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We propose a primal-dual splitting algorithm for solving monotone inclusions involving a mixture of sums, linear compositions, and parallel sums of set-valued and Lipschitzian operators. An important feature of the algorithm is that the Lipschitzian operators present in the formulation can be processed individually via explicit steps, while the set-valued operators are processed individually via their resolvents. In addition, the algorithm is highly parallel in that most of its steps can be executed simultaneously. This work brings together and notably extends various types of structured monotone inclusion problems and their solution methods. The application to convex minimization problems is given special attention.

Introduction

Duality theory occupies a central place in classical optimization [START_REF] Fenchel | Convex Cones, Sets and Functions[END_REF][START_REF] Gol | shteȋn, Teoriya Dvoistvennosti v Matematicheskom Programmirovanii i ee Prilozheniya (Duality Theory in Mathematical Programming and Its Applications)[END_REF][START_REF] Moreau | Fonctionnelles Convexes, Séminaire Jean Leray sur les Équations aux Dérivées Partielles[END_REF][START_REF] Rockafellar | Duality and stability in extremum problems involving convex functions[END_REF][START_REF] Rockafellar | Conjugate Duality and Optimization[END_REF]. Since the mid 1960s it has expanded in various directions, e.g., variational inequalities [START_REF] Alduncin | Composition duality principles for mixed variational inequalities[END_REF][START_REF] Ekeland | Analyse Convexe et Problèmes Variationnels[END_REF][START_REF] Gabay | Applications of the method of multipliers to variational inequalities[END_REF][START_REF] Goh | Duality in Optimization and Variational Inequalities[END_REF][START_REF] Konnov | The splitting method with a linear search for direct-dual variational inequalities[END_REF][START_REF] Mosco | Dual variational inequalities[END_REF], minimax and saddle point problems [START_REF] Lebedev | Duality theory of concave-convex games[END_REF][START_REF] Mclinden | An extension of Fenchel's duality theorem to saddle functions and dual minimax problems[END_REF][START_REF] Moreau | Théorèmes "inf-sup[END_REF][START_REF] Rockafellar | Minimax theorems and conjugate saddle-functions[END_REF], and, from a more global perspective, monotone inclusions [START_REF] Attouch | A general duality principle for the sum of two operators[END_REF][START_REF] Bauschke | The asymptotic behavior of the composition of two resolvents[END_REF][START_REF] Briceño-Arias | A monotone+skew splitting model for composite monotone inclusions in duality[END_REF][START_REF] Eckstein | Smooth methods of multipliers for complementarity problems[END_REF][START_REF] Mercier | Inéquations Variationnelles de la Mécanique[END_REF][START_REF] Pennanen | Dualization of generalized equations of maximal monotone type[END_REF][START_REF] Robinson | Composition duality and maximal monotonicity[END_REF]. In the present paper, we propose an algorithm for solving the following structured duality framework for monotone inclusions that encompasses the above cited works. In this formulation, we denote by B D the parallel sum of two set-valued operators B and D (see (2.5)). This operation plays a central role in convex analysis and monotone operator theory. In particular, B D can be seen as a regularization of B by D, and is naturally connected to addition through duality since (B + D) -1 = B -1 D -1 . It is also strongly related to the infimal convolution of functions through subdifferentials. We refer the reader to [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF][START_REF] Luque | Convolutions of Maximal Monotone Mappings[END_REF][START_REF] Moudafi | On the stability of the parallel sum of maximal monotone operators[END_REF][START_REF] Passty | The parallel sum of nonlinear monotone operators[END_REF][START_REF] Seeger | Direct and inverse addition in convex analysis and applications[END_REF] and the references therein for background on the parallel sum.

Problem 1.1 Let H be a real Hilbert space, let z ∈ H, let m be a strictly positive integer, let A : H → 2 H be maximally monotone, and let C : H → H be monotone and µ-Lipschitzian for some µ ∈ ]0, +∞[. For every i ∈ {1, . . . , m}, let G i be a real Hilbert space, let r i ∈ G i , let B i : G i → 2 G i be maximally monotone, let D i : G i → 2 G i be monotone and such that D -1 i is ν i -Lipschitzian, for some ν i ∈ ]0, +∞[, and suppose that L i : H → G i is a nonzero bounded linear operator. The problem is to solve the primal inclusion

find x ∈ H such that z ∈ Ax + m i=1 L * i (B i D i )(L i x -r i ) + Cx, (1.1) 
together with the dual inclusion

find v 1 ∈ G 1 , . . . , v m ∈ G m such that (∃ x ∈ H) z -m i=1 L * i v i ∈ Ax + Cx (∀i ∈ {1, . . . , m}) v i ∈ (B i D i )(L i x -r i ).
(1.2) Problem 1.1 captures and extends various existing problem formulations. Here are some examples that illustrate its versatility and the breadth of its scope. Then we recover a duality framework investigated in [START_REF] Briceño-Arias | A monotone+skew splitting model for composite monotone inclusions in duality[END_REF][START_REF] Eckstein | Smooth methods of multipliers for complementarity problems[END_REF][START_REF] Pennanen | Dualization of generalized equations of maximal monotone type[END_REF][START_REF] Robinson | Composition duality and maximal monotonicity[END_REF], namely (we drop the subscript '1' for brevity),

find (x, v) ∈ H ⊕ G such that z ∈ Ax + L * B(Lx -r) -r ∈ -L A -1 (z -L * v) + B -1 v. (1.4)
Example 1.3 In Example 1.2, let G = H, r = z = 0, and L = Id . Then we obtain the duality setting of [START_REF] Attouch | A general duality principle for the sum of two operators[END_REF][START_REF] Mercier | Inéquations Variationnelles de la Mécanique[END_REF], i.e., find (x, u) ∈ H ⊕ H such that 0 ∈ Ax + Bx 0 ∈ -A -1 (-u) + B -1 u.

(1.5)

The special case of variational inequalities was first treated in [START_REF] Mosco | Dual variational inequalities[END_REF].

Example 1.4 In Example 1.2, let A and B be the subdifferentials of lower semicontinuous convex functions f : H → ]-∞, +∞] and g : G → ]-∞, +∞], respectively. Then, under suitable constraint qualification, we obtain the classical Fenchel-Rockafellar duality framework [START_REF] Rockafellar | Duality and stability in extremum problems involving convex functions[END_REF], i.e.,

     minimize x∈H f (x) + g(Lx -r) -x | z minimize v∈G f * (z -L * v) + g * (v) + v | r . (1.6) Example 1.5 In Problem 1.1, set C : x → 0, z = 0, and (∀i ∈ {1, . . . , m}) G i = H, r i = 0, L i = Id , and 
D i = ρ -1 i Id , where ρ i ∈ ]0, +∞[. Then it follows from [8, Proposition 23.6(ii)] that, for every i ∈ {1, . . . , m}, B i D i = (Id -J ρ i B i )/ρ i = ρ i B i is the Yosida approximation of index ρ i of B i . Thus, (1.1) reduces to find x ∈ H such that 0 ∈ Ax + m i=1 ρ i B i x.
(1.7)

This primal problem is investigated in [START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF]Section 6.3]. In the case when m = 1, we obtain the primal-dual problem (we drop the subscript '1' for brevity)

find (x, u) ∈ H ⊕ H such that 0 ∈ Ax + ρ Bx 0 ∈ -A -1 (-u) + B -1 u + ρu (1.8)
investigated in [START_REF] Bauschke | The asymptotic behavior of the composition of two resolvents[END_REF]. 

f (x) + (g ℓ)(Lx) + h(x), (1.9) 
which can be rewritten as

minimize x∈H, y∈G f (x) + h(x) + g(y) + ℓ(Lx -y).
(1.10)

In the special case when h = 0, G = H, L = Id , and ℓ is a quadratic coupling function, such formulations have been investigated in [START_REF] Acker | Convergence d'un schéma de minimisation alternée[END_REF][START_REF] Attouch | A new class of alternating proximal minimization algorithms with costs-to-move[END_REF][START_REF] Aujol | Dual norms and image decomposition models[END_REF][START_REF] Chambolle | Image recovery via total variation minimization and related problems[END_REF][START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF].

Example 1.7 In Problem 1.1, set m = 1, G 1 = H, L 1 = Id , B 1 = D -1 1 :
x → {0}, and z = r 1 = 0. Then (1.1) yields the inclusion 0 ∈ Ax + Cx studied in [START_REF] Tseng | A modified forward-backward splitting method for maximal monotone mappings[END_REF], where an algorithm using explicit steps for C was proposed.

Example 1.8 In Problem 1.1, set A : x → {0} and C = Id . Furthermore, for every i ∈ {1, . . . , m}, let B i be the subdifferential of a lower semicontinuous convex function g i : G i → ]-∞, +∞] and let D -1 i : y → {0}. Then, under suitable constraint qualification, we obtain the primal-dual pair considered in [START_REF] Combettes | Proximity for sums of composite functions[END_REF], namely

minimize x∈H m i=1 g i (L i x -r i ) + 1 2 x -z 2 (1.11)
and minimize

v 1 ∈G 1 ,..., vm∈Gm 1 2 z - m i=1 L * i v i 2 + m i=1 g * i (v i ) + v i | r i .
(1.12)

Example 1.9 The special case of Problem 1.1 in which

A : x → {0}, C : x → 0, and (∀i ∈ {1, . . . , m}) D i : y → G i , if y = 0; ∅, if y = 0 (1.13)
yields the primal-dual pair

find x ∈ H such that z ∈ m i=1 L * i B i (L i x -r i ) (1.14) and find v 1 ∈ G 1 , . . . , v m ∈ G m such that m i=1 L * i v i = z (∃ x ∈ H)(∀i ∈ {1, . . . , m}) v i ∈ B i (L i x -r i ).
(

This framework is considered in [START_REF] Briceño-Arias | A monotone+skew splitting model for composite monotone inclusions in duality[END_REF]Theorem 3.8].

Conceptually, the primal problem (1.1) could be recast in the form of (1.14), namely

find x ∈ H such that z ∈ m i=0 L * i E i (L i x -r i ) , (1.16) 
where

G 0 = H, E 0 = A + C, L 0 = Id , r 0 = 0, and (∀i ∈ {1, . . . , m}) E i = B i D i . (1.17)
In turn, one could contemplate the possibility of using the primal-dual algorithm proposed in [START_REF] Briceño-Arias | A monotone+skew splitting model for composite monotone inclusions in duality[END_REF]Theorem 3.8] to solve Problem 1.1. However, this algorithm requires the computation of the resolvents of the operators A + C and (B -1 i + D -1 i ) 1≤i≤m , which are usually intractable. Thus, for numerical purposes, Problem 1.1 cannot be reduced to Example 1.9. Let us stress that, even in the instance of the simple inclusion 0 ∈ Ax + Cx, it is precisely the objective of the forward-backward splitting algorithm and its variants [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF][START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF][START_REF] Mercier | Topics in Finite Element Solution of Elliptic Problems[END_REF][START_REF] Tseng | Applications of a splitting algorithm to decomposition in convex programming and variational inequalities[END_REF][START_REF] Tseng | A modified forward-backward splitting method for maximal monotone mappings[END_REF] to circumvent the computation of the resolvent of A + C, as would impose a naive application of the proximal point algorithm [START_REF] Rockafellar | Monotone operators and the proximal point algorithm[END_REF].

The goal of this paper is to propose a fully split algorithm for solving Problem 1.1 that employs the operators A, (L i ) 1≤i≤m , (B i ) 1≤i≤m , (D i ) 1≤i≤m , and C separately. An important feature of the algorithm is to activate the single-valued operators (L i ) 1≤i≤m , (D -1 i ) 1≤i≤m , and C through explicit steps. In addition, it exhibits a highly parallel structure which allows for the simultaneous activation of the operators involved. This new splitting method goes significantly beyond the state-of-the-art, which is limited to specific subclasses of Problem 1.1.

In Section 2, we briefly set our notation. The new splitting method is proposed in Section 3, where we also prove its convergence. The special case of minimization problems is discussed in Section 4.

Notation and background

Our notation is standard. We refer the reader to [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF][START_REF] Zȃlinescu | Convex Analysis in General Vector Spaces[END_REF] for background on convex analysis and monotone operator theory. Hereafter, K is a real Hilbert space.

We denote the scalar product of a Hilbert space by • | • and the associated norm by • . The symbols ⇀ and → denote respectively weak and strong convergence. Moreover, G 1 ⊕ • • • ⊕ G m is the Hilbert direct sum of the Hilbert spaces (G i ) 1≤i≤m in Problem 1.1, i.e., their product space equipped with the norm (y i ) 1≤i≤m → m i=1 y i 2 . For every i ∈ {1, . . . , m}, let T i be a mapping from G i to some set R. Then

m i=1 T i : m i=1 G i → R : (y i ) 1≤i≤m → m i=1 T i y i .
(2.1)

Let M : K → 2 K be a set-valued operator. We denote by ran M = u ∈ K (∃ x ∈ K) u ∈ M x the range of M , by dom M = x ∈ K M x = ∅ its domain, by zer M = x ∈ K 0 ∈ M x its set of zeros, by gra M = (x, u) ∈ K × K u ∈ M x its graph, and by M -1 its inverse, i.e., the set-valued operator with graph (u, x)

∈ K × K u ∈ M x . The resolvent of M is J M = (Id +M ) -1 , (2.2) 
where Id denotes the identity operator on K. Moreover, M is monotone if

(∀(x, u) ∈ gra M )(∀(y, v) ∈ gra M ) x -y | u -v ≥ 0, (2.3) 
and maximally so if there exists no monotone operator M : K → 2 K such that gra M ⊂ gra M = gra M . We say that M is uniformly monotone at x ∈ dom M if there exists an increasing function φ : [0, +∞[ → [0, +∞] that vanishes only at 0 such that

(∀u ∈ M x)(∀(y, v) ∈ gra M ) x -y | u -v ≥ φ( x -y ).
(2.4)

The parallel sum of two set-valued operators M 1 and M 2 from K to 2 K is

M 1 M 2 = (M -1 1 + M -1 2 ) -1 . (2.5) 
We denote by Γ 0 (K) the class of lower semicontinuous convex functions ϕ

: K → ]-∞, +∞] such that dom ϕ = x ∈ K ϕ(x) < +∞ = ∅. Now let ϕ ∈ Γ 0 (K). The conjugate of ϕ is the function ϕ * ∈ Γ 0 (K) defined by ϕ * : u → sup x∈K ( x | u -ϕ(x))
, and the subdifferential of ϕ is the maximally monotone operator

∂ϕ : K → 2 K : x → u ∈ K (∀y ∈ K) y -x | u + ϕ(x) ≤ ϕ(y) (2.6)
with inverse given by (∂ϕ) -1 = ∂ϕ * .

(2.7)

Moreover, for every x ∈ K, ϕ + x -• 2 /2 possesses a unique minimizer, which is denoted by prox ϕ x.

We have prox ϕ = J ∂ϕ .

(2.8)

We say that ϕ is ν-strongly convex for some ν ∈ ]0, +∞[ if ϕ -ν • 2 /2 is convex, and that ϕ is uniformly convex at x ∈ dom ϕ if there exists an increasing function φ : [0, +∞[ → [0, +∞] that vanishes only at 0 such that

(∀y ∈ dom ϕ)(∀α ∈ ]0, 1[) ϕ(αx + (1 -α)y) + α(1 -α)φ( x -y ) ≤ αϕ(x) + (1 -α)ϕ(y). (2.9)
The infimal convolution of two functions ϕ 1 and ϕ 2 from K to ]-∞, +∞] is

ϕ 1 ϕ 2 : K → [-∞, +∞] : x → inf y∈K ϕ 1 (y) + ϕ 2 (x -y) .
(2.10)

Finally, let S be a convex subset of K. The strong relative interior of S, i.e., the set of points x ∈ S such that the cone generated by -x + S is a closed vector subspace of K, is denoted by sri S, and the relative interior of S, i.e., the set of points x ∈ S such that the cone generated by -x + S is a vector subspace of K, is denoted by ri S.

Main result

Our main result is the following theorem, which presents our new splitting algorithm and describes its asymptotic behavior. 

Theorem 3.1 In Problem 1.1, suppose that z ∈ ran A + m i=1 L * i (B i D i )(L i • -r i ) + C . (3.1) Let (a 1,n ) n∈N , (b 1,n ) n∈N ,
β = max{µ, ν 1 , . . . , ν m } + m i=1 L i 2 , (3.2 
)

let x 0 ∈ H, let (v 1,0 , . . . , v m,0 ) ∈ G 1 ⊕ • • • ⊕ G m , let ε ∈ ]0, 1/(β + 1)[, let (γ n ) n∈N be a sequence in [ε, (1 -ε)/β],
and set

(∀n ∈ N)                  y 1,n = x n -γ n Cx n + m i=1 L * i v i,n + a 1,n p 1,n = J γnA (y 1,n + γ n z) + b 1,n For i = 1, . . . , m       y 2,i,n = v i,n + γ n L i x n -D -1 i v i,n + a 2,i,n p 2,i,n = J γnB -1 i (y 2,i,n -γ n r i ) + b 2,i,n q 2,i,n = p 2,i,n + γ n L i p 1,n -D -1 i p 2,i,n + c 2,i,n v i,n+1 = v i,n -y 2,i,n + q 2,i,n . q 1,n = p 1,n -γ n Cp 1,n + m i=1 L * i p 2,i,n + c 1,n x n+1 = x n -y 1,n + q 1,n . (3.3)
Then the following hold.

(i) n∈N x n -p 1,n 2 < +∞ and (∀i ∈ {1, . . . , m}) n∈N v i,n -p 2,i,n 2 < +∞.
(ii) There exist a solution x to (1.1) and a solution (v 1 , . . . , v m ) to (1.2) such that the following hold.

(a) z -m j=1 L * j v j ∈ Ax + Cx and (∀i ∈ {1, . . . , m}) L i x -r i ∈ B -1 i v i + D -1 i v i . (b) (∀i ∈ {1, . . . , m}) -r i ∈ -L i (A -1 C -1 ) z -m j=1 L * j v j + B -1 i v i + D -1 i v i . (c) x n ⇀ x and p 1,n ⇀ x. (d) (∀i ∈ {1, . . . , m}) v i,n ⇀ v i and p 2,i,n ⇀ v i .
(e) Suppose that A or C is uniformly monotone at x. Then x n → x and p 1,n → x.

(f) Suppose that, for some i ∈ {1, . . . , m}, B -1

i or D -1 i is uniformly monotone at v i . Then v i,n → v i and p 2,i,n → v i . Proof. Let us first rewrite (3.3) as (∀n ∈ N)                          y 1,n = x n -γ n Cx n + m i=1 L * i v i,n + a 1,n For i = 1, . . . , m y 2,i,n = v i,n + γ n L i x n -D -1 i v i,n + a 2,i,n p 1,n = J γnA (y 1,n + γ n z) + b 1,n For i = 1, . . . , m p 2,i,n = J γnB -1 i (y 2,i,n -γ n r i ) + b 2,i,n q 1,n = p 1,n -γ n Cp 1,n + m i=1 L * i p 2,i,n + c 1,n For i = 1, . . . , m q 2,i,n = p 2,i,n + γ n L i p 1,n -D -1 i p 2,i,n + c 2,i,n x n+1 = x n -y 1,n + q 1,n For i = 1, . . . , m v i,n+1 = v i,n -y 2,i,n + q 2,i,n . (3.4) 
Next, let us introduce the Hilbert space

K = H ⊕ G 1 ⊕ • • • ⊕ G m , (3.5) 
and the operators

M : K → 2 K (x, v 1 , . . . , v m ) → (-z + Ax) × (r 1 + B -1 1 v 1 ) × • • • × (r m + B -1 m v m ) (3.6)
and 

Q : K → K (x, v 1 , . . . , v m ) → Cx + L * 1 v 1 + • • • + L * m v m , -L 1 x + D -1 1 v 1 , . . . , -L m x + D -1 m v m . ( 3 
(∀γ ∈ ]0, +∞[)(∀(x, v 1 , . . . , v m ) ∈ K) J γM (x, v 1 , . . . , v m ) = J γA (x + γz), J γB -1 1 (v 1 -γr 1 ), . . . , J γB -1 m (v m -γr m ) . (3.8)
Let us now examine the properties of Q. To this end, let (x, v 1 , . . . , v m ) and (y, w 1 , . . . , w m ) be two points in K. Using the monotonicity of the operators C and (D -1 i ) 1≤i≤m , we derive from (3.7) that

(x, v 1 , . . . , v m ) -(y, w 1 , . . . , w m ) | Q(x, v 1 , . . . , v m ) -Q(y, w 1 , . . . , w m ) = (x -y, v 1 -w 1 , . . . , v m -w m ) Cx -Cy + L * 1 (v 1 -w 1 ) + • • • + L * m (v m -w m ), -L 1 (x -y) + D -1 1 v 1 -D -1 1 w 1 , . . . , -L m (x -y) + D -1 m v m -D -1 m w m = x -y | Cx -Cy + m i=1 v i -w i | D -1 i v i -D -1 i w i + m i=1 x -y | L * i (v i -w i ) -v i -w i | L i (x -y) = x -y | Cx -Cy + m i=1 v i -w i | D -1 i v i -D -1 i w i ≥ 0. (3.9)
Hence, Q is monotone. Using the triangle inequality, the Lipschitzianity assumptions, the Cauchy-Schwarz inequality, and (3.2), we obtain

Q(x, v 1 , . . . , v m ) -Q(y, w 1 , . . . , w m ) = Cx -Cy, D -1 1 v 1 -D -1 1 w 1 , . . . , D -1 m v m -D -1 m w m + m i=1 L * i (v i -w i ), -L 1 (x -y), . . . , -L m (x -y) ≤ Cx -Cy, D -1 1 v 1 -D -1 1 w 1 , . . . , D -1 m v m -D -1 m w m + m i=1 L * i (v i -w i ), -L 1 (x -y), . . . , -L m (x -y) = Cx -Cy 2 + m i=1 D -1 i v i -D -1 i w i 2 + m i=1 L * i (v i -w i ) 2 + m i=1 L i (x -y) 2 ≤ µ 2 x -y 2 + m i=1 ν 2 i v i -w i 2 + m i=1 L i v i -w i 2 + m i=1 L i 2 x -y 2 ≤ max{µ, ν 1 , . . . , ν m } x -y 2 + m i=1 v i -w i 2 + m i=1 L i 2 m i=1 v i -w i 2 + m i=1 L i 2 x -y 2 = β (x, v 1 , . . . , v m ) -(y, w 1 , . . . , w m ) . (3.10) 
To sum up, we have shown that M is maximally monotone and Q is monotone and β-Lipschitzian.

(3.11)

Next, let us observe that

(3.1) ⇔ (∃ x ∈ H) z ∈ Ax + m i=1 L * i (B i D i )(L i x -r i ) + Cx ⇔ (∃ (x, v 1 , . . . , v m ) ∈ K)            z ∈ Ax + m i=1 L * i v i + Cx v 1 ∈ (B 1 D 1 )(L 1 x -r 1 )
. . .

v m ∈ (B m D m )(L m x -r m ) ⇔ (∃ (x, v 1 , . . . , v m ) ∈ K)            0 ∈ -z + Ax + m i=1 L * i v i + Cx 0 ∈ r 1 + B -1 1 v 1 + D -1 1 v 1 -L 1 x . . . 0 ∈ r m + B -1 m v m + D -1 m v m -L m x ⇔ (∃ (x, v 1 , . . . , v m ) ∈ K) (0, . . . , 0) ∈ (-z + Ax) × (r 1 + B -1 1 v 1 ) × • • • × (r m + B -1 m v m ) + (L * 1 v 1 + • • • + L * m v m + Cx, D -1 1 v 1 -L 1 x, . . . , D -1 m v m -L m x) ⇔ (∃ (x, v 1 , . . . , v m ) ∈ K) (0, . . . , 0) ∈ (M + Q)(x, v 1 , . . . , v m ).
(3.12)

In other words, zer

(M + Q) = ∅. (3.13) 
Now, let us set q n = (q 1,n , q 2,1,n , . . . , q 2,m,n ) and (ii): It follows from [10, Theorem 2.5(ii)] that there exists x ∈ zer(M + Q) such that

(∀n ∈ N)            x n = (x n , v
     a n = (a 1,n , a 2 
(∀n ∈ N)       y n = x n -γ n (Qx n + a n ) p n = J γnM y n + b n q n = p n -γ n (Qp n + c n ) x n+1 = x n -y n + q n . ( 3 
x n ⇀ x and p n ⇀ x.

(3.17)

Let us set

x = (x, v 1 , . . . , v m ). (3.18)
In view of (3.6) and (3.7),

x ∈ zer(M + Q) ⇔            0 ∈ -z + Ax + m i=1 L * i v i + Cx 0 ∈ r 1 + B -1 1 v 1 + D -1 1 v 1 -L 1 x . . . 0 ∈ r m + B -1 m v m + D -1 m v m -L m x ⇔            z -m j=1 L * j v j ∈ Ax + Cx L 1 x -r 1 ∈ (B -1 1 + D -1 1 )v 1 . . . L m x -r m ∈ (B -1 m + D -1 m )v m (3.19) ⇔            z -m j=1 L * j v j ∈ Ax + Cx v 1 ∈ (B 1 D 1 )(L 1 x -r 1 )
. . . 

v m ∈ (B m D m )(L m x -r m ) (3.20) ⇒            z -m j=1 L * j v j ∈ Ax + Cx L * 1 v 1 ∈ L * 1 (B 1 D 1 )(L 1 x -r 1 ) . . . L * m v m ∈ L * m (B m D m )(L m x -r m ) ⇒ z ∈ Ax + m i=1 L * i (B i D i )(L i x -r i ) + Cx ⇔ x
∈ (A + C) -1 z - m j=1 L * j v j and (∀i ∈ {1, . . . , m}) L i x -r i ∈ (B -1 i + D -1 i )v i . (3.23) 
Hence, (∀i ∈ {1, . . . , m})

-L i x ∈ -L i (A -1 C -1 ) z -m j=1 L * j v j L i x -r i ∈ (B -1 i + D -1 i )v i . (3.24)
Thus, (ii)(e): Let us set

(∀i ∈ {1, . . . , m}) -r i ∈ -L i (A -1 C -1 ) z - m j=1 L * j v j + B -1 i v i + D -1 i v i . ( 3 
(∀n ∈ N) y 1,n = x n -γ n Cx n + m j=1 L * j v j,n p 1,n = J γnA ( y 1,n + γ n z) (3.26)
and

(∀i ∈ {1, . . . , m})(∀n ∈ N) y 2,i,n = v i,n + γ n (L i x n -D -1 i v i,n ) p 2,i,n = J γnB -1 i ( y 2,i,n -γ n r i ). (3.27)
Then, in view of (3.3),

(∀n ∈ N) y 1,n -y 1,n ≤ γ n a 1,n ≤ β -1 a 1,n (3.28) 
and, using the nonexpansiveness of the resolvents [8, Proposition 23.7], we obtain

(∀n ∈ N) p 1,n -p 1,n ≤ J γnA (y 1,n + γ n z) + b 1,n -J γnA ( y 1,n + γ n z) ≤ y 1,n -y 1,n + b 1,n ≤ β -1 a 1,n + b 1,n . (3.29) 
Since the sequences (a On the other hand, we deduce from (ii)(a) that there exists u ∈ H such that

u ∈ Ax and z = u + m j=1 L * j v j + Cx, (3.32) 
and that (∀i ∈ {1, . . . , m}

) L i x -r i -D -1 i v i ∈ B -1 i v i . (3.33) 
In addition, (3.26) yields

(∀n ∈ N) γ -1 n (x n -p 1,n ) -Cx n - m j=1 L * j v j,n + z ∈ A p 1,n (3.34) 
while (3.27) yields

(∀i ∈ {1, . . . , m})(∀n ∈ N) γ -1 n (v i,n -p 2,i,n ) + L i x n -D -1 i v i,n -r i ∈ B -1 i p 2,i,n . (3.35) 
Now let us set Using the Cauchy-Schwarz inequality, and the Lipschitzianity and monotonicity of C, we obtain

(∀n ∈ N) α 1,n = x n -p 1,n ε -1 p 1,n -x + µ x n -x + m i=1 L i v i,n -v i α 2,n = m i=1 (ε -1 + ν i ) v i,n -p 2,i,n p 2,i,n -v i . ( 3 
(∀n ∈ N) α 1,n + x n -x m i=1 L * i (v i -v i,n ) ≥ x n -p 1,n ε -1 p 1,n -x + Cx n -Cx + p 1,n -x n m i=1 L * i (v i -v i,n ) + x n -x m i=1 L * i (v i -v i,n ) = x n -p 1,n ε -1 p 1,n -x + Cx n -Cx + p 1,n -x m i=1 L * i (v i -v i,n ) ≥ p 1,n -x γ -1 n (x n -p 1,n ) + m i=1 L * i (v i -v i,n ) + p 1,n -x n | Cx -Cx n = p 1,n -x γ -1 n (x n -p 1,n ) - m i=1 L * i v i,n -Cx n + m i=1 L * i v i + Cx + x -x n | Cx -Cx n = p 1,n -x γ -1 n (x n -p 1,n ) - m i=1 L * i v i,n -Cx n + z -u + x -x n | Cx -Cx n ≥ p 1,n -x γ -1 n (x n -p 1,n ) - m i=1 L * i v i,n -Cx n + z -u . (3.38)
Now suppose that A is uniformly monotone at x. Then, in view of (3.32), (3.34), and (3.38), there exists an increasing function φ A : [0, +∞[ → [0, +∞] that vanishes only at 0 such that

(∀n ∈ N) α 1,n + x n -x m i=1 L * i (v i -v i,n ) ≥ φ A ( p 1,n -x ). (3.39)
On the other hand, it follows from (3.36), the Lipschitzianity of the operators (D -1 i ) 1≤i≤m , (3.33), (3.35), and the monotonicity of the operators (B -1 i ) 1≤i≤m and (D 

-1 i ) 1≤i≤m that (∀n ∈ N) α 2,n + x n -x m i=1 L * i ( p 2,i,n -v i ) ≥ m i=1 γ -1 n (v i,n -p 2,i,n ) -D -1 i v i,n + D -1 i p 2,i,n + L i (x n -x) | p 2,i,n -v i = m i=1 γ -1 n (v i,n -p 2,i,n ) + L i x n -D -1 i v i,n -r i -(L i x -r i -D -1 i v i ) | p 2,i,n -v i + D -1 i p 2,i,n -D -1 i v i | p 2,i,n -v i ≥ 0. ( 3 
(∀n ∈ N) α 1,n + α 2,n + x n -x m i=1 L * i ( p 2,i,n -v i,n ) ≥ φ A ( p 1,n -x ). ( 3 
(∀n ∈ N) α 1,n + α 2,n + x n -x m i=1 L * i ( p 2,i,n -v i,n ) ≥ φ C ( x n -x ), (3.42) 
and we reach the same conclusion.

(ii)(f): Suppose that B -1 i is uniformly monotone at v i for some i ∈ {1, . . . , m}. Then, proceeding as in (3.40), there exists an increasing function φ B i : [0, +∞[ → [0, +∞] that vanishes only at 0 such that

(∀n ∈ N) α 2,n + x n -x m j=1 L * j ( p 2,j,n -v j ) ≥ m j=1 γ -1 n (v j,n -p 2,j,n ) + L j x n -D -1 j v j,n -r j -(L j x -r j -D -1 j v j ) | p 2,j,n -v j + D -1 j p 2,j,n -D -1 j v j | p 2,j,n -v j ≥ m j=1 γ -1 n (v j,n -p 2,j,n ) + L j x n -D -1 j v j,n -r j -(L j x -r j -D -1 j v j ) | p 2,j,n -v j ≥ γ -1 n (v i,n -p 2,i,n ) + L i x n -D -1 i v i,n -r i -(L i x -r i -D -1 i v i ) | p 2,i,n -v i ≥ φ B i ( p 2,i,n -v i ). (3.43)
On the other hand, according to (3.38),

(∀n ∈ N) α 1,n + x n -x m j=1 L * j (v j -v j,n ) ≥ 0. (3.44)
Hence,

(∀n ∈ N) α 1,n + α 2,n + x n -x m j=1 L * j ( p 2,j,n -v j,n ) ≥ φ B i ( p 2,i,n -v i ). (3.45)
By proceeding as previously, we infer that p 2,i,n → v i and hence, via (3.31) and (i), that p 2,i,n → v i and v i,n → v i . If D -1 i is uniformly monotone at v i , the same arguments lead to these conclusions.

In the following remarks, we comment on the structure of the proposed algorithm and its relation to existing work. (i) The algorithm achieves full splitting in that each of the operators appearing in Problem 1.1 is used separately.

(ii) The algorithm uses explicit steps for the single-valued operators and implicit steps for the set-valued operators. Since explicit steps are typically much easier to implement than implicit steps, the algorithm therefore exploits efficiently the properties of the operators.

(iii) The sequences (a 1,n ) n∈N , (b 1,n ) n∈N , and (c 1,n ) n∈N , and, for every i ∈ {1, . . . , m}, (a 2,i,n ) n∈N , (b 2,i,n ) n∈N , and (c 2,i,n ) n∈N relax the requirement for exact evaluations of the operators over the course of the iterations.

(iv) Most of the elementary steps in (3.3) can be executed in parallel.

(v) The update of the variable p 2,i,n can also be carried out using the resolvent of

B i since [8, Proposition 23.18] J γnB -1 i (y 2,i,n -γ n r i ) = y 2,i,n -γ n r i -γ n J γ -1 n B i (γ -1 n (y 2,i,n -γ n r i )).
Remark 3.3 Some noteworthy connections between Theorem 3.1 and existing work are the following.

(i) Unlike most splitting methods, the proposed algorithm is designed to solve explicitly a dual problem.

(ii) In the special case when m = 1 and D 1 is as in (1.3), the primal problem (1.1) reduces to (we drop the subscript '1' for brevity)

find x ∈ H such that z ∈ Ax + L * B(Lx -r) + Cx, (3.46) 
the dual problem (1.2) reduces to

find v ∈ G such that -r ∈ -L (A + C) -1 (z -L * v) + B -1 v, (3.47) 
and the algorithm is governed by the iteration

              y 1,n = x n -γ n Cx n + L * v n + a 1,n y 2,n = v n + γ n (Lx n + a 2,n ) p 1,n = J γnA (y 1,n + γ n z) + b 1,n p 2,n = J γnB -1 (y 2,n -γ n r) + b 2,n q 1,n = p 1,n -γ n Cp 1,n + L * p 2,n + c 1,n q 2,n = p 2,n + γ n (Lp 1,n + c 2,n ) x n+1 = x n -y 1,n + q 1,n v n+1 = v n -y 2,n + q 2,n . (3.48) 
On the one hand, if C : x → 0, we recover the primal-dual setting of [START_REF] Briceño-Arias | A monotone+skew splitting model for composite monotone inclusions in duality[END_REF] and its algorithm ([10, Eq. (3.1)]). On the other hand, if L : x → 0, B : y → {0}, z = 0, and r = 0, (3.46) yields the problem studied in [START_REF] Tseng | A modified forward-backward splitting method for maximal monotone mappings[END_REF], and (3.48) without error terms and dual variables yields a primal algorithm proposed in that paper, namely

      y 1,n = x n -γ n Cx n p 1,n = J γnA y 1,n q 1,n = p 1,n -γ n Cp 1,n x n+1 = x n -y 1,n + q 1,n . (3.49) 
Let us note that, even when we specialize (3.46) to G = H and L = Id , there does not appear to exist an alternative algorithm that splits A, B, and C and uses explicit steps on the Lipschitzian operator C.

(iii) When C : x → 0 and, for every i ∈ {1, . . . , m}, D -1 i : y → {0}, we recover the primal-dual setting of [START_REF] Briceño-Arias | A monotone+skew splitting model for composite monotone inclusions in duality[END_REF]Theorem 3.8]. However, the algorithm we obtain is different from that proposed in that paper, and novel.

(iv) In general, the weak convergence results of Theorem 3.1(ii) cannot be improved to strong convergence without additional hypotheses on the operators such as those described in (ii)(e) and (ii)(f). Indeed, in the special case when (1.1) reduces to the problem of finding a zero of A, the primal component of (3.3) reduces to the proximal point algorithm, namely (set

C : x → 0 in (3.49)) (∀n ∈ N) x n+1 = J γnA x n , (3.50) 
which is known to converge weakly but not strongly [START_REF] Bauschke | A new proximal point iteration that converges weakly but not in norm[END_REF][START_REF] Güler | On the convergence of the proximal point algorithm for convex minimization[END_REF].

Minimization problems

The proposed monotone operator splitting algorithm can be applied to a broader class of problems than that within the reach of existing splitting methods. It has therefore potential applications in the areas in which these methods have been used, e.g., partial differential equations [START_REF] Gabay | Applications of the method of multipliers to variational inequalities[END_REF][START_REF] Mercier | Topics in Finite Element Solution of Elliptic Problems[END_REF], mechanics [START_REF]Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics[END_REF][START_REF] Mercier | Inéquations Variationnelles de la Mécanique[END_REF], variational inequalities [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF][START_REF] Facchinei | Finite-Dimensional Variational Inequalities and Complementarity Problems[END_REF][START_REF] Tseng | Applications of a splitting algorithm to decomposition in convex programming and variational inequalities[END_REF], game theory [START_REF] Briceño-Arias | Monotone operator methods for Nash equilibria in non-potential games[END_REF], traffic theory [START_REF] Fukushima | The primal Douglas-Rachford splitting algorithm for a class of monotone mappings with applications to the traffic equilibrium problem[END_REF], and evolution equations [START_REF] Attouch | A parallel splitting method for coupled monotone inclusions[END_REF]. In this section, we focus on the application of the results of Section 3 to convex minimization problems.

Problem 4.1 Let H be a real Hilbert space, let z ∈ H, let m be a strictly positive integer, let f ∈ Γ 0 (H), and let h : H → R be convex and differentiable with a µ-Lipschitzian gradient for some µ ∈ ]0, +∞[. For every i ∈ {1, . . . , m}, let G i be a real Hilbert space, let 

r i ∈ G i , let g i ∈ Γ 0 (G i ), let ℓ i ∈ Γ 0 (G i ) be 1/ν i -
(g i ℓ i )(L i x -r i ) + h(x) -x | z , (4.1) 
and the dual problem minimize

v 1 ∈G 1 ,...,vm∈Gm f * h * z - m i=1 L * i v i + m i=1 g * i (v i ) + ℓ * i (v i ) + v i | r i . (4.2)
The following result is an offspring of Theorem 

let x 0 ∈ H, let (v 1,0 , . . . , v m,0 ) ∈ G 1 ⊕ • • • ⊕ G m , let ε ∈ ]0, 1/(β + 1)[, let (γ n ) n∈N be a sequence in [ε, (1 -ε)/β],
and set

(∀n ∈ N)                  y 1,n = x n -γ n ∇h(x n ) + m i=1 L * i v i,n + a 1,n p 1,n = prox γnf (y 1,n + γ n z) + b 1,n For i = 1, . . . , m       y 2,i,n = v i,n + γ n (L i x n -∇ℓ * i (v i,n ) + a 2,i,n ) p 2,i,n = prox γng * i (y 2,i,n -γ n r i ) + b 2,i,n q 2,i,n = p 2,i,n + γ n L i p 1,n -∇ℓ * i (p 2,i,n ) + c 2,i,n v i,n+1 = v i,n -y 2,i,n + q 2,i,n . q 1,n = p 1,n -γ n ∇h(p 1,n ) + m i=1 L * i p 2,i,n + c 1,n x n+1 = x n -y 1,n + q 1,n . (4.5)
Then the following hold.

(i)

n∈N x n -p 1,n 2 < +∞ and (∀i ∈ {1, . . . , m}) n∈N v i,n -p 2,i,n 2 < +∞.

(ii) There exist a solution x to (4.1) and a solution (v 1 , . . . , v m ) to (4.2) such that the following hold.

(a) z -m j=1 L * j v j ∈ ∂f (x) + ∇h(x) and (∀i ∈ {1, . . . , m}

) L i x -r i ∈ ∂g * i (v i ) + ∇ℓ * i (v i ). (b) x n ⇀ x and p 1,n ⇀ x. (c) (∀i ∈ {1, . . . , m}) v i,n ⇀ v i and p 2,i,n ⇀ v i .
(d) Suppose that f or h is uniformly convex at x. Then x n → x and p 1,n → x.

(e) Suppose that, for some i ∈ {1, . . . , m}, g 

∈ ∂f (x) + m i=1 L * i (∂g i ∂ℓ i )(L i x -r i ) + ∇h(x), (4.7) 
and of an m-tuple 

(v 1 , . . . , v m ) ∈ G 1 ⊕ • • • ⊕ G m such that (∃ x ∈ H) z -m j=1 L * j v j ∈ ∂f (x) + ∇h(x) (∀i ∈ {1, . . . , m}) v i ∈ (∂g i ∂ℓ i )(L i x -r i ), ( 4 
∂ f + h -• | z = ∂f + ∇h -z. (4.10) 
As a result, we derive from (4.7) that

0 ∈ ∂ f + h -• | z (x) + m i=1 L * i ∂(g i ℓ i )(L i x -r i ) . (4.11) 
However, since (4.3) and [8, Proposition 16.5(ii)] imply that

∂ f + h -• | z + m i=1 L * i ∂(g i ℓ i ) (L i • -r i ) ⊂ ∂ f + h -• | z + m i=1 (g i ℓ i ) • (L i • -r i ) , (4.12) 
it follows from (4.11) that 

0 ∈ ∂ f + h -• | z + m i=1 (g i ℓ i ) • (L i • -r i ) (x). ( 4 
+ ∇h -1 = ∂(f + h) -1 = ∂(f + h) * = ∂ f * h * . ( 4 
(∃ x ∈ H) x ∈ ∂(f * h * ) z -m j=1 L * j v j (∀i ∈ {1, . . . , m}) L i x -r i ∈ ∂ g * i + ℓ * i (v i ) (4.16)
and therefore

(∃ x ∈ H)        -(L i x) 1≤i≤m ∈ - m × i=1 L i ∂(f * h * ) z -m j=1 L * j v j (L i x) 1≤i≤m ∈ m × i=1 ∂ g * i + ℓ * i + • | r i (v i ).
(4.17)

Hence, using [8, Propositions 16.5(ii) and 16.8] and the notation (2.1), (0, . . . , 0) ∈ - In the following proposition we give conditions under which (4.3) is satisfied. Then (4.3) is satisfied if one of the following holds.

m × i=1 L i ∂(f * h * ) z - m j=1 L * j v j + m × i=1 ∂ g * i + ℓ * i + • | r i (v i ) = - m i=1 L * i * ∂(f * h * ) z - m i=1 L * i (v 1 , . . . , v m ) + ∂ m i=1 g * i + ℓ * i + • | r i (v 1 , . . . , v m ) ⊂ ∂ (f * h * ) z - m i=1 L * i • + m i=1 g * i + ℓ * i + • | r i (v 1 , . . . , v m ). ( 4 
(i) (r 1 , . . . , r m ) ∈ sri S.

(ii) For every i ∈ {1, . . . , m}, g i or ℓ i is real-valued.

(iii) H and (G i ) 1≤i≤m are finite-dimensional, and there exists x ∈ ri dom f such that (∀i ∈ {1, . . . , m}) L i x -r i ∈ ri dom g i + ri dom ℓ i . Even in this special case, the algorithm resulting from (4.5) is new. This observation remains valid if we further assume that h : x → 0.

L * i (∂g i ∂ℓ i )(L i • -r i ) + ∇h -z = ∂ f + h -• | z + m i=1 L * i ∂(g i ℓ i ) (L i • -r i ) = ∂ f + h -• | z + m i=1 (g i ℓ i ) • (L i • -r i ) .

Example 1 . 2

 12 In Problem 1.1 set m = 1, C : x → 0, and D 1 : y → G 1 , if y = 0; ∅, if y = 0. (1.3) 

Example 1 . 6

 16 In Problem 1.1, set m = 1, G 1 = G, L 1 = L, z = 0, and r 1 = 0, and let A and B 1 be the subdifferentials of lower semicontinuous convex functions f : H → ]-∞, +∞] and g : G → ]-∞, +∞], respectively. In addition, let C be the gradient of a differentiable convex function h : H → R, and let D be the subdifferential of a lower semicontinuous strongly convex function ℓ : G → ]-∞, +∞]. Then, under suitable constraint qualification, (1.1) assumes the form of the minimization problem minimize x∈H

  ,1,n , . . . , a 2,m,n ) b n = (b 1,n , b 2,1,n , . . . , b 2,m,n ) c n = (c 1,n , c 2,1,n , . . . , c 2,m,n ). (3.14) We first observe that our assumptions imply that n∈N a n < +∞, n∈N b n < +∞, and n∈N c n < +∞. (3.15) Furthermore, it follows from (3.7), (3.8), and (3.14), that (3.4) assumes in K the form of the errortolerant forward-backward-forward algorithm

. 16 )

 16 (i): It follows from (3.11), (3.13), (3.15), (3.16), and [10, Theorem 2.5(i)] that n∈N x n -p n 2 < +∞.

  .25) (ii)(c): This follows from (3.17), (3.18), and (3.21).(ii)(d): This follows from (3.17),(3.18), and(3.22).

. 40 )

 40 Adding (3.39) and (3.40) yields

Remark 3 . 2

 32 Here are some observations regarding the structure of algorithm (3.3).

. 18 )

 18 In other words, by Fermat's rule, (v 1 , . . . , v m ) solves (4.2). Finally, the strong convergence claims in (ii)(d) and (ii)(e) follow from Theorem 3.1(ii)(e)&(ii)(f) since the uniform convexity of a function ϕ ∈ Γ 0 (H) at a point of the domain of ∂ϕ implies the uniform monotonicity of ∂ϕ at that point[START_REF] Zȃlinescu | Convex Analysis in General Vector Spaces[END_REF] Section 3.4].

Proposition 4 . 3

 43 Suppose that (4.1) has at least one solution and set S = (L i x -y i ) 1≤i≤m x ∈ dom f and (∀i ∈ {1, . . . , m}) y i ∈ dom g i + dom ℓ i .(4.[START_REF] Fenchel | Convex Cones, Sets and Functions[END_REF] 

(4. 20 )

 20 Proof. It follows from(4.19) and[START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] Proposition 12.6(ii)] thatS = (L i x -y i ) 1≤i≤m x ∈ dom f and (∀i ∈ {1, . . . , m}) y i ∈ dom(g i ℓ i ) = (L i x -y i ) 1≤i≤m x ∈ dom(f + h -• | z ) and (y i ) 1≤i≤m ∈ m × i=1 dom(g i ℓ i ) = m × i=1 L i dom f + h -• | z -dom m i=1 (g i ℓ i ). (4.21) (i): In view of (4.21), (r 1 , . . . , r m ) ∈ sri S ⇒ (0, . . . , 0) ∈ sri m × i=1L i dom f + h -• | z -dom m i=1 (g i ℓ i )(• -r i ) . (4.22) Hence, since ( × m i=1 L i ) * = m i=1 L * i ,it follows from (4.9), (4.10), and [8, Theorem 16.37(i)] that ∂f + m i=1

(4. 23 )L

 23 Since (4.1) has at least one solution it follows from Fermat's rule that 0 is in the range of the right-hand side of (4.23), which shows that (4.3) holds.(ii)⇒(i): We have (∀i ∈ {1, . . . , m})dom g i + dom ℓ i = G i . Therefore (4.19) yields S = m i=1 G i .(iii)⇒(i): We have sri S = ri S. However, it follows from (4.21) and [8, Corollary 6.15] that ri S = ri m i ri dom f -m × i=1 ri dom g i + ri dom ℓ i . (4.24) Hence (r 1 , . . . , r m ) ∈ sri S ⇔ (∃ x ∈ ri dom f )(∀i ∈ {1, . . . , m}) L i x -r i ∈ ri dom g i + ri dom ℓ i . Remark 4.4 In Problem 4.1, if each function ℓ i is the indicator function of {0}, then (4.1) reduces to minimize x∈H f (x) + m i=1 g i (L i x -r i ) + h(x) -x | z . (4.25)

  Lemma 2.41(iii)] that φ A ( p 1,n -x ) → 0 and, in turn, that p 1,n → x. Hence, in view of (i) and (3.30), we get x n → x and p 1,n → x. Likewise, if C is uniformly monotone at x, there exists an increasing function φ C : [0, +∞[ → [0, +∞] that vanishes only at 0 such that

	.41)
	It then follows from (3.37), (ii)(c), (i), (3.31), and [8,

  strongly convex, for some ν i ∈ ]0, +∞[, and suppose that L i : H → G i is a nonzero bounded linear operator. Consider the problem

			m
	minimize x∈H	f (x) +	i=1

  3.1. Let (a 1,n ) n∈N , (b 1,n ) n∈N , and (c 1,n ) n∈N be absolutely summable sequences in H and, for every i ∈ {1, . . . , m}, let (a 2,i,n ) n∈N , (b 2,i,n ) n∈N , and (c 2,i,n ) n∈N be absolutely summable sequences in G i .

	Theorem 4.2 In Problem 4.1, suppose that	
	m		
	z ∈ ran ∂f +	L * i (∂g i ∂ℓ i )(L i • -r i ) + ∇h .	(4.3)
	i=1		
	Furthermore, set		
		m	
	β = max{µ, ν 1 , . . . , ν m } +	L i 2 ,	(4.4)
		i=1	

  * i or ℓ * i is uniformly convex at v i . Then v i,n → v i and p 2,i,n → v i . Proof. Let us first establish a connection between Problem 4.1 and Problem 1.1. To this end, let us define A = ∂f, C = ∇h, and (∀i ∈ {1, . . . , m}) B i = ∂g i and D i = ∂ℓ i . Proposition 17.10] that C is monotone. On the other hand, for every i ∈ {1, . . . , m}, it follows from the 1/ν i -strong convexity of ℓ i and [8, Corollary 13.33 and Theorem 18.15] that ℓ * i is Fréchet differentiable on G i with a ν i -Lipschitzian gradient, and from (2.7) that D -1 i = ∇ℓ * i . Altogether, we can apply Theorem 3.1 to obtain the existence of a point x ∈ H such that z

	(4.6)

It is clear that (4.3) yields (3.1) and, using (2.7) and (2.8), that (4.5) yields

(3.3)

. Moreover, it follows from

[START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] Theorem 20.40

] that the operators A and (B i ) 1≤i≤m are maximally monotone, and from

[8, 

  .8) that satisfy (i) and (ii). It remains to show that x solve (4.1) and (v 1 , . . . , v m ) solves (4.2). We first observe that since, for every i ∈ {1, . . . , m}, dom ℓ * i = G i [8, Proposition 24.27] yields (∀i ∈ {1, . . . , m}) ∂g i ∂ℓ i = ∂(g i ℓ i ).

	(4.9)
	On the other hand, it follows from [8, Corollary 16.38(iii) and Proposition 17.26(i)] that
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