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Abstract—Heterogeneous Reconfigurable Systems-on-Chip
(HRSoC) contain as their name suggests, heterogeneous pro-
cessing elements in a single chip. Namely, several processors,
hardware accelerators as well as communication networks
between all these components. In order to leverage the pro-
gramming complexity of this kind of platform, applications are
described with software threads, running on processors, and
hardware threads, running on FPGA partitions. Combining
techniques such as dynamic and partial reconfiguration and
partial readback with the knowledge of the bitstream structure
offer the ability to target several partitions using a unique
configuration file. Such a feature permits to save critical
memory resources. In this article, we propose to tackle the
issue of designing fully independent partitions, and especially
to avoid the routing conflicts which can occur when using the
standard Xilinx FPGA design flow. To achieve the relocation
process successfully, we propose a new design flow dedicated
to the module relocation, using the standard tools and based
on the Isolation Design Flow (IDF), a special flow provided by
Xilinx for secure FPGA applications.
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I. INTRODUCTION

With the flexibility brought by the Dynamic and Partial

Reconfiguration (DPR), the adaptation of the thread model

on the hardware accelerator became interesting. Hybrid

Thread [1] is a hardware thread model based on the POSIX1

thread model. It contains a memory stack used to stock data

parameters. It permits to process system calls understandable

by a software thread, running on a CPU. This approach is

pursued in ReconOS [2], where the hardware threads and a

system call API, both described in VHDL, are proposed to

make the programming process easier. In all these cases, as

well as in SHUMDR [3], the thread is composed at least by

a finite state machine to sequentially control the accelerator

execution.

Some works such as [4] or [5] already used the DPR

feature provided with Xilinx FPGAs to dynamically load

new features into a running design. The thread was relocated

1Portable Operating System Interface

from the genuine bitstream. Such an approach allows data-

flow treatment but is not flexible enough for more complex

accelerators. Context management, as in [6], combined with

DPR permits to stop and restart a hardware thread at any

time, offering hardware thread preemption capabilities.

All these processes must be executed by an operating

system. To reduce timing overhead caused by dynamic

reconfiguration, this operating system would have access to

services implemented in hardware such as ICAP driver [7]

or relocation modules [8].

At present, when implementing dynamic modules in a

reconfigurable system, the static routing of this system can

cross over the dynamic areas. Consequently, relocating a

bitstream without corrupting the static routing is not possi-

ble. To deal with this issue, new tools have been developed

by the community. RapidSmith [9] offers the ability to

implement its own placer-router, whereas OpenPR [10] is

an open-source based on the same routing engine which

permits to create independent partition using blocker macros

[11]. These macros prevent the static routing from crossing

inside the reconfigurable partitions. However this tool is

not integrated into the standard flow and the number of

supported devices is limited. In order to keep using the

Xilinx tools, we rely on the new Isolation Design Flow [12]

and some additional constraints to design homogeneous and

relocatable partitions.

The paper is organized as follow. A brief definition of

a HRSoC is given in Section II. Then a hardware thread

model is introduced in Section II-A. Section III deals with

the management of this kind of thread by an operating

system and especially how we perform thread relocation.

Finally, a new design flow to create identical dynamic

partitions relying on the Isolation Design Flow is detailed

in Section IV. To conclude, implementation results as well

as conclusion and future work are presented respectively in

Section V and VI.

II. CONTEXT AND MOTIVATIONS

Reconfigurable platforms based on different processing

elements are called Heterogeneous Reconfigurable Systems-



on-Chip (HRSoC). In such a platform, the application is

divided into tasks. Some tasks are implemented as hard-

ware accelerators and allocated into a partition of the chip,

while others run as software tasks on computing processor

elements. A hardware accelerator is defined as a hard-wired

function developed to accelerate the processing of a task.

A computing processor unit could be a General Purpose

Processor, a specialized one like a Digital Signal Processor,

a Graphics Processing Unit or a simple Micro-Controller

Unit. Each one of these processing elements is more or less

suited to certain types of tasks.
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Figure 1. FOSFOR Architecture

We specified and implemented a HRSoC platform in

the FOSFOR project [13] (Flexible Operating System FOr

Reconfigurable platform). This project aimed to define a

reconfigurable multicore heterogeneous platform (Fig.1). In

the case of this project, hardware threads are managed by a

hardware operating system (Flexible HwOS) implementing

similar services in hardware to those offered by the operating

system, such as thread management, semaphore counters or

mailboxes.

A. Hardware Thread Model

The hardware thread (HT) we implemented in the FOS-

FOR project consists in two independent zones (Fig.2). A

static zone, corresponding to the interface between the thread

and the rest of the system. Through this interface, the thread

can communicate with the HwOS and so with the other

threads. The OS interface is a memory accessible at the

same time by the thread and by the HwOS. A last interface

allows the thread to take advantage of multicore platforms

allowing it to access to a dedicated network. For this project,

a custom network-on-chip has been developed to enhance

memory accesses [14].

The dynamic zone consists of a logical user function

(ie. the accelerator), and a finite state machine (FSM) to

sequence system calls. This user FSM is controlled by a

static system FSM, able to react to HwOS commands (start,

suspend or stop commands). Separation between system
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Figure 2. Hardware Thread (HT) Architecture

and user zones is done in order to plan hardware thread

preemption management. Namely, our objective is to allow

the operating system to relocate a hardware thread in any

available slot of the platform.

III. HARDWARE THREAD MANAGEMENT

An operating system managing hardware threads would

rely on three services which are, a context management

service, a reconfiguration service and a relocation service.

A. Context Management Service

There are two ways to save the context of a hardware

thread. Either using check-pointing mechanisms [15] or

processing partial readback [16]. The first one is intrusive

and implies that the developer inserts checkpoints in his

source code. Checkpoints are the only moments where the

preemption is enabled. To preempt a thread, the scheduler

has to wait that the thread reaches a checkpoint and so

saves its context. Consequences are a time overhead at

each checkpoints and latency in preemption decision. The

advantage is that the context size could be dramatically

reduced, and ideally to zero.

The second way is technology dependent but it avoids

real time failure since preemption could be done immedi-

ately without risk to lose information. Readback consists in

reading the contents of the partial zone where the module

is located. Segregation between static part and dynamic part

inside hardware thread permits task context reduction and

offers a common interface in order to integrate different

accelerators in the same partition.

B. Reconfiguration Service

A design using partial dynamic reconfiguration, as the one

provided by Xilinx FPGAs [17], is composed of a static part

and defined reconfigurable zones in which reconfigurable

modules can be loaded. Using this technology, the operating

system is able to schedule hardware threads [18], without

resetting the rest of the system. For real-time applications,

both readback and reconfiguration overheads must be mini-

mized using a dedicated hardware reconfiguration controller,



such as FaRM [19], Uparc [20] or the solution offered by

Koch et al. [21]. For instance, FaRM which is used in the

design test detailed later allow to process configuration with

a throughput of 400 MB/s.
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Figure 3. ICAP for Partial Reconfiguration

C. Relocation Service

As logic resources are critical in FPGAs, we would want

to be able to run several threads in the same reconfigurable

slot. One of the issue encountered in the classical flow is that

a partial bitstream for a given module is generated for one

slot and only one. To load a module on another slot, we need

either another bitstream, which is memory consuming, or a

relocated bitstream, whose creation is time consuming. In

embedded system, with the increase of the FPGAs size, and

so of the bitstream size, the amount of memory needed to

store one specific partial bitstream for each targeted partition

is becoming more and more prohibitive. This is why a

relocation service seems to be the best choice. To relocate a

partial bitstream, we implemented two services: a bitstream

parser and a bitstream relocater.

A bitstream parser is needed to find the right information

in the bitstream. Xilinx FPGAs are organized in rows and

columns. Each column is composed of several frames, which

is the smallest reconfigurable entity. To reconfigure a FPGA,

the ICAP reads a bitstream, writes address information in

the Frame Address Register (FAR) of the ICAP and writes

frames contents into FPGA memory. Information which

interests us in the bitstream is the FAR values and the CRC

value. The process to relocate a partial bitstream is detailed

in Fig. 4.

This process needs two bitstreams, one for the source

partition and the other implemented for the target partition.

A readback is done on the first partition. The resulting

context is then saved in a new bitstream. The headers and

footers of the second bitstream are then modified to target

the wanted partition modifying the FAR and adding a newly

computed CRC values. Finally, merging the headers and the

saved context, we get a new relocated bitstream.

D. Interconnect implementation issues

In order to be able to safely relocate a dynamic module,

the two dynamic reconfigurable partitions have both to be

connected to the static partition in the same relative way. A
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Figure 4. Partial bitstream relocation process

signal going from the static partition to the reconfigurable

module has to pass through a predefined route and to follow

the same route in each reconfigurable partition. If it is not the

case, hardware failures could occur and permanently damage

the chip while relocating a bitstream. In order to do so, we

want to have the ability to add some constraints on the inputs

and the outputs of the LUTs used to interconnect the static

and dynamic partitions, forming what is commonly called a

bus macro. To achieve this goal, we designed hard macros

using the XDL language [22]. This language allows to

textually describe the route used by each nets in a component

or even in a full design.

Another issue in thread relocation management is the

routing conflicts between the static and the dynamic part.

In the current provider tools, the static routing cross over

each dynamic partition in different ways. To prevent the

overlapping of this static routing, the routing and logic

resources contained in these partitions have to be prohibited

to the static partition. To achieve it, it is necessary to insert

additional constraints. These constraints can be added using

the Isolation Design Flow.

IV. DESIGN TOOLS FLOW

The Isolation Design Flow (IDF), alternatively called

Secure Chip Crypto (SCC) design flow, has been created

to target fault-tolerant systems, especially in the critical

applications in which safety and fault containment is a

primary objective. This flow allows a designer to isolate the

different modules of his system against each other. This is

done regarding both the logic and the routing resources.

In this flow, each module to isolate is defined and syn-

thesized separately. A top-level module groups all these

modules as black boxes. To ensure a correct isolation,

the implementation of these modules is done under some

constraints. Namely, every connections between two isolated

partitions have to pass through trusted routes (Fig. 5). A

trusted route specifies that an output of a partition has to

pass through a direct route to reach another partition. If the

output is used as a load for two different inputs, this signal



have to be split into two different signals passing through a

LUT resource, and so forms what is called a trusted route.

These constraints have to be applied to every inter-partitions

signals when it is necessary except for the global signals

such as the clock or the reset.

Moreover, in each isolated module, inputs and outputs

which are not directly connected to an input or an output

pad has to be defined as a non-buffered port as follow:

attribute buffer type: string;

attribute buffer type of <port name> : signal is ”none”;

In the case of the relocation where routes between the

static partition and the dynamic ones have to be relatively

identical, we instantiated hard macros to connect these two

types of partition (Fig. 6).
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Figure 5. Trusted routes

Once all modules are synthesized, the main part of the

flow is done using the PlanAhead tool. Modules netlists are

imported in the design and these which need to be isolated

are converted into partitions. Each partition is configured

with the SCC ISOLATION attribute, which notifies that the

partitions have to be designed using the Isolation Design

Flow. Then the physical block of each module is placed

inside the FPGA matrix. Another constraint imposed by the

Isolation Design Flow is that the input and output pads

used by a partition have to be included inside the region

covered by its corresponding physical block. In addition, the

boundary between two isolated partition have to be of at least

one CLB-wide, horizontally or vertically. This boundary is

called a Fence and is an area in which neither the logic

resources nor the routing switch matrices will be used. The

following location constraints applied to the hard macros

have to be inserted in an external constraint file and passed

to XST using the -uc flag:

INST <hard macro name> LOC = SLICE X#Y#;

where “#” represents valid Slice X and Y coordinates.

This flag ensures that the synthesizer will respect the loca-

tion constraints and that the hard macro will be placed at the

correct position, over the static and the dynamic boundary.

Finally, once the design is placed and routed, the correct

isolation of each partition can be checked with the help of

the Isolation Verification Tool (IVT) [12].

V. IMPLEMENTATION
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Figure 6. Test design

In a first step, we experienced the implementation of re-

locatable hardware module using the Isolation Design Flow

on the simple design illustrated in Fig. 6, and implemented

on a Virtex 5 SX50T FPGA using the version 13.1 of

IDS2. It is a Microblaze-based platform composed of the

FaRM IP used to reconfigure the dynamic partitions, a

hardware CRC module used to compute the new CRC of the

relocated module as well as two dynamic modules. There is

no external memory. The only off-chip connections are the

FPGA clock and the reset button. The two reconfigurable

modules implement respectively a two-bits adder and a two-

bits multiplier. Each one of these modules is controlled by

the processor through a dedicated GPIO peripheral.

As trusted routes are direct routes from one partition to

another, the number of available paths to route a signal is

limited. To simplify the routing of the hard macros, we first

implement ”soft macros“ instantiating LUTs directly in the

top level module for one of the partitions. After the place

and route phase, hard macros are extracted from the design

netlist using using the RapidSmith framework [9]. Finally,

the extracted hard macro is applied on each partition and

the design is implemented once again.

After implementation (Fig. 7), the two modules are well

isolated in terms of logic and routing resources, and the

one CLB-wide boundary between the dynamic modules and

2ISE Design Suite



the static partition is respected. This result permitted us

to perform a safe relocation of these two modules in the

available dynamic partitions without additional bitstreams.

Figure 7. Design test - Partition isolation

VI. CONCLUSIONS AND FUTURE WORK

We implemented a design in which two identical partitions

have been created. The design flow based on the Isolation

Design Flow allowed us to ensure that the relocation pro-

cess can be executed without damaging the FPGA device.

Moreover, this design flow relies on additional tools and

routing techniques provided by Xilinx which is non-intrusive

regarding to custom tools. For the moment, we target only

partitions which offers the same set of resources but as

FPGAs size is increasing continuously, as shown by the

presence of super logic region (SRL) in the latest Virtex 7

FPGAs, finding identical areas in a FPGA will become less

and less difficult. The simple example design implemented

in this article has been used as a proof of concept. We are

currently applying this design flow on the FOSFOR platform

in order to relocate hardware threads in a real and more

complex application. In future work, as introduced in [23],

implementing and comparing a set of bus macros respecting

in our case the IDF constraints, will help us to evaluate more

precisely the usability and the interest of this design flow.

In addition, we aim to integrate this work with previous

work about on-line scheduling and placement algorithms in

order to provide an efficient thread management service to

heterogeneous reconfigurable systems-on-chips.
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