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Dynamics of a free boundary problem with curvature modeling electrostatic MEMS

Introduction

The focus of this paper is the analysis of a model describing the dynamics of an electrostatically actuated microelectromechanical system (MEMS) when the deformation of the devices are not assumed to be small. More precisely, consider an elastic plate held at potential V and suspended above a fixed ground plate held at zero potential. The potential difference between the two plates generates a Coulomb force and causes a deformation of the membrane, thereby converting electrostatic energy into mechanical energy, a feature used in the design of several MEMS-based devices such as micropumps or microswitches [START_REF] Pelesko | Modeling MEMS and NEMS[END_REF]. An ubiquitous phenomenon observed in such devices is the so called "pull-in" instability: a threshold value of the applied voltage V above which the elastic response of the membrane cannot balance the Coulomb force and the deformable membrane smashes into the fixed plate. Since this effect might either be useful or, in contrast, could damage the device, its understanding is of utmost practical importance and several mathematical models have been set up for its investigation [START_REF] Esposito | Mathematical Analysis of Partial Differential Equations Modeling Electrostatic MEMS[END_REF][START_REF] Leus | On the dynamic response of electrostatic MEMS switches[END_REF][START_REF] Pelesko | Modeling MEMS and NEMS[END_REF].

In the following subsection we give a brief description of an idealized device as depicted in Figure 1, where the state of the device is characterized by the electrostatic potential in the region between the two plates and the deformation of the membrane which is not assumed to be small from the outset, cf. [START_REF] Brubaker | Non-linear effects on canonical MEMS models[END_REF].

1.1. The Model. To derive the model for electrostatic MEMS with curvature we proceed similarly to [START_REF] Brubaker | Non-linear effects on canonical MEMS models[END_REF][START_REF] Esposito | Mathematical Analysis of Partial Differential Equations Modeling Electrostatic MEMS[END_REF][START_REF] Lin | Nonlinear non-local elliptic equation modelling electrostatic actuation[END_REF]. We consider a rectangular thin elastic membrane that is suspended above a rigid plate. The ( x, ŷ, ẑ)-coordinate system is chosen such that the ground plate of dimension [-L, L] × [0, l] in ( x, ŷ)-direction is located at ẑ = -H, while the undeflected membrane with the same dimension [-L, L] × [0, l] in ( x, ŷ)-direction is located at ẑ = 0. The membrane is held fixed along the edges in ŷ-direction while the edges in x-direction are free. Assuming homogeneity in ŷ-direction, the membrane may thus be considered as an elastic strip and the ŷ-direction is omitted in the sequel. The mechanical deflection of the membrane is caused by a voltage difference that is applied across the device. The membrane is held at potential V while the rigid plate is grounded. We denote the deflection of the membrane at position x and time t by û = û( t, x) > -H and the electrostatic potential at position ( x, ẑ) and time t by ψ = ψ( t, x, ẑ). We do not indicate the time variable t for the time being. The electrostatic potential ψ is harmonic, i.e.

∆ ψ = 0 in Ω( û) (1.1) and satisfies the boundary conditions

ψ( x, -H) = 0 , ψ( x, û( x)) = V , x ∈ (-L, L) , (1.2) 
where Ω( û) := {( x, ẑ) ; -L < x < L , -H < ẑ < û( x)} is the region between the ground plate and the membrane. The total energy of the system constitutes of the electric potential and the elastic energy and reads

E( û) = E e ( û) + E s ( û) .
The electrostatic energy E e in dependence of the deflection û is given by

E e ( û) = - ǫ 0 2 L -L û( x) -H |∇ ψ( x, ẑ)| 2 d ẑ d x
with ǫ 0 being the permittivity of free space while the elastic energy E s only retains the contribution due to stretching (in particular, bending is neglected) and is proportional to the tension T and to the change of surface area of the membrane, i.e.

E s ( û) = T L -L 1 + (∂ x û( x)) 2 -1 d x .
Introducing the dimensionless variables

x = x L , z = ẑ H , u = û H , ψ = ψ
V and denoting the aspect ratio of the device by ε = H/L, we may write the total energy in these variables in the form

E(u) = TL 1 -1 1 + ε 2 (∂ x u(x)) 2 -1 dx - ǫ 0 V 2 2ε Ω(u) ε 2 |∂ x ψ(x, z)| 2 + |∂ z ψ(x, z)| 2 d(x, z) , (1.3) 
with Ω(u) := {(x, z) ∈ (-1, 1) × (-1, ∞) : -1 < z < u(x)} , so that, formally, the corresponding Euler-Lagrange equations are

0 = ε 2 ∂ x ∂ x u 1 + ε 2 (∂ x u) 2 -ε 2 λ ε 2 |∂ x ψ(x, u(x))| 2 + |∂ z ψ(x, u(x))| 2 (1.4)
for x ∈ (-1, 1), where we have set

λ = ǫ 0 V 2 TLε 3 .
We now take again time into account and derive the dynamics of the dimensionless deflection u = u( t, x) by means of Newton's second law. Letting ρ and δ denote the mass density per unit volume of the membrane and the membrane thickness, respectively, the sum over all forces equals ρδ∂ 2 t u. The elastic and electrostatic forces, given by the right hand side of equation (1.4), are combined with a damping force of the form -a∂ tu being linearly proportional to the velocity. This yields

ρ δ ∂ 2 t u + a ∂ tu = ε 2 ∂ x ∂ x u 1 + ε 2 (∂ x u) 2 -ε 2 λ ε 2 |∂ x ψ(x, u(x))| 2 + |∂ z ψ(x, u(x))| 2 .
Finally, scaling time based on the strength of damping according to t = tε 2 /a and setting γ := √ ρδε a , we derive for the dimensionless deflection the evolution problem

γ 2 ∂ 2 t u + ∂ t u = ∂ x ∂ x u 1 + ε 2 (∂ x u) 2 -λ ε 2 |∂ x ψ(x, u(x))| 2 + |∂ z ψ(x, u(x))| 2 (1.5)
for t > 0 and x ∈ I := (-1, 1). Instead of considering this hyperbolic equation, however, we assume in this paper that viscous or damping forces dominate over inertial forces, i.e. we assume that γ ≪ 1 and thus neglect the second order time derivative term in (1.5). The membrane displacement u = u(t, x) ∈ (-1, ∞) then evolves according to

∂ t u -∂ x ∂ x u 1 + ε 2 (∂ x u) 2 = -λ ε 2 |∂ x ψ(t, x, u(x))| 2 + |∂ z ψ(t, x, u(x))| 2 , (1.6) 
for t > 0 and x ∈ I with clamped boundary conditions

u(t, ±1) = 0 , t > 0 , (1.7) 
and initial condition

u(0, x) = u 0 (x) , x ∈ I . (1.8) In dimensionless variables, equations (1.1)-(1.2) read ε 2 ∂ 2 x ψ + ∂ 2 z ψ = 0 , (x, z) ∈ Ω(u(t)) , t > 0 , (1.9) 
subject to the boundary conditions (extended continuously to the lateral boundary)

ψ(t, x, z) = 1 + z 1 + u(t, x)
, (x, z) ∈ ∂Ω(u(t)) , t > 0 .

(1.10)

In the following we shall focus our attention on (1. 

∂ t u -∂ 2 x u = -λ ε 2 |∂ x ψ(t, x, u(x))| 2 + |∂ z ψ(t, x, u(x))| 2 , x ∈ I , t > 0 , (1.11)
is investigated in [START_REF] Escher | A parabolic free boundary problem modeling electrostatic MEMS[END_REF]. It is shown therein that the problem (1.7)-(1.11) is well-posed locally in time. Moreover, solutions exist globally for small voltage values λ while global existence is shown not to hold for high voltage values. It is also proven that, for small voltage values, there is an asymptotically stable steady-state solution. Finally, as the parameter ε approaches zero, the solutions are shown to converge toward the solutions of the so-called small aspect ratio model, Figure 1. Idealized electrostatic MEMS device.

see (1.13) below. Indeed, letting ε = 0 (and applying a potential V with V 2 ∼ ε 3 as suggested in [START_REF] Brubaker | Non-linear effects on canonical MEMS models[END_REF]), one can solve (1.9)-(1.10) explicitly for the potential ψ = ψ 0 , that is,

ψ 0 (t, x, z) = 1 + z 1 + u 0 (t, x) , (t, x, z) ∈ [0, ∞) × I × (-1, 0) , (1.12) 
and the displacement u = u 0 satisfies

∂ t u 0 -∂ 2 x u 0 = - λ (1 + u 0 ) 2 , x ∈ I , t ∈ (0, ∞) , u 0 (t, ±1) = 0 , t ∈ (0, ∞) , u 0 (0, x) = u 0 (x) , x ∈ I .
(1.13)

In the limit ε → 0, the free boundary problem is thus reduced to the singular semilinear heat equation (1.13) which has been studied thoroughly in recent years, see [START_REF] Esposito | Mathematical Analysis of Partial Differential Equations Modeling Electrostatic MEMS[END_REF] for a survey as well as e.g. [START_REF] Flores | Analysis of the dynamics and touchdown in a model of electrostatic MEMS[END_REF][START_REF] Ghoussoub | On the partial differential equations of electrostatic MEMS devices. II. Dynamic case[END_REF][START_REF] Guo | Global solutions of singular parabolic equations arising from electrostatic MEMS[END_REF][START_REF] Guo | On the partial differential equations of electrostatic MEMS devices. III. Refined touchdown behavior[END_REF][START_REF] Guo | A nonlocal quenching problem arising in a micro-electro mechanical system[END_REF][START_REF] Guo | On a nonlocal parabolic problem arising in electrostatic MEMS control[END_REF][START_REF] Hui | The existence and dynamic properties of a parabolic nonlocal MEMS equation[END_REF][START_REF] Lin | Nonlinear non-local elliptic equation modelling electrostatic actuation[END_REF][START_REF] Pelesko | Mathematical modeling of electrostatic MEMS with tailored dielectric properties[END_REF]. It is noteworthy to remark that the picture regarding pull-in voltage for the small aspect ratio model (1.13) is rather complete.

Let us point out that [START_REF] Escher | A parabolic free boundary problem modeling electrostatic MEMS[END_REF] is apparently the first mathematical analysis of the parabolic free boundary problem (1.7)-(1.11) while the corresponding elliptic (i.e. steady-state) free boundary problem is investigated in [START_REF] Laurenc | A stationary free boundary problem modeling electrostatic MEMS[END_REF]. Moreover, we shall emphasize that the inclusion of non-small deformations is a feature of great physical relevance and, even though the results presented herein are reminiscent of the ones in [START_REF] Escher | A parabolic free boundary problem modeling electrostatic MEMS[END_REF], the quasilinear structure of (1.6) is by no means a trivial mathematical extension of (1.11).

Main Results.

To state our findings on (1.6)-(1.10), we introduce the spaces

W 2α q,D (I) :=      {u ∈ W 2α q (I) ; u(±1) = 0} for 2α ∈ 1 q , 2 , W 2α q (I) for 0 ≤ 2α < 1 q .
(1.14)

We shall prove the following result regarding local and global existence of solutions:

Theorem 1.1 (Well-Posedness). Let q ∈ (2, ∞), ε > 0, and consider an initial value u 0 ∈ W 2 q,D (I) such that u 0 (x) > -1 for x ∈ I. Then, the following are true:

(i) For each voltage value λ > 0, there is a unique maximal solution (u, ψ) to (1.6)-(1.10) on the maximal interval of existence [0,

T ε m ) in the sense that u ∈ C 1 [0, T ε m ), L q (I) ∩ C [0, T ε m ), W 2 q,D (I) satisfies (1.6)-(1.8) together with u(t, x) > -1 , (t, x) ∈ [0, T ε m ) × I , and ψ(t) ∈ W 2 2 Ω(u(t)) solves (1.9)-(1.10) on Ω(u(t)) for each t ∈ [0, T ε m ). (ii) If for each τ > 0 there is κ(τ) ∈ (0, 1) such that u(t) ≥ -1 + κ(τ) and u(t) W 2 q (I) ≤ κ(τ) -1 for t ∈ [0, T ε m ) ∩ [0, τ], then the solution exists globally, that is, T ε m = ∞. (iii) If u 0 (x) ≤ 0 for x ∈ I, then u(t, x) ≤ 0 for (t, x) ∈ [0, T ε m ) × I. If u 0 = u 0 (x) is even with respect to x ∈ I, then, for all t ∈ [0, T ε m ), u = u(t, x
) and ψ = ψ(t, x, z) are even with respect to x ∈ I as well. (iv) Given κ ∈ (0, 1), there are λ * (κ) > 0 and r(κ

) > 0 such that T ε m = ∞ with u(t, x) ≥ -1 + κ for (t, x) ∈ [0, ∞) × I provided that λ ∈ (0, λ * (κ)) and u 0 W 2 q (I) ≤ r(κ).
In that case, u enjoys the following additional regularity properties:

u ∈ BUC ρ ([0, ∞), W 2-ρ q,D (I)) ∩ L ∞ ([0, ∞), W 2
q,D (I)) for some ρ > 0 small. Note that part (iv) of Theorem 1.1 provides uniform estimates on u in the W 2 q (I)-norm and ensures that u never touches down on -1, not even in infinite time. In contrast to the semilinear case considered in [START_REF] Escher | A parabolic free boundary problem modeling electrostatic MEMS[END_REF], the global existence result for the quasilinear equation (1.6) requires initially a small deformation, see also Remark 3.3 below. The proof of Theorem 1.1 is the content of Section 3. It is based on interpreting (1.6) as a abstract quasilinear Cauchy problem which allows us to employ the powerful theory of evolution operators developed in [START_REF] Amann | Linear and Quasilinear Parabolic Problems, Volume I: Abstract Linear Theory[END_REF]. Let us emphasize at this point that the regularity properties of the right-hand side of equation (1.6) established in [START_REF] Escher | A parabolic free boundary problem modeling electrostatic MEMS[END_REF] are not sufficient to handle the quasilinear character of the curvature operator and we consequently have to derive Lipschitz properties of the right-hand side of (1.6) in weaker topologies than in [START_REF] Escher | A parabolic free boundary problem modeling electrostatic MEMS[END_REF]. This is the purpose of Section 2.

Regarding existence and asymptotic stability of steady-state solutions to (1.6)-(1.10) we have a similar result as in [START_REF] Laurenc | A stationary free boundary problem modeling electrostatic MEMS[END_REF]Thm. 1] and [START_REF] Escher | A parabolic free boundary problem modeling electrostatic MEMS[END_REF]Thm.1.3].

Theorem 1.2 (Asymptotically Stable Steady-State Solutions).

Let q ∈ (2, ∞) and ε > 0.

(i) Let κ ∈ (0, 1). There are δ = δ(κ) > 0 and an analytic function

[λ → U λ ] : [0, δ) → W 2 q,D (I) such that (U λ , Ψ λ ) is the unique steady-state to (1.6)-(1.10) satisfying U λ W 2 q,D (I) ≤ 1/κ with U λ ≥ -1 + κ and Ψ λ ∈ W 2 2
(Ω(U λ )) when λ ∈ (0, δ). The steady-state possesses the additional regularity

U λ ∈ C 2+α [-1, 1] , Ψ λ ∈ W 2 2 Ω(U λ ) ∩ C Ω(U λ ) ∩ C 2+α Ω(U λ ) ∪ Γ(U λ ) , (1.15) 
where α ∈ [0, 1) is arbitrary and Γ(U λ ) denotes the boundary of Ω(U λ ) without corners. Moreover, U λ is negative, convex, and even with U 0 = 0 and Ψ λ = Ψ λ (x, z) is even with respect to x ∈ I. (ii) Let λ ∈ (0, δ). There are ω 0 , m, R > 0 such that for each initial value u 0 ∈ W 2 q,D (I)

with u 0 -U λ W 2 q,D < m, (1.6)-(1.10) has a unique global solution (u, ψ) with u ∈ C 1 [0, ∞), L q (I) ∩ C [0, ∞), W 2 q,D (I) , ψ(t) ∈ W 2 2 Ω(u(t)) , t ≥ 0 , and u(t, x) > -1 , (t, x) ∈ [0, ∞) × I . Moreover, u(t) -U λ W 2 q,D (I) + ∂ t u(t) L q (I) ≤ Re -ω 0 t u 0 -U λ W 2 q,D (I) , t ≥ 0 . (1.16)
Part (ii) of Theorem 1.2 shows local exponential stability of the steady-states derived in part (i). We also point out that the potential ψ converges exponentially to Ψ λ in the W 2 2 -norm as t → ∞, see Remark 4.1 for a precise statement. The proof of Theorem 1.2 is given in Section 4 and relies on the Implicit Function Theorem for part (i) and the Principle of Linearized Stability for part (ii).

Clearly, Theorem 1.2 is just a local result with respect to λ values. However, we next show that there is an upper threshold for λ above which no steady-state solution exists. This is expected on physical grounds and is related to the "pull-in" instability already mentioned in the introduction.

Theorem 1.3 (Non-Existence of Steady-State Solutions). Let q ∈ (2, ∞) and ε > 0. There is λ(ε) > 0 such that, if λ ≥ λ(ε), then there is no steady-state solution (u, ψ) to (1.6)-(1.10) such that u ∈ W 2 q,D (I), ψ ∈ W 2 2
(Ω(u)), and u(x) > -1 for x ∈ I. In addition, λ(ε) → 2 as ε → 0. Similar results have already been obtained for related models, including the small aspect ratio model [START_REF] Brubaker | Non-linear effects on canonical MEMS models[END_REF][START_REF] Esposito | Mathematical Analysis of Partial Differential Equations Modeling Electrostatic MEMS[END_REF] and for the stationary free boundary problem corresponding to (1.7)- (1.11), see [START_REF] Laurenc | A stationary free boundary problem modeling electrostatic MEMS[END_REF]. The proof of Theorem 1.3 relies on a lower bound on ∂ z ψ(x, u(x)) established in the latter paper and is given in Section 5.

The final issue we address is the connection between the free boundary problem (1.6)-(1.10) and the small aspect ratio limit (1.13). More precisely, we show the following convergence result:

Theorem 1.4 (Small Aspect Ratio Limit). Let λ > 0, q ∈ (2, ∞), and let u 0 ∈ W 2 q,D (I) with -1 < u 0 (x) ≤ 0 for x ∈ I. For ε > 0 we denote the unique solution to (1.6)-(1.10) on the maximal interval of existence [0, T ε m ) by (u ε , ψ ε ).
There are τ > 0, ε 0 > 0, and κ 0 ∈ (0, 1) depending only on q and u 0 such that T

ε m ≥ τ with u ε (t) ≥ -1 + κ 0 and u ε (t) W 2 q (I) ≤ κ -1 0 for all (t, ε) ∈ [0, τ] × (0, ε 0 ). Moreover, as ε → 0, u ε -→ u 0 in C 1-θ [0, τ], W 2θ q (I) , 0 < θ < 1 , and 
ψ ε (t)1 Ω(u ε (t)) -→ ψ 0 (t)1 Ω(u 0 (t)) in L 2 I × (-1, 0) , t ∈ [0, τ] ,
(1.17)

where u 0 ∈ C 1 [0, τ], L q (I) ∩ C [0, τ], W 2 q,D (I)
is the unique solution to the small aspect ratio equation (1.13) and ψ 0 is the potential given in (1.12). Furthermore, there is Λ(u 0 ) > 0 such that the results above hold true for each τ > 0 provided that λ ∈ (0, Λ(u 0 )).

The proof is given in Section 6. A similar result has been established in [START_REF] Laurenc | A stationary free boundary problem modeling electrostatic MEMS[END_REF]Thm. 2] for the stationary problem and in [START_REF] Escher | A parabolic free boundary problem modeling electrostatic MEMS[END_REF]Thm.1.4] for the semilinear parabolic version (1.11). As in the latter paper, the crucial step is to derive the ε-independent lower bound τ > 0 on T ε m , which is not guaranteed by the analysis leading to Theorem 1.1. The proof of Theorem 1.4 uses several properties of (1.9)-(1.10) with respect to the ε-dependence shown in [START_REF] Escher | A parabolic free boundary problem modeling electrostatic MEMS[END_REF].

2. On the Elliptic Equation (1.9)-(1.10)

We shall first derive properties of solutions to the elliptic equation (1.9)-(1.10) in dependence of a given (free) boundary. To do so, we transform the free boundary problem (1.9)-(1.10) to the fixed rectangle Ω := I × (0, 1). More precisely, let q ∈ (2, ∞) be fixed and consider an arbitrary function v ∈ W 2 q,D (I) taking values in (-1, ∞). We then define a diffeomorphism T v : Ω(v) → Ω by setting

T v (x, z) := x, 1 + z 1 + v(x) , (x, z) ∈ Ω(v) , (2.1) 
with

Ω(v) := {(x, z) ∈ I × (-1, ∞) ; 1 < z < v(x)}. Clearly, its inverse is T -1 v (x, η) = x, (1 + v(x))η -1 , (x, η) ∈ Ω , (2.2) 
and the Laplace operator from (1.9) is transformed to the v-dependent differential operator

L v w := ε 2 ∂ 2 x w -2ε 2 η ∂ x v(x) 1 + v(x) ∂ x ∂ η w + 1 + ε 2 η 2 (∂ x v(x)) 2 (1 + v(x)) 2 ∂ 2 η w + ε 2 η 2 ∂ x v(x) 1 + v(x) 2 - ∂ 2 x v(x) 1 + v(x) ∂ η w .
An alternative formulation of the boundary value problem (1.9)-(1.10) is then

L u(t) φ (t, x, η) = 0 , (x, η) ∈ Ω , t > 0 , (2.3) φ(t, x, η) = η , (x, η) ∈ ∂Ω , t > 0 , (2.4 
)

for φ = ψ • T -1 u(t)
. With this notation, the quasilinear evolution equation (1.6) for u becomes

∂ t u -∂ x ∂ x u 1 + ε 2 (∂ x u) 2 = -λ 1 + ε 2 (∂ x u) 2 (1 + u) 2 |∂ η φ(•, 1)| 2 , x ∈ I , t > 0 , (2.5) 
where we have used ∂ x φ(t, x, 1) = 0 for x ∈ I and t > 0 due to φ(t, x, 1) = 1 by (2.4). The investigation of the dynamics of (2.5) involves the properties of its nonlinear right hand side as well as the properties of the quasilinear curvature term. We shall see that these two features of (2.5) are somewhat opposite as the treatment of the former requires a functional analytic setting in W 2 q (I) to handle the second order terms of L u(t) in (2.3), while a slightly weaker setting has to be chosen to guarantee H ölder continuity of u with respect to time which is required in quasilinear evolution equations (see Remark 3.3 for further details). To account for these features of (2.5) we have to refine the Lipschitz property of the right-hand side of (2.5) derived in [START_REF] Escher | A parabolic free boundary problem modeling electrostatic MEMS[END_REF] as stated in (2.8) below.

Defining for κ ∈ (0, 1) the open subset

S q (κ) := u ∈ W 2 q,D (I) ; u W 2 q,D (I) < 1/κ and -1 + κ < u(x) for x ∈ I of W 2 q,D (I) (defined in (1.14)) with closure S q (κ) = u ∈ W 2 q,D (I) ; u W 2 q,D (I) ≤ 1/κ and -1 + κ ≤ u(x)
for x ∈ I , the crucial properties of the nonlinear right-hand side of (2.5) are collected in the following proposition: Proposition 2.1. Let q ∈ (2, ∞), κ ∈ (0, 1), and ε > 0. For each v ∈ S q (κ) there is a unique solution

φ v ∈ W 2 2 (Ω) to L v φ v (x, η) = 0 , (x, η) ∈ Ω , (2.6 
)

φ v (x, η) = η , (x, η) ∈ ∂Ω . (2.7)
If ṽ is defined by ṽ(x

) := v(-x) for x ∈ I, then φ ṽ(x, η) = φ v (-x, η) for (x, η) ∈ Ω. Moreover, for 2σ ∈ [0, 1/2), the mapping g ε : S q (κ) -→ W 2σ 2,D (I) , v -→ 1 + ε 2 (∂ x v) 2 (1 + v) 2 |∂ η φ v (•, 1)| 2
is analytic and bounded with g ε (0

) = 1. Finally, if ξ ∈ [0, 1/2) and ν ∈ [0, (1 -2ξ)/2), then there exists a constant c 1 (κ, ε) > 0 such that g ε (v) -g ε (w) W ν 2,D (I) ≤ c 1 (κ, ε) v -w W 2-ξ q,D (I) , v, w ∈ S q (κ) .
(2.8)

According to [6, Prop. 2.1] we actually only have to prove (2.8). Notice that this global Lipschitz property is in the weaker topology of W 2-ξ q,D (I) instead of W 2 q,D (I) and improves [6, Prop. 2.1] where it was established for ξ = 0. The property (2.8) will be a consequence of a sequence of lemmas. For the remainder of this section we fix ε > 0, κ ∈ (0, 1), and q ∈ (2, ∞).

In the following

, if α > 1/2 we let W α 2,D (Ω) denote the subspace of elements in W α 2 (Ω) whose boundary trace is zero, and if 0 ≤ α < 1/2 we set W α 2,D (Ω) := W α 2 (Ω). We equip W 1 2,D (Ω) with the norm Φ W 1 2,D (Ω) := ∂ x Φ 2 L 2 (Ω) + ∂ η Φ 2 L 2 (Ω) 1/2
, and introduce the notation

W -θ 2,D (Ω) := (W θ 2,D (Ω)) ′ , 0 ≤ θ ≤ 1 . Lemma 2.2. For each v ∈ S q (κ) and F ∈ W -1 2,D (Ω) there is a unique solution Φ ∈ W 1 2,D (Ω) to the boundary value problem -L v Φ = F in Ω , (2.9) Φ = 0 on ∂Ω , (2.10)
and there is a constant c 2 (κ, ε) > 0 such that 3 . Consequently, [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]Thm. 8.3] ensures that the boundary value problem (2.9)-(2.10) has a unique solution Φ ∈ W 1 2,D (Ω). Furthermore, taking Φ as a test function in the weak formulation of (2.9)-(2.10) gives

Φ W 1 2,D (Ω) ≤ c 2 (κ, ε) F W -1 2,D (Ω) . (2.11) Furthermore, if F ∈ L 2 (Ω), then Φ ∈ W 2 2,D (Ω) and Φ W 2 2,D (Ω) ≤ c 2 (κ, ε) F L 2 (Ω) . ( 2 
∈ W -1 2,D (Ω) in the form F = f 0 + ∂ x f 1 + ∂ η f 2 with ( f 0 , f 1 , f 2 ) ∈ L 2 (Ω)
F, Φ = Ω ε 2 (∂ x Φ) 2 -2 ε 2 η ∂ x v 1 + v ∂ x Φ ∂ η Φ -ε 2 η ∂ x ∂ x v 1 + v Φ ∂ η Φ -ε 2 ∂ x v 1 + v Φ ∂ x Φ d(x, η) + Ω 1 + ε 2 η 2 (∂ x v) 2 (1 + v) 2 (∂ η Φ) 2 + 2 ε 2 η ∂ x v 1 + v 2 Φ ∂ η Φ d(x, η) + Ω ε 2 η ∂ x ∂ x v 1 + v - ∂ x v 1 + v 2 Φ ∂ η Φ d(x, η) = Ω ε 2 (∂ x Φ) 2 -2 ε 2 η ∂ x v 1 + v ∂ x Φ ∂ η Φ + 1 + ε 2 η 2 (∂ x v) 2 (1 + v) 2 (∂ η Φ) 2 d(x, η) - Ω ε 2 ∂ x v 1 + v ∂ x Φ -η ∂ x v 1 + v ∂ η Φ Φ d(x, η)
and thus

Ω ε 2 ∂ x Φ -η ∂ x v 1 + v ∂ η Φ 2 + ∂ η Φ 1 + v 2 d(x, η) ≤ ε 2 ∂ x v 1 + v L ∞ (I) ∂ x Φ -η ∂ x v 1 + v ∂ η Φ L 2 (Ω) Φ L 2 (Ω) + F W -1 2,D (Ω) Φ W 1 2,D (Ω) .
(2.13)

Note then that by definition of S q (κ) and Sobolev's embedding, there is

c 3 > 0 such that 1 + v(x) ≥ κ , x ∈ I , v C 1 ([-1,1]) ≤ c 3 κ (2.14) for all v ∈ S q (κ). Also, if ζ = (ζ 1 , ζ 2 ) ∈ R 2 , Young's inequality ensures that, for (x, η) ∈ Ω, ε 2 ζ 2 1 ≤ 2 ε 2 ζ 1 -η ∂ x v(x) 1 + v(x) ζ 2 2 + 2 ε 2 η 2 ∂ x v(x) 1 + v(x) 2 ζ 2 2 ≤ 2 1 + 2 ε 2 ∂ x v 2 ∞ ε 2 ζ 1 -η ∂ x v(x) 1 + v(x) ζ 2 2 + 1 2 ζ 2 1 + v(x) 2 . Therefore, introducing ν(κ, ε) := 1 2 min ε 2 κ 2 κ 2 + 2ε 2 c 2 3 , κ 2 (κ + c 3 ) 2 , we infer from (2.14) that ν(κ, ε) ζ 2 1 + ζ 2 2 ≤ ε 2 ζ 1 -η ∂ x v(x) 1 + v(x) ζ 2 2 + ζ 2 1 + v(x) 2 .
(2.15)

Consequently, (2.13), (2.14), and (2.15) give

ε 2 ∂ x Φ -η ∂ x v 1 + v ∂ η Φ 2 L 2 (Ω) + ∂ η Φ 1 + v 2 L 2 (Ω) ≤ ε 2 c 3 κ 2 ∂ x Φ -η ∂ x v 1 + v ∂ η Φ L 2 (Ω) Φ L 2 (Ω) + F W -1 2,D (Ω) ν(κ, ε) ε 2 ∂ x Φ -η ∂ x v 1 + v ∂ η Φ 2 L 2 (Ω) + ∂ η Φ 1 + v 2 L 2 (Ω) 1/2
, whence, using again (2.15), 

Φ W 1 2,D (Ω) ≤ ε ν(κ, ε) c 3 κ 2 Φ L 2 (Ω) + F W -1 2,D (Ω) ν(κ, ε) . ( 2 
f v (x, η) := L v η = ε 2 η 2 ∂ x v(x) 1 + v(x) 2 - ∂ 2 x v(x) 1 + v(x) , (x, η) ∈ Ω , (2.17) 
for v ∈ S q (κ) given, we readily deduce that

f v ∈ L 2 (Ω) with f v L 2 (Ω) ≤ c 4 (κ, ε) . (2.18)
Consequently, Lemma 2.2 provides a unique solution

Φ v ∈ W 2 2,D (Ω) to -L v Φ v (x, η) = f v , (x, η) ∈ Ω , Φ v (x, η) = 0 , (x, η) ∈ ∂Ω .
Clearly, defining

φ v (x, η) := Φ v (x, η) + η , (x, η) ∈ Ω , (2.19) 
gives then the unique solution

φ v ∈ W 2 2 (Ω) to (2.6)-(2.7).
To prove a Lipschitz dependence of φ v on v ∈ S q (κ), we introduce a bounded linear operator

A(v) ∈ L W 1 2,D (Ω), W -1 2,D (Ω) ∩ L W 2 2,D (Ω), L 2 (Ω) by setting A(v)Φ := -L v Φ , Φ ∈ W 1 2,D ( 
Ω) . Note that A(v) is invertible according to Lemma 2.2 and that Φ v = A(v) -1 f v . For the inverse A(v) -1 we have:

Lemma 2.3. Given θ ∈ [0, 1] \ {1/2}, there is a constant c 5 (κ, ε) > 0 such that A(v) -1 L(W θ-1 2,D (Ω),W θ+1 2,D (Ω)) ≤ c 5 (κ, ε) , v ∈ S q (κ) . Proof. Due to Lemma 2.2, A(v) -1 belongs for each v ∈ S q (κ) to both L(W -1 2,D (Ω), W 1 2,D (Ω)) and L(L 2 (Ω), W 2 2,D (Ω)) with A(v) -1 L(W -1 2,D (Ω),W 1 2,D (Ω)) + A(v) -1 L(L 2 (Ω),W 2 
2,D (Ω)) ≤ 2 c 2 (κ, ε) . Hence, using complex interpolation, we derive for θ ∈ [0, 1],

A(v) -1 L [W -1 2,D (Ω),L 2 (Ω)] θ ,[W 1 2,D (Ω),W 2 2,D (Ω)] θ ≤ 2 c 2 (κ, ε) ,
and it then remains to characterize the interpolation spaces for θ ∈ [0, 1] \ {1/2}. For this we first invoke [START_REF] Triebel | Interpolation Theory, Function Spaces, Differential Operators[END_REF]Thm. 1.1.11] to obtain that 

[W -1 2,D (Ω), L 2 (Ω)] θ = [(W 1 2,D (Ω)) ′ , (L 2 (Ω)) ′ ] θ = [W 1 2,D (Ω), L 2 (Ω)] ′
[W -1 2,D (Ω), L 2 (Ω)] θ = (W 1-θ 2,D (Ω)) ′ = W θ-1 2,D (Ω) .
Finally, since the embedding

[W 1 2,D (Ω), W 2 2,D (Ω)] θ ֒→ W θ+1 2,D ( 
Ω) is obviously continuous by [28, Thm. 4.3.2/2] and definition of interpolation, the assertion follows.

Next, we show that A(v) is Lipschitz continuous with respect to v in a suitable topology. More precisely: Lemma 2.4. Given ξ ∈ [0, (q -1)/q) and α ∈ (ξ, 1), there exists c 6 (κ, ε) > 0 such that

A(v) -A(w) L(W 2 2,D (Ω),W -α 2,D (Ω)) ≤ c 6 (κ, ε) v -w W 2-ξ q (I) , v, w ∈ S q (κ) . Proof. Consider v, w ∈ S q (κ) and Φ ∈ W 2 2,D (Ω). Then A(v)Φ ∈ L 2 (Ω) ֒→ W -α 2,D (Ω) and so, for any ϕ ∈ W α 2,D (Ω), Ω A(v) -A(w) Φ ϕ d(x, η) = 2ε 2 Ω η ∂ x v 1 + v - ∂ x w 1 + w ∂ x ∂ η Φ ϕ d(x, η) - Ω 1 + ε 2 η 2 (∂ x v) 2 (1 + v) 2 - 1 + ε 2 η 2 (∂ x w) 2 (1 + w) 2 ∂ 2 η Φ ϕ d(x, η) -2ε 2 Ω η ∂ x v 1 + v 2 - ∂ x w 1 + w 2 ∂ η Φ ϕ d(x, η) + ε 2 Ω η ∂ 2 x v 1 + v - ∂ 2 x w 1 + w ∂ η Φ ϕ d(x, η) = : J 1 + J 2 + J 3 + J 4 .
Since ξ ∈ [0, (q -1)/q) it follows from the continuous embedding

W 2-ξ q (I) ֒→ W 1 ∞ (I) that |J 1 | ≤ 2 ε 2 ∂ x v 1 + v - ∂ x w 1 + w L ∞ (I) ∂ x ∂ η Φ L 2 (Ω) ϕ L 2 (Ω) ≤ ε 2 c(κ) v -w W 2-ξ q (I) Φ W 2 2,D (Ω) ϕ W α 2,D (Ω)
. Similarly, we have

|J 2 | + |J 3 | ≤ (1 + ε 2 ) c(κ) v -w W 2-ξ q (I) Φ W 2 2,D (Ω) ϕ W α 2,D (Ω) .
Finally, we infer from the embedding W 1 2 (Ω) ֒→ L 2q/(q-2) (Ω) and the fact that (W ξ q ′ (I)) ′ = W -ξ q (I) since ξ ∈ [0, (q -1)/q), see, e.g., [START_REF] Amann | Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems[END_REF]Eq. (5.14)], that

|J 4 | ≤ ε 2 Ω ∂ 2 x (v -w) η ∂ η Φ ϕ 1 + v d(x, η) + ε 2 ∂ 2 x w L q (I) 1 1 + v - 1 1 + w L ∞ (I) ∂ η Φ L 2q/(q-2) (Ω) ϕ L 2 (Ω) ≤ ε 2 ∂ 2 x (v -w) W -ξ q (I) 1 1 + v 1 0 η ∂ η Φ(•, η) ϕ(•, η) dη W ξ q ′ (I) + ε 2 c(κ) v -w W 2-ξ q (I) ∂ η Φ W 1 2,D (Ω) ϕ W α 2,D (Ω) . Now, choosing β ∈ [ξ, α), pointwise multiplication is continuous as mappings W 2 q (I) • W β 2 (I) ֒→ W ξ q ′ (I) , C 2 ( Ω) • W 1 2 (Ω) • W α 2 (Ω) ֒→ W β 2 (Ω)
according to Theorem 7.1, while an interpolation argument shows

1 0 ζ(•, η) dη W γ 2 (I) ≤ c ζ W γ 2 (Ω) , ζ ∈ W γ 2 (Ω) , (2.20) for all γ ∈ [0, 1], since ζ → 1 0 ζ(•, η) dη belongs to both L(L 2 (Ω), L 2 (I)) and L(W 1 2 (Ω), W 1 2 (I)
). Therefore, we deduce that

1 1 + v 1 0 η ∂ η Φ(•, η) ϕ(•, η) dη W ξ q ′ (I) ≤ 1 1 + v W 2 q (I) 1 0 η ∂ η Φ(•, η) ϕ(•, η) dη W β 2 (I) ≤ c(κ) η ∂ η Φ ϕ W β 2,D (Ω) ≤ c(κ) ∂ η Φ W 1 2,D (Ω) ϕ W α 2,D ( 
Ω) , and we arrive at

|J 4 | ≤ ε 2 c(κ) v -w W 2-ξ q (I) Φ W 2 2,D (Ω) ϕ W α 2,D (Ω)
. Consequently, gathering the above estimates on |J i |, we obtain

(A(v) -A(w))Φ W -α 2,D (Ω) ≤ (1 + ε 2 ) c(κ) v -w W 2-ξ q (I) Φ W 2 2,D (Ω) , whence the claim.
Next, we prove that f v from (2.17) depends Lipschitz continuously on v ∈ S q (κ).

Lemma 2.5. Given ξ ∈ [0, (q -1)/q) and α ∈ (ξ, 1), there exists c 7 (κ) > 0 such that

f v -f w W -α 2,D (Ω) ≤ c 7 (κ) ε 2 v -w W 2-ξ q (I) , v, w ∈ S q (κ) . Proof. Consider v, w ∈ S q (κ) and recall that f v ∈ L 2 (Ω) ֒→ W -α 2,D (Ω) by (2.18). Then, it follows from the embedding W 2-ξ 2 (I) ֒→ W 1 ∞ (I) and (2.14) that, for ϕ ∈ W α 2,D (Ω), Ω f v -f w ϕ d(x, η) ≤ 2 ε 2 Ω ∂ x v 1 + v 2 - ∂ x w 1 + w 2 |ϕ| d(x, η) + ε 2 Ω ∂ 2 x v 1 1 + v - 1 1 + w |ϕ| d(x, η) + ε 2 Ω ∂ 2 x v -∂ 2 x w ϕ 1 + w d(x, η) ≤ ε 2 c(κ) v -w W 1 ∞ (I) ϕ L 2 (Ω) + ε 2 c(κ) ∂ 2 x v L 2 (I) v -w L ∞ (I) ϕ L 2 (Ω) + ε 2 ∂ 2 x (v -w) W -ξ q (I) 1 1 + w 1 0 ϕ(•, η) dη W ξ q ′ (I) ≤ ε 2 c(κ) v -w W 2-ξ q (I) ϕ W α 2,D (Ω) + 1 1 + w W 2 q (I) 1 0 ϕ(•, η) dη W α 2 (I)
, where we have used for the last inequality continuity of pointwise multiplication

W 2 q (I) • W α 2 (I) ֒→ W ξ q ′ (I)
as in the proof of Lemma 2.4. Taking γ = α in (2.20) and using (2.14), we end up with

Ω f v -f w ϕ d(x, η) ≤ ε 2 c(κ) v -w W 2-ξ q (I) ϕ W α 2,D (Ω) ,
which yields the assertion.

Combining the previous lemmas we now readily obtain the Lipschitz continuity of φ v with respect to v ∈ S q (κ).

Lemma 2.6. Given ξ ∈ [0, (q -1)/q) and α ∈ (ξ, 1), there exists c 8 (κ, ε) > 0 such that

φ v -φ w W 2-α 2,D (Ω) ≤ c 8 (κ, ε) v -w W 2-ξ q (I) , v, w ∈ S q (κ) .
Proof. Let v, w ∈ S q (κ) and recall that

φ v = Φ v + η with Φ v = A(v) -1 f v ∈ W 2 2,D (Ω). Then obviously φ v -φ w = Φ v -Φ w ∈ W 2-α 2,D (Ω) and so φ v -φ w W 2-α 2,D (Ω) = A(v) -1 ( f v -f w ) + (A(v) -1 -A(w) -1 ) f w W 2-α 2,D (Ω) ≤ A(v) -1 L(W -α 2,D (Ω),W 2-α 2,D (Ω)) f v -f w W -α 2,D (Ω) + A(v) -1 L(W -α 2,D (Ω),W 2-α 2,D (Ω)) A(v) -A(w) L(W 2 2,D (Ω),W -α 2,D (Ω)) × A(w) -1 L(L 2 (Ω),W 2 
2,D (Ω)) f w L 2 (Ω) and the statement follows from (2.18), Lemma 2.3, Lemma 2.4, and Lemma 2.5.

Proof of Proposition 2.1.

As previously noted, we are left to prove assertion (2.8). For this let q ∈ (2, ∞), ξ ∈ [0, 1/2), and ν ∈ [0, (1 -2ξ)/2). By [6, Eq. (2.30)], given 2σ ∈ [0, 1/2) there is c 9 (κ, ε) such that

∂ η φ v (., 1) W 1/2 2 (I) + |∂ η φ v (•, 1)| 2 W 2σ 2 (I) ≤ c 9 (κ, ε) , v ∈ S q (κ) . (2.21)
Given v, w ∈ S q (κ), it follows from the definition of g ε that

g ε (v)-g ε (w) W ν 2 (I) ≤ ε 2 ∂ x v + ∂ x w (1 + v) 2 (∂ x v -∂ x w) |∂ η φ v (•, 1)| 2 W ν 2 (I) + 1 + ε 2 (∂ x w) 2 2 + v + w (1 + v) 2 (1 + w) 2 (v -w) |∂ η φ v (•, 1)| 2 W ν 2 (I) + 1 + ε 2 (∂ x w) 2 (1 + w) 2 ∂ η φ v (•, 1) + ∂ η φ w (•, 1) ∂ η φ v (•, 1) -∂ η φ w (•, 1) W ν 2 (I) =: J 1 + J 2 + J 3 .
We now fix 2σ ∈ (ξ + ν, 1/2) and s ∈ [ν, 1ξ) with s ≥ 1/q so that pointwise multiplication

W s q (I) • W 2σ 2 (I) ֒→ W ν 2 (I) (2.22)
is continuous by Theorem 7.1. Then,

J 1 ≤ c ε 2 ∂ x v + ∂ x w (1 + v) 2 (∂ x v -∂ x w) W s q (I) |∂ η φ v (•, 1)| 2 W 2σ 2 (I)
.

We infer from (2.21) and continuity of pointwise multiplication

W 2 q (I) • W 1 q (I) • W 1-ξ q (I) ֒→ W s q (I) (2.23)
guaranteed by Theorem 7.1 that

J 1 ≤ c(κ, ε) 1 (1 + v) 2 W 2 q (I) ∂ x v + ∂ x w W 1 q (I) ∂ x v -∂ x w W 1-ξ q (I) ,
hence, since both v and w belong to S q (κ) and W 2 q (I) is an algebra,

J 1 ≤ c(κ, ε) v -w W 2-ξ q (I) .
(2.24)

Using again the continuity (2.22) and (2.23) of pointwise multiplication as well as (2.21), we obtain

J 2 ≤ c(κ, ε) 1 + ε 2 (∂ x w) 2 W 1 q (I) 2 + v + w (1 + v) 2 (1 + w) 2 W 2 q (I) v -w W 1-ξ q (I) .
As W 1 q (I) and W 2 q (I) are algebras, we deduce from the properties of S q (κ) that

J 2 ≤ c(κ, ε) v -w W 2-ξ q (I) . (2.25)
Finally, fix α ∈ (ξ, 2σν). Invoking once more Theorem 7.1 gives continuity of pointwise multiplication

W 1 q (I) • W 1/2 2 (I) • W 1/2-α 2 (I) ֒→ W ν 2 (I) , (2.26) 
and thus

J 3 ≤ 1 + ε 2 (∂ x w) 2 (1 + w) 2 W 1 q (I) ∂ η φ v (•, 1) + ∂ η φ w (•, 1) W 1/2 2 (I) ∂ η φ v (•, 1) -∂ η φ w (•, 1) W 1/2-α 2 (I) .
Since w ∈ S q (κ), it follows from (2.21), the properties of the trace operator [12, Thm. 1.5.1.1], and Lemma 2.6 that We next focus our attention on the quasilinear curvature part of equation (1.6). Let us first note that

J 3 ≤ c(κ, ε) φ v -φ w W 2-α 2,D (Ω) ≤ c(κ, ε) v -w W 2-ξ q (I) . ( 2 
∂ x ∂ x u 1 + ε 2 (∂ x u) 2 = 1 1 + ε 2 (∂ x u) 2 3/2 ∂ 2 x u , (3.1) 
which motivates the definition of

A(w)v := - 1 1 + (∂ x w) 2 3/2 ∂ 2 x v , v ∈ W 2 q,D (I) , (3.2) 
where w belongs, for q ∈ (2, ∞), κ ∈ (0, 1), and ξ ∈ (0, (q -1)/q) given, to the set

Z q (κ) := {w ∈ W 2-ξ q (I) ; w W 2-ξ q (I) ≤ 1/κ} . Note that W 2-ξ q (I) ֒→ C 1 ([-1, 1]
). Also observe that -A(εu)u coincides with (3.1). For ω > 0 and k ≥ 1, let H(W 2 q,D (I), L q (I); k, ω) be the set of all A ∈ L(W 2 q,D (I), L q (I)) such that ω + A is an isomorphism from W 2 q,D (I) onto L q (I) and satisfies the resolvent estimates

1 k ≤ (µ + A)z L q (I) |µ| z L q (I) + z W 2 q,D (I) ≤ k , Re µ ≥ ω , z ∈ W 2 q,D (I) \ {0} .
Then A ∈ H(W 2 q,D (I), L q (I); k, ω) implies that A ∈ H(W 2 q,D (I), L q (I)), that is, -A generates an analytic semigroup on L q (I) with domain W 2 q,D (I), see [4, I.Thm.1.2.2].

Lemma 3.1. Let q ∈ (2, ∞), κ ∈ (0, 1), and ξ ∈ (0, (q -1)/q). Then there are k := k(κ) ≥ 1 and ω := ω(κ) > 0 such that, for each w ∈ Z q (κ), -2ω + A(w) ∈ H(W 2 q,D (I), L q (I); k, ω) and A(w) is resolvent positive. Moreover, there is a constant ℓ(κ) > 0 such that

A(w 1 ) -A(w 2 ) L(W 2 q,D (I),L q (I)) ≤ ℓ(κ) w 1 -w 2 W 2-ξ q (I) , w 1 , w 2 ∈ Z q (κ) . (3.3)
Proof. Note that the continuous embedding W

2-ξ q (I) ֒→ C 1 ([-1, 1]) ensures the existence of c(κ) > 1 such that 1 ≤ (1 + (∂ x w) 2 ) 3/2 < c(κ) , w ∈ Z q (κ) . (3.4)
Let w ∈ Z q (κ) be fixed and put 

W := (1 + (∂ x w) 2 ) 3/2 .
≥ -µ 1 /c(κ)]. Put ω := µ 1 /(2 1+q/2 c(κ)) > 0.
Then ω is independent of w and -ω + A(w) is an isomorphism from W 2 q,D (I) onto L q (I). Moreover, if F ∈ L q (I, C) and Re µ > 0, then the equation

µu -2ωu - 1 W ∂ 2 x u = F has a unique solution u ∈ W 2 q,D (I, C).
Testing this equation by W|u| q-2 ū and using (3.4) yield the resolvent estimate (see, e.g. the proof of [START_REF] Lorenzi | Analytic Semigroups and Reaction-Diffusion Problems[END_REF]Prop.2.4.2] for details)

(µ -2ω + A(w)) -1 L(L q (I)) ≤ c ′ (κ) |µ| ,
where c ′ (κ) > 0 is a constant independent of w. Since we clearly have by (3.4)

-2ω + A(w) L(W 2 q,D (I),L q (I)) ≤ c ′ (κ) , it follows from [4, I.Rem.1.2.1(a)] that -2ω + A(w) ∈ H(W 2
q,D (I), L q (I); k, ω) for some k := k(κ) ≥ 1. That A(w) is resolvent positive and Lipschitz property (3.3) are readily seen, the latter being a consequence of the continuous embedding W

2-ξ q (I) ֒→ C 1 ([-1, 1]).
If w = w(t) is H ölder continuous in t, then A(w) generates a parabolic evolution operator U A(w) (t, s) on L q (I) in the sense of [4, Sect. II]. More precisely: Proposition 3.2. Let q ∈ (2, ∞), κ ∈ (0, 1), and ξ ∈ (0, (q -1)/q). Let ω(κ) > 0 and ℓ(κ) > 0 be as in Lemma 3.1 and define, for ρ ∈ (0, 1) and N, τ > 0 given,

W τ (κ) := {w ∈ C([0, τ], W 2-ξ q,D (I)) ; w(t) -w(s) W 2-ξ q,D (I) ≤ N ℓ(κ)
|t -s| ρ and w(t) ∈ Z q (κ) for 0 ≤ t, s ≤ τ} .

Then, there is a constant c 0 (ρ) > 0 being independent of N and τ such that the following is true: for each w ∈ W τ (κ), there exists a unique parabolic evolution operator U A(w) (t, s), 0 ≤ s ≤ t ≤ τ, possessing W 2 q,D (I) as a regularity subspace, and

U A(w) (t, s) L(W 2α q,D (I),W 2β q,D (I)) ≤ c * (κ) (t -s) α-β e -ϑ(t-s) , 0 ≤ s < t ≤ τ , for 0 ≤ α ≤ β ≤ 1 with 2α, 2β = 1/q,
where the constant c * (κ) ≥ 1 depends on N, α, and β but is independent of τ, and

-ϑ := -ϑ(κ, ρ, N) := c 0 (ρ)N 1/ρ -ω(κ) . (3.5) Moreover, U A(w) (t, s) ∈ L(L q (I)) is a positive operator for 0 ≤ s ≤ t ≤ τ.
Proof. Notice that, for each w ∈ W τ (κ),

A(w) ∈ C ρ ([0, τ], L(W 2 q,D (I), L q (I))) , -2ω(κ) + A(w) ⊂ H(W 2 q,D (I), L q (I); k(κ), ω(κ)) (3.6) with sup 0≤s<t≤τ A(w(t)) -A(w(s)) L(W 2 q,D (I),L q (I)) |t -s| ρ ≤ N (3.7)
by Lemma 3.1. Hence, the assertion follows from [4, II. Thm. 5.1.1, Lem. 5.1.3, Thm. 6.4.2] and the interpolation results of [START_REF] Grisvard | Équations différentielles abstraites[END_REF][START_REF] Seeley | Interpolation in L p with boundary conditions[END_REF].

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Using the previously introduced notation, we may rewrite (2.5) subject to the boundary condition (1.7) and the initial condition (1.8) as an abstract λ-dependent quasilinear Cauchy problem of the form

d dt u + A(εu)u = -λg ε (u) , t > 0 , u(0) = u 0 . (3.8) 
Existence of solutions to (3.8) is based on applying a fixed point argument. Let λ > 0 and q ∈ (2, ∞). For simplicity we restrict to the case ε ∈ (0, 1]. A similar proof works for ε > 1 by changing some of the constants occurring in the proof. Let us consider an initial value u 0 ∈ W 2 q,D (I) with u 0 (x) > -1 for x ∈ I. Clearly, there is κ ∈ (0, 1/2) with

u 0 ∈ S q (2κ) , u 0 W 2-ξ q,D (I) ≤ 1 2κ , (3.9) 
where we fix ξ and σ such that

0 < ξ < 1 q , 0 < 1 2 - 1 q < 2σ < 1 2 -ξ .
Let 4ρ ∈ (0, ξ), let c 0 (ρ) > 0 be as in Proposition 3.2 and choose then N > 0 with the property that -ϑ

:= c 0 (ρ)N 1/ρ -ω(κ) < 0 in (3.5). Since W 2σ 2,D (I) ֒→ W 2σ-1 2 + 1 q q,D (I) ֒→ L q (I) , (3.10) 
it follows from Proposition 3.2 (with (α, β) = (1, 1) and (α,

β) = (σ -(q -2)/4q, 1)) that, for w ∈ W τ (κ) fixed, U A(w) (t, s) L(W 2 q,D (I)) + (t -s) -σ+1+ 1 2 ( 1 2 -1 q ) U A(w) (t, s) L(W 2σ 2,D (I),W 2 q,D (I)) ≤ c * (κ) e -ϑ(t-s) , (3.11) for 0 ≤ s ≤ t ≤ τ, where the constant c * (κ) ≥ 1 is independent of w and τ > 0. Now, set V τ (κ) := v ∈ W τ (κ) ; v(t) W 2 q,D (I) ≤ 1 κ 0 and v(t) ≥ -1 + κ for 0 ≤ t, s ≤ τ ,
with κ 0 := κ/c * (κ) ≤ κ and τ > 0 to be chosen later and observe that, when endowed with the topology of C([0, τ], W 2-ξ q,D (I)), V τ (κ) is a complete metric space. In addition, since κ 0 ≤ κ, we have v(t) ∈ S q (κ) for all t ∈ 0, τ] and v ∈ V τ (κ). It is, moreover, worthwhile to point out that

εv ∈ V τ (κ) for v ∈ V τ (κ) since ε ∈ (0, 1]. 1 By Proposition 2.1 there is c 1 (κ, ε) > 0 such that g ε (v) -g ε (w) W 2σ 2,D (I) ≤ c 1 (κ, ε) v -w W 2-ξ q,D (I) , v, w ∈ S q (κ) , (3.12) 
and

g ε (v) W 2σ 2,D (I) ≤ c 1 (κ, ε) , v ∈ S q (κ) . (3.13) 
We then claim that

Λ(v)(t) := U A(εv) (t, 0) u 0 -λ t 0 U A(εv) (t, s) g ε v(s) ds , t ∈ [0, τ] , v ∈ V τ (κ) ,
defines a contraction from V τ (κ) into itself if either λ > 0 is arbitrary and τ = τ(κ, λ) > 0 is sufficiently small, or λ > 0 is sufficiently small and τ > 0 is arbitrary. To see this let v, w be arbitrary elements of V τ (κ) and let t ∈ [0, τ]. Since U A(εv) (t, 0) is a positive operator and u 0 ≥ -1 + 2κ, it follows from the embedding W 2 q (I) ֒→ L ∞ (I) with constant 2, (3.11), and (3.13) that

Λ(v)(t) ≥ -1 + 2κ -2 λ t 0 U A(εv) (t, s) g ε (v(s)) W 2 q,D (I) ds ≥ -1 + 2κ -2 λ c * (κ) t 0 e -ϑ(t-s) (t -s) σ-1-1 2 ( 1 2 -1 q ) g ε (v(s)) W 2σ 2,D (I) ds ≥ -1 + 2κ -2 λ c * (κ) c 1 (κ, ε) τ 0 e -ϑs s σ-1-1 2 ( 1 2 -1 q ) ds , (3.14) while (3.11) and (3.13) ensure that 
Λ(v)(t) W 2 q,D (I) ≤ c * (κ) u 0 W 2 q,D (I) + λ c * (κ) t 0 e -ϑ(t-s) (t -s) σ-1-1 2 ( 1 2 -1 q ) g ε (v(s)) W 2σ 2,D (I) ds ≤ c * (κ) 2κ + λ c * (κ) c 1 (κ, ε) τ 0 e -ϑs s σ-1-1 2 ( 1 2 -1 q ) ds . (3.15) 
Moreover, since ξ > 0 and owing to (3.6), (3.7), and [4, II. Thm. 5.2.1] (with the choice β = 1ξ/2, α = 1, and 2γ = 2σ -1/2 + 1/q of the parameters therein) there is a number n * (κ)

> 0 such that Λ(v)(t) -Λ(w)(t) W 2-ξ q,D (I) ≤ n * (κ) e -ϑt λ t ξ 2 g ε (v) -g ε (w) L ∞ ((0,t),L q (I)) + t ξ 2 A(εv) -A(εw) C([0,τ],L(W 2 q,D (I),L q (I))) u 0 W 2 q,D (I) + λ t σ-1 2 ( 1 2 -1 q ) g ε (v) L ∞ ((0,t),W 2σ-1/2+1/q q,D (I)) ≤ λ n * (κ) t ξ 2 e -ϑt c 1 (κ, ε) v -w V τ (κ) + n * (κ) t ξ 2 e -ϑt ℓ(κ) v -w V τ (κ) u 0 W 2 q,D (I) + λ t σ-1 2 ( 1 2 -1 q ) c 1 (κ, ε) ,
1 As already mentioned, the case ε > 1 can be handled by taking different values of κ and N in the definition of V τ (κ).

where we used (3.3), (3.10), (3.12), and (3.13) for the second inequality (recall that

• V τ (κ) = • C([0,τ],W 2-ξ q (I) ). Thus, there is c(κ) > 0 such that Λ(v)(t) -Λ(w)(t) W 2-ξ q,D (I) ≤ c(κ) max 0≤r≤τ r ξ 2 e -ϑr u 0 W 2 q,D (I) + λ + λ max 0≤r≤τ r ξ 2 +σ-1 2 ( 1 2 -1 q ) e -ϑr v -w V τ (κ) . (3.16) 
We next observe that (3.6), (3.7), and [4, II. Thm. 5.3.1] ensure the existence of a number m * (κ) > 0 such that, for 0 ≤ s ≤ t ≤ τ, (since ξ > 0 and

u 0 ∈ W 2 q,D (I) ֒→ W 2-ξ+4ρ q,D (I)) Λ(v)(t) -Λ(v)(s) W 2-ξ q,D (I) ≤ m * (κ) (t -s) 2ρ e -ϑt u 0 W 2-ξ+4ρ q,D (I) + λ g ε (v) L ∞ ((0,t),W 2σ 2,D (I)) ≤ m * (κ) max 0≤r≤τ r ρ e -ϑr u 0 W 2-ξ+4ρ q,D (I) + λ c 1 (κ, ε) (t -s) ρ
(3.17) by using (3.13). Similarly, from (3.9),

Λ(v)(t) W 2-ξ q,D (I) ≤ Λ(v)(t) -Λ(v)(0) W 2-ξ q,D (I) + u 0 W 2-ξ q,D (I) ≤ m * (κ) max 0≤r≤τ r 2ρ e -ϑr u 0 W 2-ξ+4ρ q,D (I) + λ c 1 (κ, ε) + 1 2κ .
(3.18)

Gathering (3.14)-(3.18) we see that, for arbitrary λ > 0, we may choose τ := τ(κ, λ) > 0 sufficiently small such that the mapping Λ : V τ (κ) → V τ (κ) defines a contraction and thus has a unique fixed point u in V τ (κ). Now observe that, owing to Lemma 3.1, (3.10), and (3.12) we have

A(εu), g ε (u) ∈ C ρ [0, τ], H(W 2 q,D (I), L q (I)) × W 2σ-1 2 + 1 q q,D (I)
where 2σ -1 2 + 1 q > 0, and u is a mild solution to (3.8) on [0, τ] with u 0 ∈ W 2 q,D (I). Thus, u ∈ C 1 [0, τ], L q (I) ∩ C [0, τ], W 2 q,D (I) is a strong solution to (3.8) by [START_REF] Amann | Quasilinear evolution equations and parabolic systems[END_REF]Thm. 4.2] and [START_REF] Amann | Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems[END_REF]Thm. 10.1], which then clearly can be extended to a maximal solution on some maximal interval [0, T ε m ). This proves part (i) of Theorem 1.1. Since τ above depends only on κ and λ, we also obtain part (ii) of Theorem 1.1 while the proof of part (iii) is the same as in [START_REF] Escher | A parabolic free boundary problem modeling electrostatic MEMS[END_REF]Thm. 1.1 (iii)]. To prove part (iv) of Theorem 1.1 we note that, since ϑ > 0, there are λ * (κ) > 0 and r(κ) > 0 such that, according to (3.14)- (3.18), the mapping Λ : V τ (κ) → V τ (κ) defines a contraction for each τ > 0 provided that λ ∈ (0, λ * (κ)) and u 0 W 2 q,D (I) ≤ r(κ). Thus, in this case there is a unique fixed point u of Λ belonging to V τ (κ) for each τ > 0. By definition of V τ (κ), this implies Theorem 1.1 (iv). [START_REF] Escher | A parabolic free boundary problem modeling electrostatic MEMS[END_REF], where A is independent of v, the quasilinear problem (3.8) features a further and not negligible difficulty. Indeed, employing Banach's fixed point theorem in the proof of Theorem 1.1 requires two essential ingredients. First, to warrant the existence of a corresponding evolution operator U A(εv) , the operator A(εv(t)) ∈ L(W 2 q,D (I), L q (I)) has to be a Hölder continuous function of time as shown in (3.17). And second, the mapping Λ = Λ(v) has to depend Lipschitz continuously (with Lipschitz constant less than 1) on its argument v, see (3.16). Both of these properties can be guaranteed only in the topology of W 2-ξ q,D (I) for v = v(t) with ξ > 0 (but not for ξ = 0), see [START_REF] Amann | Linear and Quasilinear Parabolic Problems, Volume I: Abstract Linear Theory[END_REF]II. Thm. 5.2.1,Thm. 5.3.1]. This issue is the reason for refining [START_REF] Escher | A parabolic free boundary problem modeling electrostatic MEMS[END_REF]Proposition 2.1] and deriving (2.8). Moreover, unlike the semilinear case the initial value u 0 plays an additional role in the quasilinear case when it comes to global existence as becomes apparent from (3.16) and (3.17). Finally, it is worthwhile to point out that solving the elliptic problem (2.6), (2.7) requires that v ∈ W 2 q,D (I), pointwise with respect to time, rather than v ∈ W 2-ξ q,D (I) . We now prove Theorem 1.2(i). For this let q ∈ (2, ∞), ε > 0, and κ ∈ (0, 1) be fixed and note that, due to (2.5) and (3.1), steady-state solutions to (1.6)-(1.10) are characterized by

Remark 3.3. Compared to the semilinear case investigated in

∂ 2 x u = λ (1 + ε 2 (∂ x u) 2 ) 5/2 (1 + u) 2 |∂ η φ u (•, 1)| 2 =: λ h ε (u) , x ∈ I , u(±1) = 0 , (4.1) 
the function φ u being defined in (2.19). Thus we may proceed as in [START_REF] Escher | A parabolic free boundary problem modeling electrostatic MEMS[END_REF]Thm. 1.3 (i)]: First, it follows exactly as in [6, Prop. 2.1] that the mapping h ε : S q (κ) → L q (I) is analytic. Thus, since -A(0) ∈ L(W 2 q,D (I), L q (I)) is invertible, the operator A(•) being defined in (3.2), we obtain that the mapping F : R × S q (κ)

→ W 2 q,D (I) , (λ, v) -→ v + λA(0) -1 h ε (v) is analytic with F(0, 0) = 0 and D v F(0, 0) = id W 2 q,D
. Now, the Implicit Function Theorem ensures the existence of δ = δ(κ) > 0 and an analytic function

[λ → U λ ] : [0, δ) → W 2 q,D (I) such that F(λ, U λ ) = 0 for λ ∈ [0, δ). Hence (U λ , Ψ λ ) is the unique steady-state to (1.6)-(1.10) satisfying U λ ∈ S q (κ) and Ψ λ ∈ W 2 2 (Ω(U λ )) when λ ∈ (0, δ).
To improve the regularity of (U λ , Ψ λ ) as stated in (1.15), we may argue as follows: Since (4.1) is basically the same equation as considered in [20, Thm. 1], a steady-state solution (u, ψ) to (1.6)-(1.10) possessing the regularity property (1.15) can be constructed by means of Schauder's fixed point theorem applied to (4.1) with u ∈ W 2 ∞ (I) ∩ S q (κ) for each λ sufficiently small. Hence, making δ > 0 smaller, if necessary, uniqueness guarantees (u, ψ) = (U λ , Ψ λ ). This proves Theorem 1.2 (i).

To prove part (ii) of Theorem 1.2, we proceed similarly as in [START_REF] Escher | A parabolic free boundary problem modeling electrostatic MEMS[END_REF]Thm. 1.3 (ii)] and use the Principle of Linearized Stability. Let λ ∈ (0, δ) be given and write

v = u -U λ . Then, introducing Q ∈ C ∞ (S q (κ), L q (I)) with Q(U λ ) = 0 by Q(u) := -A(εu)u -λg ε (u), the linearization of (3.8) reads d dt v -D u Q(U λ )v = Q(v + U λ ) -D u Q(U λ )v =: G λ (v) with G λ ∈ C ∞ (O λ , L q (I)) being defined on some open zero neighborhood O λ in W 2 q,D (I) such that U λ + O λ ⊂ S q (κ). In view of (3.1) we obtain d dt v + A(εU λ ) + B λ v = G λ (v) , (4.2) 
where

B λ v := λg ε (U λ ) 3 ε 2 ∂ x U λ 1 + ε 2 (∂ x U λ ) 2 ∂ x v + λ D u g ε (U λ )v . Since U λ ∈ S q (κ), we have A(εU λ ) ∈ H(W 2
q,D (I), L q (I); k, ω) with spectral bound less than -ω < 0. Thus, since B λ L(W 2 q,D (I),L q (I)) → 0 as λ → 0, it follows from [4, I. Cor. 1.4.3] that -(A(εU λ ) + B λ ) is the generator of an analytic semigroup on L q (I) and there is ω 1 > 0 such that the complex half plane [Re z ≥ -ω 1 ] belongs to the resolvent set of -(A(εU λ ) + B λ ) provided that λ is sufficiently small. Now we may apply [24, Thm. 9.1.2] and conclude statement (ii) of Theorem 1.2 by making δ > 0 smaller, if necessary.

Let us note that also the corresponding potential converges exponentially toward the steadystate as t → ∞. Remark 4.1. In [START_REF] Escher | A parabolic free boundary problem modeling electrostatic MEMS[END_REF] (see (2.29) in the proof of Prop.2.1 therein) the following analogue of Lemma 2.6

φ v -φ w W 2 2 (Ω) ≤ c(κ, ε) v -w W 2 q (I)
, v, w ∈ S q (κ) , was shown to hold. Consequently, under the assumptions of Theorem 1.2 (ii) there is R 1 > 0 such that q,D (I), ψ ∈ W 2 2 (Ω(u)), and u(x) > -1 for x ∈ I. Recall that, according to (1.6), (3.1), and the identity

φ u(t) -φ U λ W 2 2 (Ω) ≤ R 1 e -ω 0 t u 0 -U λ W 2 q,D (I) , t ≥ 0 , which shows that also ψ = φ u(t) • T u(t) (with transformation T u(t) defined in (2.1)) converges exponen- tially to Ψ λ as t → ∞.
∂ x ψ(x, u(x)) = -∂ x u(x) ∂ z ψ(x, u(x)) , the function u solves ∂ 2 x u(x) = λ 1 + ε 2 (∂ x u(x)) 2 ) 5/2 |∂ z ψ(x, u(x))| 2 , x ∈ I ,
with u(±1) = 0, so that u is negative in I by the comparison principle and convex. Thanks to the latter property, [START_REF] Laurenc | A stationary free boundary problem modeling electrostatic MEMS[END_REF]Lem. 4.1] ensures that

∂ z ψ(x, u(x)) ≥ 1 , x ∈ I .
Hence, u satisfies the following differential inequality

∂ 2 x u(x) ≥ λ 1 + ε 2 (∂ x u(x)) 2 ) 5/2 , x ∈ I . Introducing J(r) := r 0 ds (1 + s 2 ) 5/2 =
r(2r 2 + 3) 3(r 2 + 1) 3/2 , r ≥ 0 , the function J maps [0, ∞) onto [0, 2/3) and the previous differential inequality for u reads

∂ x J(ε∂ x u) ≥ λ ε , x ∈ I . ( 5.1) 
Let x m be a point of minimum of u. Since u < 0 in I and x → u(-x) is also a steady-state, we may assume without loss of generality that x m ∈ (-1, 0). Integrating (5.1) over (x m , x) for x ∈ [0, 1] gives

J(ε∂ x u(x)) ≥ J(0) + λ ε (x -x m ) ≥ λ ε x , x ∈ [0, 1] .
(5.2) Now, either λ ε ≥ 2/3 and we deduce from (5.2) that J(ε∂ x u(1)) ≥ λ ε ≥ 2/3 which contradicts the boundedness of ∂ x u. Or λ ε < 2/3 and, since J is concave, we infer from (5.2) after integration over (0, 1) and Jensen's inequality that

J(-ε u(0)) = J 1 0 ε ∂ x u(x) dx ≥ 1 0 J (ε ∂ x u(x)) dx ≥ λ ε 2 .
If λ ≥ 2J(ε)/ε, the previous inequality and the monotonicity of J entail that -u(0) ≥ 1 and a contradiction again. Now, defining λ(ε) := min {2J(ε), 2/3}/ε and noticing that λ(ε) → 2 as ε → 0, Theorem 1.3 follows.

6. Small Aspect Ratio Limit: Proof of Theorem 1.4

To prove Theorem 1.4 fix λ > 0, q ∈ (2, ∞), and u 0 ∈ W 2 q,D (I) such that -1 < u 0 ≤ 0 in I. Clearly, there is κ ∈ (0, 1) such that u 0 ∈ S q (κ). For ε ∈ (0, 1) let (u ε , ψ ε ) be the unique solution to (1.6)-(1.10) which is defined on the maximal interval of existence [0, T ε m ). In the following, (K i ) i≥1 denote positive constants depending only on q and κ, but not on ε > 0 sufficiently small.

Set κ 1 := κ/(2c * (κ)) < κ, where c * (κ) ≥ 1 is the constant defined in (3.11). The continuity properties of u ε ensure

τ ε := sup t ∈ [0, T ε m ) : u ε (s) ∈ S q (κ 1 ) for all s ∈ [0, t] > 0 . (6.1)
Owing to the continuous embedding of W 2 q (I) in W 1 ∞ (I), there is a positive constant K 1 such that, for all ε > 0,

-1 + κ 1 ≤ u ε (t, x) ≤ 0 , (t, x) ∈ [0, τ ε ] × [-1, 1] , (6.2 
)

u ε (t) W 2 q (I) + u ε (t) W 1 ∞ (I) ≤ K 1 , t ∈ [0, τ ε ] . (6.3)
As a consequence of (6.3) there is ε 0 > 0 depending only q and κ such that

ε 2 0 ∂ x u ε (t) 2 L ∞ (I) ≤ 1 2 , (t, ε) ∈ [0, τ ε ] × (0, ε 0 ] . (6.4)
For ε ∈ (0, ε 0 ), we set

φ ε (t) := φ u ε (t) = ψ ε (t) • T -1 u ε (t) , t ∈ [0, τ ε ] ,
with T -1 u ε (t) given by (2.2) and Φ ε (t, x, η) := φ ε (t, x, η)η , (t, x, η) ∈ [0, τ ε ] × Ω .

We first recall uniform estimates on Φ ε that have been established in [6, Lem. 5.1]: Lemma 6.1. There exists a positive constant K 2 such that, for ε ∈ (0, ε 0 ) and t ∈ [0, τ ε ], At this point let us mention that the assumption u 0 ≤ 0 is used to obtain the previous lemma. We then deduce from Lemma 6.1 a positive lower bound on τ ε .

∂ x Φ ε (t) L 2 (Ω) + 1 ε Φ ε (t) L 2 (Ω) + ∂ η Φ ε (t) L 2 (Ω) ≤ K 2 , (6.5 

Lemma 6.2.

(i) There is τ > 0 depending only on q, λ, and κ such that τ ε ≥ τ for all ε ∈ (0, ε 0 ). (ii) There is Λ := Λ(κ) > 0 such that τ ε = T ε m = ∞ for all ε ∈ (0, ε 0 ) provided λ ∈ (0, Λ). Proof. Owing to (6.7) we have ∂ η φ ε (t, •, 1) W 1/2 2 (I) ≤ 1 + K 2 ε while (6.2) and (6.3) imply that 1 + ε 2 (∂ x u ε (t)) 2 (1 + u ε (t)) Thanks to this choice, we readily deduce from (6.9) and (6.10) that u ε (t) W 2 q,D (I) ≤ 1/κ 1 and u ε (t) ≥ -1 + κ 1 for all t ∈ [0, τ] ∩ [0, τ ε ]. Therefore, u ε (t) ∈ S q (κ 1 ) for all t ∈ [0, τ] ∩ [0, τ ε ] and the definition of τ ε implies that τ ε ≥ τ. Finally, it is obvious from (6.11) that there is Λ(κ) > 0 such that (6.11) holds for any τ > 0 and λ ∈ (0, Λ(κ)). This implies that τ ε ≥ τ for any τ > 0 so that τ ε = ∞.

Based on these auxiliary Lemmas 6.1 and 6.2 we may proceed exactly as in the proof of [START_REF] Escher | A parabolic free boundary problem modeling electrostatic MEMS[END_REF]Thm.1.4] to conclude the statement of Theorem 1.4. In particular, an obvious consequence of Lemma 6.1 and Lemma 6.2 is that φ ε → η in suitable topologies as ε → 0 and that (u ε ) ε∈(0,ε 0 ) is bounded in C([0, τ], W 2 q,D (I)).

Appendix

In this appendix we recall a useful tool on pointwise multiplication of functions in Sobolev spaces which is used frequently in the previous sections. 
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5 .

 5 Non-Existence of Steady-State Solutions: Proof of Theorem 1.3 Consider a steady-state solution (u, ψ) to (1.6)-(1.10) with u ∈ W 2

  .12) 

	Proof. According to [12, Def. 1.3.2.3, Eq. (1,3,2,3)], we may write any F

  .16) We now proceed as in[START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF] Lem. 9.17] and argue by contradiction to show (2.11) (see also[START_REF] Escher | A parabolic free boundary problem modeling electrostatic MEMS[END_REF] Lem. 6.2] for a similar argument in a slightly different functional setting). The last statement of Lemma 2.2 is proved in[START_REF] Escher | A parabolic free boundary problem modeling electrostatic MEMS[END_REF] Lem. 6.2].

	Now, introducing

  Since e.g.[START_REF] Amann | Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems[END_REF] Rem.4.2(c)] ensures that -A(w) generates an analytic semigroup on L q (I), the operator µ + A(w) is boundedly invertible for each µ ∈ C with sufficiently large real part. Clearly, µ belongs to the spectrum of -A(w) only if it is an eigenvalue, and if ϕ ∈ W 2 q,D (I, C) is a corresponding eigenvector, then testing the equation ∞ , where µ 1 := π 2 /4 denotes the principal eigenvalue of -∂ 2x subject to Dirichlet boundary conditions. Consequently, due to (3.4) the resolvent set of -A(w) contains the half plane [Re µ

	µϕ -	1 W	∂ 2 x ϕ = 0

with W φ readily gives µ ∈ (-∞, 0) and µ ≤ -µ 1 / W

  ∈ [0, τ ε ]. Consequently, from the continuity of pointwise multiplicationW 1 q (I) • W 1/2 2 (I) • W 1/2 2 (I) ֒→ W 2σ 2 (I) for 2σ ∈ (0, 1/2) fixed (see Theorem 7.1 below), we conclude that there is K 4 > 0 such that g ε (u ε (t)) W 2σ 2 (I) ≤ K 4 , t ∈ [0, τ ε ] . (6.8)As in the proof of (3.14) and (3.15), we infer from (3.11), (6.8), the fact that u 0 ∈ S q (κ), and the Variation-of-Constant formula that, for t ∈ [0, τ ε ],u ε (t) W 2 q,D (I) ≤ c * (κ) u 0 W 2 q,D (I) + λ c * (κ) (I) in L ∞ (I) with constant 2, u ε (t) ≥ -1 + κ -2 λ ) g ε (u ε (s)) W 2σ 2,D (I) ds ≥ -1 + κ -2 λ c * (κ) K 4Since the integral above converges to zero as t → 0, there exists τ > 0 which depends only on q and κ such that

	2 e -ϑ(t-s) (t -s) W 1 q (I) ≤ K 3 σ-1-1 0 2 ( 1 2 -1 q ) ds , U A(εu ε ) (t, s) g ε (u ε (s)) + λ c * (κ) K 4 t 0 e -ϑs s and, using in addition the embedding of W 2 ≤ c * (κ) κ q,D t 0 W 2 q,D (I) σ-1-1 2 ( 1 2 -1 q ) g ε (u ε (s)) W 2σ 2,D (I) ds (6.9) t 0 e -ϑ(t-s) (t -s) σ-1-1 2 ( 1 2 -1 t 0 e -ϑs s σ-1-1 2 ( 1 2 -1 q ) ds . (6.10) for t t t 0 e -ϑs s σ-1-1 2 ( 1 2 -1 q ) ds < min 1 λκK 4 , (2c

ds ≥ -1 + κ -2 λ c * (κ) q * (κ) -1)κ 4λc * (κ) 2 K 4 for all t ∈ [0, τ] . (

6

.11) 

Theorem 7.1. Let

  Ω be an open and non-empty subset of R n with finite volume. Let m ≥ 2 be an integer and let p, p j ∈ [1, ∞) and s, s j ∈ (0, ∞) for 1 ≤ j ≤ m be real numbers satisfying s ≤ min{s j } and Theorem 7.1 is a consequence of the more general result stated in[START_REF] Amann | Multiplication in Sobolev and Besov spaces[END_REF] Thm. 4.1] (see also Remark 4.2 (d) therein). It follows by observing that the Sobolev spaces W s p (Ω) coincide with the Besov spaces B s p,p (Ω) provided s ∈ (0, ∞) \ N and p ∈ [1, ∞) together with the fact that W s 1 p (Ω) ֒→ B s 2 p,p (Ω) if s 1 > s 2 > 0.

										
	s -	n p	<	           	∑ s j < n p j min (s j -1≤j≤m s j -n p j	) n p j	if min 1≤j≤m otherwise .	s j -	n p j	< 0 ,
	Then pointwise multiplication							
					m ∏ j=1	W	s j p j (Ω) → W s p (Ω)	
	is continuous.									
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