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Let M be a complete simply connected manifold which is in addition Gromov hyperbolic, coercive and roughly starlike. For a given harmonic function on M , a local Fatou Theorem and a pointwise criteria of nontangential convergence coming from the density of energy are shown: at almost all points of the boundary, the harmonic function converges non-tangentially if and only if the supremum of the density of energy is finite. As an application of these results, a Calderón-Stein Theorem is proved, that is, the non-tangential properties of convergence, boundedness and finiteness of energy are equivalent at almost every point of the boundary. Contents 1. Introduction 5 5. Non-tangential behaviour of Brownian motion 5.1. A geometric Lemma 5.2. Behaviour of Green functions 5.3. Brownian motion and non-tangential sets 6. Local Fatou theorem 20 7. Density of energy References

The interplay between the geometry of a complete Riemannian manifold M and the existence of non-constant harmonic functions on M has been studied by researcher in geometric analysis for decades. On one hand, S.T. Yau [START_REF] Yau | Harmonic functions on complete Riemannian manifolds[END_REF] proved that, on a complete Riemannian manifold M of non-negative Ricci curvature, every positive harmonic function is constant. On the other hand, in the middle of the eighties, M.T. Anderson and R. Schoen [START_REF] Anderson | Positive harmonic functions on complete manifolds of negative curvature[END_REF] provided a complete description of the space of non-negative harmonic functions for manifolds of pinched negative curvature. They proved the identification between the sphere at infinity and the Martin boundary, that is, the boundary allowing an integral representation of nonnegative harmonic functions by measures on the boundary. Major contributions to this latter issue were given by A. Ancona in a series of papers [START_REF] Ancona | Negatively curved manifolds, elliptic operators, and the Martin boundary[END_REF][START_REF] Ancona | Positive harmonic functions and hyperbolicity[END_REF][START_REF] Ancona | Théorie du potentiel sur les graphes et les variétés[END_REF] and will be discussed later in this article.

The study of non-tangential convergence of harmonic functions goes back to 1906 with P. Fatou's seminal paper [START_REF] Fatou | Séries trigonométriques et séries de Taylor[END_REF], where the following result is proved:

Any positive harmonic function on the unit disc admits non-tangential limits at almost every point θ of the boundary circle.

Recall that a function is said to converge non-tangentially at θ if it has a finite limit at θ on every non-tangential cone with vertex θ. Fatou type theorems have been proved in many different contexts since then and in particular on Gromov hyperbolic graphs and manifolds [START_REF] Ancona | Positive harmonic functions and hyperbolicity[END_REF][START_REF] Ancona | Théorie du potentiel sur les graphes et les variétés[END_REF]. One of the issues is to replace the global positivity condition by local criteria of non-tangential convergence. Of special interest are two criteria which have been intensively studied: the criterion of non-tangential boundedness [START_REF] Priwaloff | Sur les fonctions conjuguées[END_REF][START_REF] Calderón | On the behaviour of harmonic functions at the boundary[END_REF] and the criterion of finiteness of non-tangential integral area [START_REF] Marcinkiewicz | A theorem of Lusin[END_REF][START_REF] Spencer | A function-theoretic identity[END_REF][START_REF] Calderón | On a theorem of Marcinkiewicz and Zygmund[END_REF][START_REF] Stein | On the theory of harmonic functions of several variables. II. Behavior near the boundary[END_REF], also called the criteria of Lusin area. A function is non-tangentially bounded at a boundary point θ if it is bounded on every non-tangential cone with vertex θ. Similarly, a function is of finite non-tangential integral area at θ if on every non-tangential cone with vertex θ, it has a finite area integral. Calderón-Stein's Theorem ( [START_REF] Calderón | On the behaviour of harmonic functions at the boundary[END_REF][START_REF] Stein | On the theory of harmonic functions of several variables. II. Behavior near the boundary[END_REF]) asserts that for a harmonic function in the Euclidean half-space, notions of nontangential convergence, non-tangential boundedness and finiteness of non-tangential area integral coincide at almost all points of the boundary. These results were reproved by J. Brossard ([Bro78]) using Brownian motion. J. Brossard also stated in [START_REF] Brossard | Densité de l'intégrale d'aire dans R n+1 + et limites non tangentielles[END_REF] the criterion of the density of the area integral, a notion first introduced by R.F. Gundy [START_REF] Gundy | The density of the area integral[END_REF]. As noticed by A. Korányi, hyperbolic spaces provide a convenient framework for studying Calderón-Stein like results. A first reason is that there should exist a lot of non-constant harmonic functions under negative curvature assumptions, whereas they are in some sense rare on manifolds satisfying non-negative curvature assumptions. Another reason is that several notions have simpler and more natural expressions in the setting of hyperbolic spaces. When we equip the Euclidean halfspace with the hyperbolic Poincaré metric, Euclidean notions of non-tangential cone with vertex θ: Γ θ α := {(x, y) ∈ R ν × R + | |x -θ| < ay < a}, of non-tangential area integral and of density of area integral:

Γ θ α |∇u(x, y)| 2 y 1-ν dxdy and 1 2 Γ θ α y 1-ν ∆|u -r|(dxdy),
turn out to be respectively tubular neighborhoods of geodesic rays starting at a base point o:

Γ θ c := {z | ∃ γ a geodesic ray from o to θ such that d(z, γ) < c}, a true energy and a density of energy:

J θ c := Γ θ c |∇u| 2 dν and D r c (θ) := - 1 2 Γ θ c ∆|u -r|(dx).
Following this philosophy, Calderón-Stein's result was extended to the framework of Riemannian manifolds of pinched negative curvature ( [START_REF] Mouton | Comportement asymptotique des fonctions harmoniques en courbure négative[END_REF]) and trees ([Mou00, AP08, Mou10, Pic10]). The criterion introduced by J. Brossard of the density of area integral was also addressed in [START_REF] Mouton | Local Fatou theorem and the density of energy on manifolds of negative curvature[END_REF] for Riemannian manifolds of pinched negative curvature. The present paper was motivated by the question whether these kinds of results also hold for Gromov hyperbolic spaces. In a recent paper [START_REF] Petit | Harmonic functions on hyperbolic graphs[END_REF], we proved the criteria of non-tangential boundedness in the framework of Gromov hyperbolic graphs. The aim of this paper is to deal with the different criteria presented above in the case of Gromov hyperbolic manifolds.

Let us now describe the main results of this paper. We first introduce briefly the geometric setting. The geometric notions will be defined precisely in section 2. We say that a Riemannian manifold M is roughly-starlike if there exist a constant K ≥ 0 and a base point o ∈ M such that every point x ∈ M is within a distance at most K from a geodesic ray starting at o. A Riemannian manifold M of dimension n has bounded local geometry provided about each x ∈ M , there is a geodesic ball B(x, r) (with r independent of x) and a diffeomorphism

F : B(x, r) → R n with 1 c • d(y, z) ≤ F (y) -F (z) ≤ c • d(y, z)
for all y, z ∈ B(x, r), where c is independent of x. We first prove a local Fatou Theorem for Riemannian manifolds satisfying conditions (♣). Let U be an open set in M and let us denote by ∂M the geometric boundary of M . We say that a point θ ∈ ∂M is tangential for U if for all c > 0, the set Γ θ c \ U is bounded. Theorem 1.1. Let M be a manifold satisfying conditions (♣) and let U be an open subset of M . If u is a non-negative harmonic function on U , then for µ-almost all θ that is tangential for U , the function u converges non-tangentially at θ.

The measure µ on ∂M is the harmonic measure. The proof follows the approach by F. Mouton [START_REF] Mouton | Local Fatou theorem and the density of energy on manifolds of negative curvature[END_REF]. In Mouton's proof, geometry comes in at some key points by use of comparison Theorems in pinched negative curvature. As a Corollary of Theorem 1.1, we deduce that a harmonic function converges non-tangentially at almost all points where it is non-tangentially bounded from below (or above).

Corollary 1.2. Let M be a manifold satisfying conditions (♣) and let u be a harmonic function on M . Then, for µ-almost all θ ∈ ∂M , the following properties are equivalent:

(1) The function u converges non-tangentially at θ.

(2) The function u is non-tangentially bounded from below at θ.

(3) There exists c > 0 such that u is bounded from below on Γ θ c .

Then we focus on the density of energy. In [START_REF] Brossard | Densité de l'intégrale d'aire dans R n+1 + et limites non tangentielles[END_REF], J. Brossard proved that for a harmonic function u on the Euclidean half-space, at almost all points of the boundary, u converges non-tangentially if and only if the supremum over r ∈ R of the density of area integral on the level set {u = r} is finite. In [START_REF] Mouton | Local Fatou theorem and the density of energy on manifolds of negative curvature[END_REF], F. Mouton proved that for a harmonic function u on a Riemannian manifold of pinched negative curvature, u converges non-tangentially at almost all points of the boundary where the density of energy on the level set {u = 0} is finite, providing a partial geometric analogue of Brossard's Theorem. We focus here on Gromov hyperbolic manifolds and prove an analogue for the density of energy of Brossard's result. It generalizes and strengthens Mouton's Theorem.

Theorem 1.3. Let M be a manifold satisfying conditions (♣), c > 0, and let u be a harmonic function on M . Then, for µ-almost all θ ∈ ∂M , the following properties are equivalent:

(1) The function u converges non-tangentially at θ.

(2) sup r∈R D r c (θ) < +∞.

(3) D 0 c (θ) < +∞. As a Corollary, we prove the criterion of the finiteness of the non-tangential energy.

Corollary 1.4. Let M be a manifold satisfying conditions (♣) and let u be a harmonic function on M . Then, for µ-almost all θ ∈ ∂M , the following properties are equivalent:

(1) The function u converges non-tangentially at θ.

(2) The function u has finite non-tangential energy at θ. Corollaries 1.2 and 1.4 together yield in particular the Calderón-Stein Theorem on Gromov hyperbolic manifolds. This paper is organized as follows. In section 2, we present the geometric framework of the results, recalling briefly some properties of Gromov hyperbolic metric spaces, the definition of a roughly starlike manifold and of a coercive manifold. In section 3 we discuss some basics related to Brownian motions needed later on, in particular the martingale property and the Doob's h-process method, allowing to condition Brownian motion to exit the manifold at a fixed point of the boundary. In section 4, we recall the different Harnack inequalities needed later on. Section 5 is devoted to the proofs of several lemmas ensuing Harnack inequalities and crucial in the proofs of the main results. Finally, in section 6 we prove Theorem 1.1 and Corollary 1.2 and in section 7, we prove Theorem 1.3 and Corollary 1.4.

Preliminaries

From now on, M denotes a complete simply connected Riemannian manifold of dimension n ≥ 2 and d denotes the usual Riemannian distance on M . Let ∆ denote the Laplace-Beltrami operator on M , by G the associated Green function. A function u : M → R is called harmonic if ∆u = 0. The Green function G is finite outside the diagonal, positive, symmetric and for every y ∈ M , the function x → G(x, y) is harmonic on M \{y}. We will make additional geometric assumptions on M , which will be described in the following paragraphs.

2.1. Gromov hyperbolic spaces. Gromov hyperbolic spaces have been introduced by M. Gromov in the 80's (see for instance [START_REF] Gromov | Hyperbolic manifolds, groups and actions[END_REF][START_REF] Gromov | Hyperbolic groups[END_REF]). These spaces are naturally equipped with a geometric boundary. There exists a wide literature on Gromov hyperbolic spaces, see [START_REF] Ghys | Espaces métriques hyperboliques[END_REF][START_REF] Bridson | Metric spaces of non-positive curvature, volume 319 of Grundlehren der Mathematischen Wissenschaften[END_REF] for nice introductions. We introduce here only the properties of these spaces which will be used in the following.

Let (X, d) denote a metric space. The Gromov product of two points x, y ∈ X with respect to a basepoint o ∈ X is defined by

(x, y) o := 1 2 [d(o, x) + d(o, y) -d(x, y)] .
Notice that 0 ≤ (x, y) o ≤ min{d(o, x), d(o, y)} and that if o ′ ∈ X is another basepoint, then for every x, y ∈ X,

|(x, y) o -(x, y) o ′ | ≤ d(o, o ′ ).
Definition 2.1. A metric space (X, d) is called Gromov hyperbolic if there exists δ ≥ 0 such that for every x, y, z ∈ X and every basepoint o ∈ X,

(2.1) (x, z) o ≥ min{(x, y) o , (y, z) o } -δ.
For a real δ ≥ 0, we say that (X, d) is δ-hyperbolic if inequality (2.1) holds for all x, y, z, o ∈ X.

Remark 2.2. From now on, when considering a Gromov hyperbolic metric space, we will always assume, without loss of generality, that inequality (2.1) holds with δ an integer greater than or equal to 3.

The definition of Gromov hyperbolicity makes sense in every metric space. When the metric space is Gromov hyperbolic and geodesic, the Gromov product (x, y) o may be seen as a rough measure of the distance between o and any geodesic segment between x and y. More precisely, if γ is a geodesic segment between x and y, we have

d(o, γ) -2δ ≤ (x, y) o ≤ d(o, γ).
We now describe the geometric boundary of a Gromov hyperbolic space. Let (X, d) be a δ-hyperbolic metric space and fix a basepoint o ∈ X. A sequence

(x i ) i in X converges at infinity if lim i,j→+∞ (x i , x j ) o = +∞.
This condition is independent of the choice of the basepoint. Two sequences (x i ) i and (y j ) j converging at infinity are called equivalent if lim i→+∞ (x i , y i ) o = +∞. This defines an equivalence relation on sequences converging at infinity. The geometric boundary ∂X is the set of equivalence classes of sequences converging at infinity. In order to fix an appropriate topology on X := X ∪ ∂X, we extend the Gromov product to the boundary. Let us say that for a point x ∈ X, a sequence

(x i ) ∈ X N is in the class of x if x i → x. We then define (x, y) o := sup lim inf i,j→∞ (x i , y j ) o ,
where the supremum is taken over all sequences (x i ) in the class of x ∈ X and (y j ) in the class of y ∈ X. The inequality

(2.2) (x, z) o ≥ min{(x, y) o , (y, z) o } -2δ
holds for every x, y, z ∈ X. If in addition (X, d) is geodesic, then for every x ∈ X, ξ ∈ ∂X and every geodesic ray γ from o to ξ, we have

(2.3) d(x, γ) -2δ ≤ (o, ξ) x ≤ d(x, γ) + 2δ.
For a real r ≥ 0 and a point ξ

∈ ∂X, denote V r (ξ) := {y ∈ X | (ξ, y) o ≥ r}.
We then equip X with the unique topology containing open sets of X and admitting the sets V r (ξ) with r ∈ Q + as a neighborhood base at any ξ ∈ ∂X. This provides a compactification X of X.

2.2. Roughly starlike manifolds. We will assume the manifold M to be roughly starlike. From now on, fix a basepoint o ∈ M .

Definition 2.3. A complete Riemannian manifold M is called roughly starlike with respect to the basepoint o ∈ M if there exists K ≥ 0 such that for every point x ∈ M , there exists a geodesic ray γ starting at o and within a distance at most K from x.

We will abbreviate to roughly starlike if there is no risk of ambiguity. Let us notice that if M is δ-hyperbolic and K-roughly starlike with respect to o, then

M is K ′ -roughly starlike with respect to o ′ , with K ′ = K ′ (d(o, o ′ ), δ, K).
The "roughly starlike" assumption has previously been used by A. Ancona [START_REF] Ancona | Positive harmonic functions and hyperbolicity[END_REF] and by M. Bonk, J. Heinonen and P. Koskela [START_REF] Bonk | Uniformizing Gromov hyperbolic spaces[END_REF].

Recall that a complete manifold M is said to have a quasi-pole in a compact set Ω ⊂ M if there exists C > 0 such that each point of M lies in a C-neighborhood of some geodesic ray emanating from Ω. If M is roughly starlike with respect to o, then M has a quasi-pole at o.

Coercive manifolds.

As explained in the introduction, a manifold M of dimension n has bounded local geometry provided about each x ∈ M , there is a geodesic ball B(x, r) (with r independent of x) and a diffeomorphism F :

B(x, r) → R n with 1 c d(y, z) ≤ F (y) -F (z) ≤ cd(y, z)
for all y, z ∈ B(x, r), where c is independent of x.

The manifold M is coercive if it has bounded local geometry and if the bottom λ 1 (M ) of the spectrum is positive. Recall that the bottom of the spectrum of the Laplacian ∆ is defined by

λ 1 (M ) := inf φ M ∇φ 2 M φ 2
, where φ ranges over all smooth functions with compact support on M . Notice that for a manifold of bounded local geometry, λ 1 (M ) > 0 if and only if its Cheeger constant is positive (see [START_REF] Buser | A note on the isoperimetric constant[END_REF]).

It is worth mentioning that in general, Gromov hyperbolicity does not imply positivity of the bottom of the spectrum. In [START_REF] Cao | Cheeger isoperimetric constants of Gromov-hyperbolic spaces with quasi-poles[END_REF], J. Cao gave conditions for a Gromov hyperbolic, roughly starlike manifold with bounded local geometry to have positive bottom of the spectrum.

2.4.

Comments. Recall that we say that a complete, simply connected Riemannian manifold M satisfies condition (♣) if in addition M is coercive, roughly starlike and Gromov hyperbolic. On one hand, when the manifold M is Gromov hyperbolic, we can consider its geometric boundary as defined above. On the other hand, we can also consider its Martin boundary, which is natural when dealing with non-negative harmonic functions. In [START_REF] Ancona | Théorie du potentiel sur les graphes et les variétés[END_REF], A. Ancona proved that for a manifold satisfying conditions (♣) (and even without roughly starlike assumption), the geometric compactification and the Martin compactification are homeomorphic.

The following Proposition is a consequence of conditions (♣). It yields a uniformity in the behaviour of the Green function G and will be useful in the following.

Proposition 2.4 ([Anc90], page 92). If M satisfies conditions (♣), there exist two positive constants

C 1 = C 1 (M ) and c 1 = c 1 (M ) such that for every x, y ∈ M with d(x, y) ≥ 1, we have G(x, y) ≤ C 1 exp(-c 1 d(x, y)).

Brownian motion and conditioning

Following the philosophy of J. Brossard [START_REF] Brossard | Densité de l'intégrale d'aire dans R n+1 + et limites non tangentielles[END_REF], our methods use Brownian motion and the connection between harmonic functions and Brownian motion given by the martingale property. We describe here the "Brownian material" needed in the proofs.

3.1. Brownian motion. The Brownian motion (X t ) on M is defined as the diffusion process associated with the Laplace-Beltrami operator ∆. If M satisfies condition (♣), Brownian motion is defined for every t ∈ R + ([Anc90], page 60).

Choosing Ω := C(R + , M ) as the probability space, for every t ∈ R + , X t is a random variable on Ω, with values in M , and for every ω ∈ Ω, t → X t (ω) is a continuous function, that is a path in M . If we consider Brownian motion starting at a fixed point x ∈ M , we obtain a probability P x on Ω.

An important property of the Martin boundary (which in our case coincides with the geometric boundary, see section 2.4) is that for P x -almost every trajectory ω ∈ Ω, there exists a boundary point θ ∈ ∂M such that lim t→+∞ X t (ω) = θ. Let us denote by X ∞ (ω) the ∂M -valued random variable such that Brownian motion converges P x -almost surely to X ∞ for all x ∈ M . The harmonic measure at x, denoted by µ x , is the distribution of X ∞ when Brownian motion starts at x. All the measures µ x , x ∈ M on ∂M are equivalent. This gives rise to a notion of µ-negligibility. Defining the Poisson kernel K(x, θ) as limit of the Green kernels lim y→θ G(x,y) G(o,y) , the Radon-Nikodym derivative of harmonic measure is given by

K(x, θ) = (dµ x /dµ o )(θ).
The martingale property (see [START_REF] Durrett | Brownian motion and martingales in analysis[END_REF]) is a crucial tool in our methods: for a function

f of class C 2 , f (X t ) + 1 2 t 0 ∆f (X s )ds
is a local martingale with respect to probabilities (P x ) x . Hence if u is harmonic, (u(X t )) is a local martingale.

3.2. Conditioning. As claimed above, Brownian motion converges almost surely to a boundary point. Doob's h-process method [START_REF] Doob | Conditional Brownian motion and the boundary limits of harmonic functions[END_REF] allows to condition Brownian motion to "exit" the manifold at a fixed point θ ∈ ∂M . For every x ∈ M , we obtain a new probability P θ x on Ω, whose support is contained in the set of trajectories starting at x and converging to θ (see [START_REF] Brossard | Comportement "non-tangentiel" et comportement "brownien" des fonctions harmoniques dans un demi-espace. Démonstration probabiliste d'un théorème de Calderon et Stein[END_REF][START_REF] Mouton | Convergence Non-Tangentielle des Fonctions Harmoniques en Courbure Négatives[END_REF]). This probability satisfies a strong Markov property and an asymptotic zero-one law. For all N ∈ N, denote by τ N the exit time of the ball B(o, N ) and by F τN the associated σ-algebra. Let F ∞ be the σ-algebra generated by F τN , N ∈ N. We can reconstruct the probability P x with the conditioned probabilities: for a F ∞ -measurable random variable F , (3.1)

E x [F ] = ∂M E θ x [F ]dµ x (θ).
3.3. Stochastic convergence. The behaviour of a harmonic function along trajectories of Brownian motion is easily studied by means of martingale theorems. For a function f on M , let us define the following event:

L * * f := {ω ∈ Ω | lim t→∞ f (X t (ω)
) exists and is finite};

The asymptotic zero-one law implies that the quantity P θ x (L * * f ) does not depend on x and has value 0 or 1. In the second case, we say that f converges stochastically at θ. In the same way we say that f is stochastically bounded at θ if P θ oa.s., f (X t ) is bounded, and that f is of finite stochastic energy at

θ if P θ o -a.s., +∞ 0 |∇f (X t (ω))| 2 dt < +∞.
By the martingale property and martingale theorems, F. Mouton [START_REF] Mouton | Comportement asymptotique des fonctions harmoniques en courbure négative[END_REF] proved that for a harmonic function, the set of points θ ∈ ∂M where there is respectively stochastic convergence, stochastic boundedness and finiteness of stochastic energy, are µ-almost equivalent, that is they differ by a set of µ-measure zero.

When the harmonic function u is bounded, non-tangential and stochastic convergences at µ-almost all points of the boundary are automatic ([Anc90]): Lemma 3.1. A bounded harmonic function u on M converges non-tangentially and stochastically at µ-almost all points θ ∈ ∂M and the unique function

f ∈ L ∞ (∂M, µ) such that u(x) = ∂M f (θ)dµ x (θ) = E x [f (X ∞ )]
is µ-a.e. the non-tangential and stochastic limit of u.

Harnack inequalities

We will use comparison theorems between non-negative harmonic functions several times. The first one is the usual Harnack inequality on balls, sometimes called uniform Harnack (see [START_REF] Ancona | Théorie du potentiel sur les graphes et les variétés[END_REF] page 21 and [START_REF] Cheng | Differential equations on Riemannian manifolds and their geometric applications[END_REF]): Theorem 4.1 (Harnack on balls). Let r > 0 and R > 0 such that r < R. There exists a constant C > 0 such that for all points x ∈ M and all non-negative harmonic functions u on B(x, R), we have Theorem 4.2 (Submultiplicativity of the Green function). There exists a constant C > 0 such that for all pairs of points (x, z) ∈ M 2 and all points y ∈ M on a geodesic segment between x and z with min{d(x, y), d(y, z)} ≥ 1, the Green function

sup y∈B(x,r) u(y) ≤ C • inf y∈B(x,r) u(y).
G satisfies C -1 • G(x, y)G(y, z) ≤ G(x, z) ≤ C • G(x, y)G(y, z).
We will also need another formulation of this principle. Let γ be a geodesic ray starting at z ∈ M and denote

a γ i := γ(4iδ), i ∈ N \ {0} and U γ i := {x ∈ M | (x, a γ i ) z > 4iδ -2δ}.
Let us point out that for all i, a γ i ∈ U γ i \ U γ i+1 (see figure 4.1). Let us also notice that the decreasing sequence of sets (U γ i ) and the sequence of points (a γ i ) provide a φ-chain in the sense of A. Ancona ([Anc90], page 93). Then, the Harnack principle at infinity can be stated as follow:

Theorem 4.3 ([Anc88], page 12). There exists a constant C > 0 such that for all θ ∈ ∂M and for all geodesic rays γ from o to θ, the following properties are satisfied:

(1) If u and v are two non-negative harmonic functions on U γ i , v does not vanish and u "vanishes" at

U γ i ∩ ∂M , then ∀x ∈ U γ i+1 , u(x) v(x) ≤ C u(a γ i+1 ) v(a γ i+1 )
.

(2) If u and v are two non-negative harmonic functions on M \ U γ i+1 , v does not vanish and u "vanishes" at ∂M \ U γ i+1 , then 

∀x ∈ U γ i , u(x) v(x) ≤ C u(a γ i ) v(a γ i ) . E Γ c (E)

Non-tangential behaviour of Brownian motion

In this section, we gather several lemmas ensuing Harnack inequalities. They provide key ingredients in the proofs of the main results of the paper.

A geometric Lemma.

The following geometric lemma is one of the main tools in the ensuing proofs and in particular in the proof of Theorem 1.1. In [START_REF] Mouton | Convergence Non-Tangentielle des Fonctions Harmoniques en Courbure Négatives[END_REF], it is achieved by use of comparison theorems in pinched negative curvature. For a borelian set E ⊂ ∂M and a real c > 0, denote

Γ c (E) := θ∈E Γ θ c .
Lemma 5.1. There exist η > 0 and c 0 > 0 such that for all borelian sets E ⊂ ∂M and all c > c 0 , one has x,α = {ξ ∈ ∂M |(ξ, θ) x ≥ α}. Lemma 5.2. There exist two constants C 1 > 0 and d 1 > 0 depending only on α and δ such that for all ξ ∈ ∂M \ A θ

∀x ∈ Γ c (E), µ x (E) ≤ 1 -η.
x,α and all points y on a geodesic ray from x to θ with d(x, y)

≥ d 1 , dµ y dµ x (ξ) ≤ C 1 • G(y, x).
Proof. Let ξ ∈ ∂M \ A θ x,α . Denote by γ a geodesic ray from x to ξ. Choose i such that d(x, a γ i ) -3δ = 4iδ -3δ > α + 4δ. By the hyperbolicity inequality (2.2), α > (ξ, θ) x ≥ min{(ξ, y) x , (y, θ) x } -2δ and if y lies on a geodesic ray from x to θ, there exists d 2 depending only on α such that d(x, y) ≥ d 2 implies (y, θ) x > α + 2δ. Thus for such a point y, (ξ, y) x ≤ α + 2δ.

Using once again the hyperbolicity inequality,

(5.1)

α + 2δ ≥ (ξ, y) x ≥ min{(ξ, a γ i ) x , (a γ i , y) x } -2δ. U γ i U γ i+1 a γ i a γ i+1 ξ z x θ y Figure 5.2. Proof of Lemma 5.2 We have ξ ∈ U γ i , thus (ξ, a γ i ) x ≥ d(x, a γ i ) -3δ > α + 4δ.
Combining with inequality (5.1), we obtain (a γ i , y) x ≤ α + 4δ and thus y ∈ U γ i .
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Let z be a point of γ in U γ i+1 . It is an exercice using hyperbolicity (see [START_REF] Ancona | Théorie du potentiel sur les graphes et les variétés[END_REF] page 85 for details) to verify that the distance between a γ i and a geodesic segment between y and z is at most 50δ (see figure 5.2). Since i is fixed, the distance between x and a geodesic segment between y and z is bounded from above by a constant depending only on δ. Thus, the submultiplicativity of the Green function on geodesic segments (Theorem 4.2) associated with the Harnack inequality on balls (Theorem 4.1) give a constant C 1 depending only on δ such that G(y, z) ≤ C 1 • G(y, x)G(x, z). Since we have

dµ y dµ x (ξ) = lim z→ξ G(y, z) G(x, z) , letting z → ξ, z ∈ U γ i+1 , we obtain dµ y dµ x (ξ) ≤ C 1 • G(x, y).
Lemma 5.3. Given α > 0, there exists a constant η > 0 such that for all points x ∈ M and all θ ∈ ∂M , µ x A θ x,α ≥ η. Proof. Fix α > 0. We first prove that there exists d = d(α) > 0 such that for all x ∈ M , all θ ∈ ∂M and all points y on a geodesic ray from x to θ with d(x, y) ≥ d, we have

µ y (A θ x,α ) > 1 2 .
Note that we have

µ y ∂M \ A θ x,α = ∂M\A θ x,α dµ y dµ x (ξ)dµ x (ξ). (5.2)
We deduce, from Lemma 5.2 and formula (5.2), that for all points y on a geodesic ray from x to θ with d(x, y) We conclude by Harnack inequality on balls (Theorem 4.1): if x, y ∈ M with d(x, y) = d, we have

≥ d 1 , µ y (∂M \ A θ x,α ) ≤ C 1 • G(x,

y). Since the Green

µ x (A θ x,α ) ≥ C(α, δ) • µ y (A θ x,α
) ≥ η > 0 and the lemma is proved.

We can now prove Lemma 5.1.

Proof of Lemma 5.1. Fix c 0 := K + 6δ, where K denotes the constant coming from the roughly starlike assumption on M . Let c ≥ c 0 , E be a borelian set in ∂M , and x ∈ Γ c (E). Choose a geodesic ray γ with origin o such that d(x, γ) ≤ K, and denote by θ ∈ ∂M the endpoint of γ. Since x ∈ Γ c (E), θ ∈ E (see figure 5.3). We prove that there exists a constant α > 0 depending only on δ and K such that A θ

x,α ⊂ ∂M \ E. We want to bound the quantity (ξ, θ) x uniformly from above for

ξ ∈ E. Fix ξ ∈ E. Inequality (2.2) gives min{(ξ, θ) x , (ξ, o) x } ≤ (θ, o) x + 2δ.
On one hand, since by inequality (2.3), (θ, o) x ≤ d(x, γ) + 2δ ≤ K + 2δ, we have min{(θ, θ) x , (ξ, o) x } ≤ K + 4δ. On the other hand, denoting by γ a geodesic ray from o to ξ, we have (ξ, o) x ≥ d(x, γ) -2δ ≥ c -2δ ≥ K + 4δ. We thus deduce that (ξ, θ) x ≤ K + 4δ. Since this holds for all ξ ∈ E, we obtain

A θ
x,K+5δ ∩ E = ∅. By Lemma 5.3, there exists an η > 0 depending only on δ and K such that

µ x (E) ≤ 1 -η,
which concludes the proof of Lemma 5.1.

For a borelian set E ⊂ ∂M , denote by v E (x) := µ x (E) = P x (X ∞ ∈ E). Let U be an open set in M . Recall that a point θ ∈ ∂M is called tangential for U if for all c > 0, the set Γ θ c \ U is bounded. The following corollary of Lemma 5.1 asserts that for almost every point θ that is tangential for an open set U in M , Brownian motion "ends its life P θ o -almost surely" in U .

Corollary 5.4. Let U be an open set in M . Then for µ-almost all θ that are tangential for U , P θ o -almost surely, X t ∈ U for t large enough. Proof. Let c > c 0 , where c 0 is the constant given in Lemma 5.1. Denote by T the set tangential points for U and, for N ∈ N, let

T N := {θ ∈ ∂M | Γ θ c \ U ⊂ B(o, N )}.
By countable union, it is sufficient to prove, for each N ∈ N, that for µ-almost all θ ∈ T N , X t ∈ U for t large enough. Fix N ∈ N. On one hand, since v TN is a bounded harmonic function, Lemma 3.1 asserts that for µ-almost all θ ∈ T N ,

P θ o -almost surely, lim t→∞ v TN (X t ) = 1 TN (θ).
On the other hand, by Lemma 5.1,

∀x ∈ Γ c (T N ), v TN (x) ≤ 1 -η.
Thus, for µ-almost all θ ∈ T N , P θ o -almost surely, X t ∈ Γ c (T N ) for t large enough. Notice that for such a point θ ∈ T N Brownian motion leaves P θ o -almost surely the ball B(o, N ) and that Γ c (T N ) \ B(o, N ) ⊂ U by definition of T N . This proves the corollary.

Corollary 5.5. Let c > c 0 and E be a Borelian subset of ∂M . Every θ ∈ ∂M such that v E converges non-tangentially to 1 at θ is tangential for Γ c (E). In particular, µ-almost all θ ∈ E is tangential for Γ c (E).

Proof. Let θ ∈ ∂M be such that v E converges non-tangentially to 1 at θ and let Γ θ e be a non-tangential tube with vertex θ. Assume that Γ θ e \ Γ c (E) is not bounded. Then there exists a sequence (x k ) k of points in Γ θ e \ Γ c (E) such that d(o, x k ) > k. We thus have v E (x k ) → 1. However, by Lemma 5.1, v E (x k ) ≤ 1η, which gives a contradiction and proves the main statement of the corollary. In addition, by Lemma 3.1, v E converges non-tangentially to 1 at µ-almost all θ ∈ E and µ-almost every θ ∈ E is tangential for Γ c (E).

Behaviour of Green functions.

The next Lemma yields an estimate for the increasing rate of the minimal harmonic function K(•, θ) along non-tangential tubes with vertex θ. The proof is a straightforward application of Theorem 4.2 and Theorem 4.1 (see [START_REF] Ancona | Théorie du potentiel sur les graphes et les variétés[END_REF] page 99).

Lemma 5.6. For all c > 0, there exist 0 < C < 1 and R > 0 such that for all θ ∈ ∂M , all x ∈ Γ θ c , and all

y ∈ Γ θ c \ B(o, R), C ≤ G(o, x)K(x, θ) and G(o, y)K(y, θ) ≤ C -1 .
For an open set U ⊂ M , denote by G U the Green function of U . The next lemma allows to compare G and G U for a class of subsets U ⊂ M . This will be useful in the proof of Theorem 1.3. Proof. Since G(•, x) vanishes at infinity,

G U (o, x) = G(o, x) -E o [G(X τ , x)] = G(o, x) 1 -E o G(X τ , x) G(o, x) • 1 τ <+∞ .
Recall that for τ < +∞, lim x→θ

G(Xτ ,x) G(o,x) = K(X τ , θ).
Hence, provided changing the order of limit and expectation is justified, we have

lim x∈Γ θ e ,x→θ E o G(X τ , x) G(o, x) • 1 τ <+∞ = E o [K(X τ , θ) • 1 τ <+∞ ] = P θ o (τ < +∞)
and the lemma follows. It remains to justify changing the order of limit and expectation, which will be achieved by proving the following property: There exists a constant C > 0 such that

(5.3) ∀x ∈ Γ θ e \ B(o, c), ∀z ∈ Γ θ c , G(z, x) G(o, x) ≤ C • K(z, θ).
To prove (5.3), we will apply Theorem 4.3 several times with u = G(•, y) for a point y ∈ M and v = K(•, θ). The function G(•, y) is positive harmonic on M \ {y}, vanishes at infinity, and the function K(•, θ) is positive harmonic. The assumptions of Theorem 4.3 will thus always be satisfied. In the rest of the proof, the constants depend only on the Gromov hyperbolicity constant δ, on the roughly starlike constant K and on c and e.

Let z ∈ Γ θ c , x ∈ Γ θ e \ B(o, c) and let γ be a geodesic ray starting at o and converging to θ such that d(x, γ) < e. First, remark that by Theorem 4.1, we can assume

x ∈ γ \ B(o, c). Indeed, if x ′ ∈ γ \ B(o, c) is such that d(x, γ) = d(x, x ′ ), then G(z,x) G(o,x) ≤ C 0 • G(z,x ′ ) G(o,x ′ ) . Denote, for i ∈ N * , a i := a γ i = γ(4iδ) and U i := U γ i = {y ∈ M | (y, a i ) o > d(o, a i ) -2δ}.
We split the proof in different cases:

Case 1: z ∈ U 3 . By Theorem 4.3, there exists C 1 > 0 such that G(z, x) K(z, θ) ≤ C 1 • G(a 2 , x) K(a 2 , θ) .
By definition of a 2 , d(o, a 2 ) = 8δ and using once again Theorem 4.1, there exists 

C 2 > 0 such that G(z, x) K(z, θ) ≤ C 2 • G(o, x) K(o, θ) = C 2 • G(o, x),
U 3 U 3 U 3 θ x θ θ x o z z z o ′ o ′ o ′ x o o
Cases 2(a)

Figure 5.4. Proof of Lemma 5.7 that M is K-roughly starlike). If c is large enough (depending on δ and K), it is an easy exercise to prove that z ∈ U γ ′ 3 . We can thus apply Theorem 4.3 to have

G(z, x) K(z, θ) ≤ C 3 • G(γ ′ (8δ), x) K(γ ′ (8δ), θ) .
Hence it is sufficient to prove (5. In that case, Theorem 4.1 yields that it is sufficient to prove

(5.4) G(o ′ , x) G(o, x) ≤ C 4 • K(o ′ , θ).
Recall that the three points o, o ′ and x lie on the geodesic ray γ.

-If o ′ is between o and x, we apply Theorem 4.3 with base point x and with a i , i = 1, 2 the points of γ such that d(o, x) = d(o, a i ) + 4iδ and get

G(o ′ , x) K(o ′ , θ) ≤ C 5 • G(a 1 , x) K(a 1 , θ) .
Using Theorem 4.1, we obtain (5.4).

-If x is between o and o ′ , we apply Theorem 4.2 (recall that

K(•, θ) = lim y→θ G(•,y) G(o,y) ) and obtain K(x, θ) K(o ′ , θ) ≤ C 6 • G(x, o ′ ).
Since G(o, x)K(x, θ) ≥ C (Lemma 5.6) and since G(x, o ′ ) ≤ C 7 (Proposition 2.4), we obtain (5.4). Case 2(b): d(x, o ′ ) ≤ 16δ. Since 8δ ≤ d(x, z) ≤ 24δ, K(x, θ) ≤ C 8 • K(z, θ) and G(x, z) ≤ C 9 . Combining these two inequalities with G(o, x)K(x, θ) ≥ C, we get property (5.3) in case 2(b). Changing the order of limit and expectation is justified and the proof is complete. Remark 5.10. By Corollary 5.4, the conclusion holds in particular at µ-almost every point θ tangential for U .

Proof of Lemma 5.9. Let θ ∈ ∂M be such that P θ o -almost surely, X t ∈ U for t large enough. Denote by h the non-negative harmonic function on U defined by h(x) := K(x, θ)P θ

x (τ = +∞). By the maximum principle, h is either positive, or identically zero. We have

1 = lim N →∞ P θ o (∀t ≥ τ N , X t ∈ U ),
where τ N denotes the exit time of B(o, N ). Let N be large enough so that P θ o (∀t ≥ τ N , X t ∈ U ) > 0. By the strong Markov property,

P θ o (∀t ≥ τ N , X t ∈ U ) = E θ o P θ o (∀t ≥ τ N , X t ∈ U )|τ N = E θ o [ϕ(X τN )],
where ϕ(x) := P θ x (τ = +∞) if x ∈ U and ϕ(x) := 0 otherwise. The function ϕ, and therefore h, is not identically zero. The function h is thus positive and P θ o (τ = +∞) > 0, which proves the Lemma.

Local Fatou theorem

The aim of this section is to prove Theorem 1.1. The proof is similar to the proof of Theorem 2 in [START_REF] Mouton | Local Fatou theorem and the density of energy on manifolds of negative curvature[END_REF], and based upon the use of Lemma 5.9, which is achieved using Lemma 5.1. Although the main difference with [START_REF] Mouton | Local Fatou theorem and the density of energy on manifolds of negative curvature[END_REF] lies in Lemma 5.1, we give here a detailed proof.

Proof of Theorem 1.1. We can assume, without loss of generality, that U is connected (since U is open, it has a countable number of connected components) and that o ∈ U . Denote again by τ the exit time of U . Let u be a non-negative harmonic function on U . The martingale property asserts that (u(X t∧τ )) is a non-negative local martingale and therefore converges P o -almost surely. By formula (3.1), for µ-almost all θ ∈ ∂M , (u(X t∧τ )) converges P θ o -almost surely. By Lemma 5.9, for µ-almost all θ that is tangential for U , we have

P θ o (τ = +∞ and (u(X t )) converges) > 0.
Let θ be such a point. Denoting by ũ(x) = u(x) for x ∈ U and ũ(x) = 0 otherwise, the asymptotic zero-one law asserts that ũ converges stochastically at θ. Denote by ℓ the stochastic limit of ũ at θ and assume that ũ (and therefore u) does not converge non-tangentially to ℓ at θ. We will obtain a contradiction with Lemma 5.8. These step is standard (see for instance [START_REF] Brelot | Limites angulaires et limites fines[END_REF] page 403 and [Anc90] page 100). There exist c > 0, ε > 0 and a sequence

(y k ) k of points in Γ θ c \ B(o, R) converging to θ such that for every k, |u(y k ) -ℓ| > 2ε, where R > 0 is such that Γ θ c+1 \ B(o, R) ⊂ U .
By Harnack inequalities, we have, even replacing 2ε by ε, the same inequality on B(y k , λ) for a 0 < λ < 1 independent of k. By Lemma 5.8, Brownian motion meets P θ o -almost surely infinitely many of the balls B(y k , λ). Let ω be a generic trajectory such that (X t (ω)) t meets infinitely many of these balls, τ (ω) = +∞ and lim t→+∞ u(X t (ω)) = ℓ. There exists t 0 such that for all t ≥ t 0 , |u(X t (ω)) -ℓ| ≤ ε. By compactness, (X t (ω)) t≥t0 meets at least one of the balls B(y k , λ), that is there exists t 1 ≥ t 0 such that X t1 (ω) ∈ B(y k , λ) for some k. Then

0 < ε < |u(X t1 (ω)) -ℓ| ≤ ε,
which yields a contradiction. The theorem is proved.

We end this section by proving Corollary 1.2.

Proof of Corollary 1.2. Let u be a harmonic function on M . We have to prove that u converges non-tangentially at µ-almost all points θ ∈ ∂M where it is nontangentially bounded from below. Fix c > c 0 (where c 0 comes from Lemma 5.1) and for m ∈ N, let

A m c := {θ ∈ ∂M | ∀x ∈ Γ θ c , u(x) ≥ -m}.
It is sufficient to prove that for every m ∈ N, u converges non-tangentially at µ-almost all θ ∈ A m c . Let m ∈ N and U := Γ c (A m c ). The function u + m is nonnegative harmonic on U . By Theorem 1.1, it converges non-tangentially at µ-almost all points θ tangential for U and so the same holds for the function u. By corollary 5.5, µ-almost all θ ∈ A m c is tangential for U and the proof is complete.

Density of energy

In this section, we prove Theorem 1.3 and Corollary 1.4. Let us define, for u harmonic on M , θ ∈ ∂M and c > 0 the density of energy

D r c (θ) := - 1 2 Γ θ c ∆|u -r|(dx).
We refer to [START_REF] Brossard | Densité de l'intégrale d'aire dans R n+1 + et limites non tangentielles[END_REF][START_REF] Mouton | Local Fatou theorem and the density of energy on manifolds of negative curvature[END_REF] for introductions to the density of area integral and to the density of energy, respectively. Notice that by Sard's Theorem, for almost all r ∈ R,

D r c (θ) = Γ θ c |∇u(x)]σ r (dx)
, where σ r is the hypersurface measure on {u = r}. In addition, by the coarea formula, the non-tangential energy equals Proof of Theorem 1.3. In order to prove Theorem 1.3, we have to prove that for all c > 0:

Step 1: u converges non-tangentially at µ-almost all θ ∈ ∂M where D 0 c (θ) < +∞.

Step 2: sup r∈R D r c (θ) < +∞ for µ-almost all θ ∈ ∂M where u converges non-tangentially;

Step 1: the proof goes as in the main Theorem of [START_REF] Mouton | Local Fatou theorem and the density of energy on manifolds of negative curvature[END_REF], proved in the framework of manifold of pinched negative curvature. Thus, we give only the main ideas of the proof. The proof is based upon Theorem 1.1, Lemma 5.1 and Lemma 5.6. Step 2: For m ∈ N and c > 0, denote We now use the following Lemma, whose proof works exactly as Proposition 2 in [START_REF] Brossard | Densité de l'intégrale d'aire dans R n+1 + et limites non tangentielles[END_REF].

N m c := {θ ∈ ∂M | sup
Lemma 7.1. Let u be a harmonic function on M , r ∈ R, and let L r t denote the local time in r of the local martingale (u(X t )). Let also U be a bounded domain in M and τ be the exit time of U . We have Proof of Corollary 1.4. Recall that the non-tangential energy at θ ∈ ∂M is

J θ c =
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 7 Fix large c > e > 0 and θ ∈ ∂M . Let U be an open subset of M containing Γ θ c and denote by τ the exit time of U . Then we have lim x→θ,x∈Γ θ e G U (o, x) G(o, x) = P θ o (τ = +∞).

  which gives (5.3) in case 1.Case 2:z ∈ U 3 . By definition of U 3 , d(o, z) > d(a 3 , z) + 8δ. Denote by o ′ a point in γ such that d(z, o ′ ) = min z ′ ∈γ d(z, z ′ ). Since d(a 3 , z) ≥ d(z, o ′ ),we have d(o, o ′ ) ≥ 8δ. Denote by γ ′ a geodesic ray starting at o ′ and within a distance at most K from z (recall Case 2(b)

  3) for a point z within distance at most 8δ from γ. Let z be such a point and denote again by o ′ ∈ γ a point so that d(z, o ′ ) = min z ′ ∈γ d(z, z ′ ). There are two cases, illustrated by Figure 5.4. Case 2(a): d(x, o ′ ) > 16δ.
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 55 Figure 5.5. Brownian motion and non-tangential balls
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  m ∈ N, denote D m c := {θ ∈ ∂M | D 0 c (θ) ≤ m} and Γ := Γ c (D m c ). It is sufficient to prove that for all m ∈ N, u converges nontangentially at µ-a.e. θ ∈ D m c . Fix m ∈ N and recall that v D m c (x) = P(X ∞ ∈ D m c). First we prove, using Lemmas 5.1 and 5.6 that there exists α ∈ (0, 1) such that {v D m c ≥ α} ⊂ Γ andI := -{v D m c ≥α} G(o, x)∆|u|(dx) < +∞.Then we prove that for an increasing sequence of compact regular domainsV n such that n V n = {v D m c ≥ α}, sup n E o [|u(X τn )|] ≤ |u(o)| + I,where τ n is the exit time of V n . This allows us to decompose u as the difference of two non-negative harmonic functions on {v D m c ≥ α} (see[START_REF] Brossard | Densité de l'intégrale d'aire dans R n+1 + et limites non tangentielles[END_REF]). Applying Theorem 1.1 to both functions, we get that u converges non-tangentially at µ-almost all tangential θ for {v D m c ≥ α}. By Lemma 3.1, v D m c converges non-tangentially to 1 at µ-almost all θ ∈ D m c . Such a θ is thus tangential for {v D m c ≥ α}. Hence u converges non-tangentially at µ-almost all θ ∈ D m c and the proof of Step 1 is complete.

  It is sufficient to show that for all m ∈ N and all c > e > 0, sup r∈R D r e (θ) < +∞ for µ-a.e. θ ∈ N m c . Fix c > e > 0 and m ∈ N. Let Γ := Γ c (N m c ) and let τ be the exit time of Γ. Let Γ n be an increasing sequence of bounded domains such that n Γ n = Γ and let τ n be the exit time of Γ n . The local martingale (u(X t∧τ )) is bounded by m and thus byBarlow-Yor inequalities ([BY81]), E o [sup r∈R L r τ ] < +∞, where L r t denotes the local time in r of the local martingale (u(X t )). Formula (3.1) gives that for µ-almost every θ ∈ ∂M , E θ o [sup r∈R L r τ ] < +∞ and in particular, sup n E θ o [sup r∈R L r τn ] < +∞.

GG

  E θ o [L r τ ] = -U G U (o, x)K(x, θ)∆|u -r|(dx).By Lemma 7.1, for µ-almost every θ ∈ ∂M , Γn (o, x)K(x, θ)∆|u -r|(dx) < +∞.Since for everyn ∈ N, G Γn (o, x)1 Γn (x) ≤ G Γn+1 (o, x)1 Γn+1 (x), by the monotone convergence theorem, we have for µ-almost all θ ∈ ∂M , Γ (o, x)K(x, θ)∆|u -r|(dx) < +∞.On the other hand, by Lemma 5.9, for µ-almost every θ ∈ N m c , P θ o (τ = +∞) > 0.Hence by Lemmas 5.6 and 5.7, for µ-almost every θ ∈ N θ c , there exist R > 0 and C > 0 such that (7.2) ∀x ∈ Γ θ e \ B(o, R), G Γ (o, x)K(x, θ) ≥ C. Combining with (7.1), we obtain that for µ-almost every θ ∈ N m c , r|(dx) < +∞ and Theorem 1.3 is proved.