σ W,D,m = m l=1 sup x∈D w 2l (x) w 0 (x) + sup x∈D w -2l (x) w 0 (x) for m ∈ N, σ W,D,m = 0 for m = 0.
(2.11)

According to [START_REF] Novikov | Weighted Radon transforms and first order differential systems on the plane[END_REF] we have that

Q W,D,m L 2 (R 2 )→L 2 (R 2 ) ≤ σ W,D,m .
(2.12) 2.3. Exact inversion for finite Fourier series weights. Let conditions (1.2), (1.4) be fulfilled and

W (x, θ(ϕ) = N n=-N e inϕ w n (x), x ∈ R 2 , θ(ϕ) = (cos ϕ, sin ϕ), ϕ ∈ [-π, π], N ∈ N ∪ 0. (2.13) Suppose also that σ W,D,m < 1 for m = [N/2], (2.14)
where [N/2] denotes the integer part of N/2. Then according to [START_REF] Novikov | Weighted Radon transforms and first order differential systems on the plane[END_REF] we have the following exact inversion for P W :

f = (w 0 ) -1 (I + Q W,D,m ) -1 P -1 P W f, (2.15)
where I is the identity operator on R 2 , P -1 is defined by (1.7). In addition, in view of (2.12), (2.14) we have that

(I + Q W,D,m ) -1 = I + +∞ j=1 (-Q W,D,m ) j .
(2.16)

In addition, under our assumptions, we have that (see [START_REF] Novikov | Weighted Radon transforms and first order differential systems on the plane[END_REF]):

A W f = P -1 P W f ∈ L 2 (R 2 ).
(2.17) 2.4. Approximate inversion for general weights. Let conditions (1.2), (1.4) be fulfilled and

∞ l=1 w 2l w 0 L 2 (D) + w -2l w 0 L 2 (D) < +∞, (2.18)
where w n are defined by (2.11). Suppose that

σ W,D,m < 1 for fixed m ∈ N ∪ 0. (2.19)
Then we consider that

f ≈ f m , (2.20a) f m = (w 0 ) -1 (I + Q W,D,m ) -1 P -1 P W f, (2.20b)
where I is the identity operator, Q W,D,m is defined by (2.10), P -1 is defined by (1.7). Note that the right-hand side of (2.20b) is well-defined: in particular, in view of (2.12), (2.19) we have formula (2.16) in norm • L 2 (R 2 )→L 2 (R 2 ) and using (2.18) one can show that

P -1 P W f ∈ L 2 (R 2 ).
(2.21) Formula (2.20) is a natural extension of the Chang formula (1.6). In particular, (2.20) for m = 0 coincides with (1.6).

In addition, if (2.19) is fulfilled for some m ≥ 1, then f m is a refinement of the Chang approximation f 0 and, more generally, f j is a refinement of

f i for 0 ≤ i < j ≤ m. But of course f j = f i if w 2l ≡ 0, w -2l ≡ 0 for i < l ≤ j.
Actually, in many important examples condition (2.19) is efficiently fulfilled for small m (e.g. m = 2) and is not fulfilled for great m. Therefore, in the present work we propose the following approximate reconstruction of f from P W f : find maximal m such that (2.19) is still efficiently fulfilled and approximately reconstruct f via (2.20) using (2.12), (2.16).

(2.22)

In Section 3 we illustrate this approximate reconstruction by numerical examples in the framework of SPECT. In particular, these numerical examples show that stability properties of this approximate reconstruction f m are similar to stability properties of the Chang approximate reconstruction f 0 but f m is more precise than f 0 if m > 0.

Using considerations of Subsection 2.3 one can see also that

f = f m -(w 0 ) -1 (I + Q W,D,m ) -1 P -1 P δW m f, (2.23)
where

δW m (x, θ(ϕ)) def = W (x, θ(ϕ)) - 2m+1 n=-2m-1 e inϕ w n (x), (2.23) x ∈ R 2 , θ(ϕ) = (cos ϕ, sin ϕ), ϕ ∈ [-π, π], m ∈ N ∪ 0, (2.24)
where w n are defined by (1.11). One can use (2.23) for estimating the error f -f m . One can also consider (2.23) as an integral equation for finding f from f m . Note also that equation (2.23) for m = 0 is, actually, well-known, see e.g. [Ku].

2.5. Relations with [Ku]. Let conditions (1.2), (1.4) be fulfilled and

lim m→+∞ σ W,D,m = σ W,D < +∞.
(2.25)

Then we can consider

Q W,D = lim m→+∞ Q W,D,m in • L 2 (R 2 )→L 2 (R 2 ) .
(2.26)

In addition, if σ W,D < 1, (2.27) then f = (w 0 ) -1 (I + Q W,D ) -1 P -1 P W f, (2.28) (I + Q W,D ) -1 = I + +∞ j=1 (-Q W,D ) j .
(2.29)

Actually, (2.28) is a linear integral equation for exact reconstruction of f from P W f under assumptions (1.2), (1.4), (2.27). In addition, (2.29) can be interpreted as the method of successive approximations for solving this equation. It is possible to show that the reconstruction of f from P W f of [Ku] (or, more precisely, the linear integral equation on ε on page 814 of [Ku]) can be transformed into (2.28).

In [Ku] (under the assumption that 0 < W < 1) it was shown that this equation on ε of [Ku] is uniquely solvable if

lim m→+∞ ρ W,D,m = ρ W,D < 1, ρ W,D,m def = m l=1 (sup x∈D |w 2l (x)| + sup x∈D |w -2l (x)|) min x∈D |w 0 (x)| .
(2.30)

One can see that in many cases σ W,D,m is much smaller than ρ W,D,m and condition (2.27) is much less restrictive than (2.30). Actually, in order to relate considerations of [Ku] on one hand with considerations of [START_REF] Novikov | Weighted Radon transforms and first order differential systems on the plane[END_REF] and the present work on the other hand, we use the following formulas

F(Π l u)(ξ) = ξ 1 -iξ 2 ξ 1 + iξ 2 l Fu(ξ), F( Πl u)(ξ) = ξ 1 + iξ 2 ξ 1 -iξ 2 l Fu(ξ), ξ = (ξ 1 , ξ 2 ) ∈ R 2 , l ∈ N, (2.31) Q W,D,m u(x) = P -1 (P W,D,m u)(x), P W,D,m u(s, θ) def = R -1 l=-m + m l=1 w 2l (sθ ⊥ + tθ) w 0 (sθ ⊥ + tθ) (θ 1 + iθ 2 ) 2l × χ D (sθ ⊥ + tθ)u(sθ ⊥ + tθ)dt, x ∈ R 2 , s ∈ R, θ = (θ 1 , θ 2 ) ∈ S 1 , m ∈ N, (2.32)
where F denotes the 2D Fourier transform operator, Π, Π are defined by (2.8), Q m is defined by (2.10), P -1 is defined by (1.7), u is a test function.

Finally, note that in our numerical examples of Section 3 the approximate reconstruction (2.20) is realized numerically using formula (2.32).

Numerical examples

Framework of SPECT.

All numerical examples of this work are given in the framework of SPECT. In particular, we assume that W is given by (1.5), where a ≥ 0. We recall that in SPECT, after restricting the problem to a fixed 2D plane, the functions P W f , a, f are interpreted as follows:

• f is distribution of radioactive isotopes emitting photons;

• a is photon attenuation coefficient;

• in addition, it is assumed that supp a ⊆ D, supp f ⊆ D, where D is some known compact domain;

• P W f describes the expected radiation outside D.

In addition, in some approximation, measured SPECT data are modeled as P W f with Poisson noise on some discrete subset Γ of R × S 1 . Usually, it is also assumed that:

• D ⊂ B R = {x ∈ R 2 : |x| ≤ R}, where R is the radius of image support, • Γ is a uniform n × n sampling of T R = {γ ∈ R × S 1 : γ ∩ B R = 0} = {(s, θ) ∈ R × S 1 : |s| ≤ R}. (3.1)
For more information on SPECT see e.g. [Na], [Br], [START_REF] Guillement | On Wiener type filters in SPECT[END_REF] and references therein.

3.2. Image parameters. All 2D images of this work are considered on n × n grids (X and Γ), where n = 128. We assume that X is a uniform n × n sampling of

D R = {x = (x 1 , x 2 ) ∈ R 2 : |x 1 | ≤ R, |x 2 | ≤ R} (3.2)
and Γ is a uniform n × n sampling of T R , where R is the radius of the image support.

In addition, all 2D images of this work are drawn using a linear greyscale in such a way that the dark grey color represents zero (or negative values, if any) and white corresponds to the maximum value of the imaged function.

3.3. Numerical phantoms. We consider two numerical phantoms (phantom 1 and phantom 2). Attenuation maps a, emitter activities f , noiseless emission data g = P W f and noisy emission data p for these phantoms are shown in figures 1 and 2. Phantom 1 is a version of the elliptical chest phantom (used for numerical simulations of cardiac SPECT imaging; see e.g. [Br], [START_REF] Guillement | On Wiener type filters in SPECT[END_REF], [START_REF] Guillement | Optimized analytic reconstruction for SPECT[END_REF]). Actually, this version is the same as in [START_REF] Guillement | On Wiener type filters in SPECT[END_REF], [START_REF] Guillement | Optimized analytic reconstruction for SPECT[END_REF] and, in addition to figure 1, its description includes the following information:

• the major axis of the ellipse representing the body is 30 cm, • attenuation coefficient a is 0.04 cm -1 in the lung region (modeled as two interior ellipses), 0.15 cm -1 elsewhere within the body ellipse, and zero outside the body,

• emitter activity f is in the ratio 8:0:1:0 in myocardium (represented as a ring), lungs, elsewhere within the body, and outside the body, • noisy emission data p contain 30 percents of the Poisson noise in the sense of L 2 -norm and the total number of photons is 125 450.

Phantom 2 is a simulated numerical version of the Utah phantom (designed at the 2 nd International Meeting on fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Snowbird, Utah, 1993). A real non simulated version of this phantom was considered, in particular, in [GJKNT]. However, in the present work we consider its simulated numerical version in order to see clearly different reconstruction errors. In addition to figure 2, the description of phantom 2 includes the following information:

• geometrically the phantom consists of a large disk containing two small disks, where the radius of the large disks 10 cm,

• attenuation coefficient a is 0.16 cm -1 in the large disk outside the small disks, 0.63 cm -1 in the left small disk, 0.31 cm -1 in the right small disk, and zero outside the large disk,

• emitter activity f is a positive constant in the large disk outside the small disks and zero elsewhere • noisy emission data p contain 30 percents of the Poisson noise in the sense of L 2 -norm and the total number of photons is 89 350.

Note also that all computations of the present work are fulfilled using the same numerical realizations of basic formulas as in [GJKNT], [START_REF] Guillement | On Wiener type filters in SPECT[END_REF], [START_REF] Guillement | Optimized analytic reconstruction for SPECT[END_REF]. 

m = 1| m = 2| m = 3| m = 20| σ W,D,m | 0.489 | 0.694 | 0.803 | 1.296 | ρ W,D,m | 3.112 | 4.567 | 5.436 | 9.719 |
For phantoms 1 and 2, tables 1 and 2 show that condition (2.19) is efficiently fulfilled, at least, for m = 1 and m = 2, whereas ρ W,D,m > 1 already for m = 1.

Reconstruction results.

For phantoms 1 and 2 we consider the approximate reconstructions f m realized numerically via (2.20b) (using the method of successive approximations i.e. using (2.16)) from the noiseless data g and filtered noisy data p. In addition:

• we consider f m , mainly, under the condition that σ W,D,m ≤ 0.7,

• we consider p = Wp for W = A sym 8,8 , where W = A sym l 1 ,l 2 is the approximately optimal space-variant Wiener-type filter of Section 5.3 of [START_REF] Guillement | On Wiener type filters in SPECT[END_REF].

In addition to f m we consider also their non-negative parts f + m , where

f + m (x) = f m (x) if f m (x) ≥ 0 and f + m (x) = 0 if f m (x) < 0
For phantoms 1 and 2, tables 1 and 2 show that σ W,D,m ≤ 0.7 is fulfilled for m = 0, 1, 2 only.

To study reconstruction errors we consider, in particular,

η(u 2 , u 1 , X) = u 2 -u 1 L 2 (X) u 1 L 2 (X) , (3.3) 
where u 1 , u 2 are test functions on X.

The approximate reconstructions f 0 , f 2 with their central horizontal profiles from the noiseless data g for phantoms 1 and 2 are shown in figures 3 and 4.

Figures 3,4 and tables 3, 4 show that for phantoms 1 and 2 for the noiseless case the approximations f 1 , f 2 are considerably more precise than the classical Chang approximation f 0 .

The approximate reconstructions f 0 , f 2 with their central horizontal profiles from the filtered noisy data p = A sym 8,8 p for phantoms 1 and 2 are shown in figures 5 and 6, where A sym l 1 ,l 2 is the aforementioned filter of [START_REF] Guillement | On Wiener type filters in SPECT[END_REF]. Tables 5 and6 show the relative errors η(f m , f, X) and η(f + m , f, X) in L 2 -norm for f m reconstructed from filtered noisy data p = A sym 8,8 p for phantoms 1 and 2. Table 5. Relative errors η(f m , f, X), η(f + m , f, X) for f m reconstructed from p = A sym 8,8 p for phantom 1.

Figures 5, 6 and tables 5, 6 show that for phantoms 1 and 2 for the noisy case the approximations f 1 , f 2 are also more correct than the classical Chang approximation f 0 .

Conclusions

In this work we showed that the classical Chang approximate inversion formula (1.6) admits a very natural extention into inversion via finite Fourier series weight approximations or, more precisely, into inversion via (2.20) considered under assumption (2.19). Related theoretical considerations are presented in Sections 1 and 2 and numerical examples in the framework of SPECT are given in Section 3. Our examples of Section 3 include comparisons with the approximate Chang reconstruction f 0 and show numerical efficiency (with respect to precision and stability) of our approximate reconstructions f m for m > 0, under the condition that inequality (2.19) is efficiently fulfilled.

Note also that considerations of Subsections 2.5 and 3.4 explain convergence of the iterative inversion of [Ku] for many cases when the inequality of (2.30) is not fulfilled. The point is that less restrictive inequality (2.27) is sufficient for this convergence.

Figure 1 .Figure 2 .

 12 Attenuation map a (a), emitter activity f (b), noiseless emission data g = P W f (c), noisy emission data p (d) for phantom 1. (See Subsections 3.1, 3Attenuation map a (a), emitter activity f (b), noiseless emission data g = P W f (c), noisy emission data p (d) for phantom 2. (See Subsections 3.1, 3.3)

3. 4 .

 4 Results for the bounds σ W,D,m and ρ W,D,m . The bound numbers σ W,D,m , ρ W,D,m of (2.11), (2.30) for phantoms 1 and 2 are shown in tables 1 and 2, where D = B R .

Figure 5 .Figure 6 .

 56 Approximate reconstructions f 0 (a) and f 2 (c) with their central horizontal profiles (b) and (d) from the filtered noisy data p = A sym 8,8 p for phantom 1. Approximate reconstructions f 0 (a) and f 2 (c) with their central horizontal profiles (b) and (d) from the filtered noisy data p = A sym 8,8 p for phantom 2.

Table 1 .

 1 Numbers σ W,D,m , ρ W,D,m of (2.11), (2.30) for phantom 1, where D = B R .

		m = 1|	m = 2|	m = 3|	m = 20|
	σ W,D,m |	0.390 |	0.584 |	0.739 |	1.320 |
	ρ W,D,m |	1.399 |	2.025 |	2.494 |	4.532 |

Table 2 .

 2 Numbers σ W,D,m , ρ W,D,m of (2.11), (2.30) for phantom 2, where D = B R .
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 3 and4show the relative errors η(f m , f, X) and η(f + m , f, X) in L 2 -norm for the approximate reconstructions f m with respect to precise f for the noiseless case for phantoms 1 and 2.

Table 3. Relative reconstruction errors η(f m , f, X), η(f + m , f, X) for the noiseless case for phantom 1.