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[1] Volcanic eruptions impact on societal risk, and volcanic hazard assessment is a
necessary ingredient for decision-makers. However, the prediction of volcanic eruptions
remains challenging due to the complexity and the non-linearity of volcanic processes.
Identified forerunners such as increasing seismicity or deformation of the volcanic
edifice prior to eruption are not deterministic. In this study, we use statistical methods to
identify and discriminate precursory patterns to eruptions, on three sets of observables of
Piton de la Fournaise volcano. We analyzed the short-term (i.e. the inter-eruptive period)
time series of the seismicity rate, the deformation and the seismic velocity changes
(deduced from seismic noise cross-correlations) over the period 1999–2006, with
two main goals. First, we characterize the average pre-eruptive time patterns before
22 eruptions using superposed epoch analysis for the three observables. Using daily rate
values, we resolve (1) a velocity change within 100–50 days from the eruptions onsets,
then a plateau value up to eruption onset; (2) a power law increase in seismicity rate
from noise level 15–10 days before eruption time; (3) an increase of displacement rate on
the eruption day. These results support a three step mechanism leading to magma
transfers toward the surface. Second we use pattern recognition techniques and the
formalization of error diagrams to quantify the predictive power of each forerunner either
as used independently or as combined to each other. We show that when seismicity rate
alone performs the best prediction in the failure to predict versus alarm duration space,
the combination of the displacement and seismicity data reduces the false alarm rate.
We further propose a tool which explores the prediction results in order to optimize
prediction strategy for decision-makers, as a function of the risk value.

Citation: Schmid, A., J. R. Grasso, D. Clarke, V. Ferrazzini, P. Bachèlery, and T. Staudacher (2012), Eruption forerunners from
multiparameter monitoring and application for eruptions time predictability (Piton de la Fournaise), J. Geophys. Res., 117,
B11203, doi:10.1029/2012JB009167.

1. Introduction

[2] Volcanoes are complex geophysical objects, often
characterized by nonlinear dynamics [Grasso and Bachèlery,
1995; Lahaie and Grasso, 1998; Melnik and Sparks, 1999;
Sparks, 2003], and by sensitive mechanisms to very small
perturbations in which several processes are contemporane-
ously interacting [Melnik and Sparks, 1999; Sparks, 2003].
As a consequence, it makes challenging any effort either to
model volcanic processes or to predict occurrence time,

localization and volume of the next eruptions. Two approaches
can be used to work on the prediction of eruptions timing,
either on the long term behavior of a volcano, i.e. for periods
larger than the inter-eruptive time [Mulargia et al., 1985;
Marzocchi and Zaccarelli, 2006; Turner et al., 2008], or on
the short term patterns. For both approaches, time, space
and energy behaviors of different observables can be used
[Mulargia et al., 1991; Sparks, 2003; Grasso and Zaliapin,
2004; Sandri et al., 2005]. In this study, we focus on the
short-term approach, identifying the short-term patterns of
three forerunners to impending eruptions on Piton de la
Fournaise volcano, i.e. seismicity rate, deformation and
seismic velocity changes.
[3] Several studies have focused on the geochemical and

geophysical observables that precede volcanic eruptions, i.e.
gas emissions, seismicity, ground deformation, in order to
identify precursory patterns for volcanic eruptions. Among
geochemical and geophysical forerunners, seismic event rate
is the most used when attempting to forecast eruptions
[Kilburn, 2003]. As pointed out by Marzocchi et al. [2008]
and Sparks [2003] this short term approach has been
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mostly studied by deterministic methods initiated by the
fundamental law for material failure described by Voight
[1988]. The majority of those deterministic approach how-
ever lack any possibility to evaluate the quality of the pre-
diction. However, a probabilistic approach might be more
efficient, due to the complexity and different precursory
patterns for each eruption [McGuire and Kilburn, 1997;
Wadge and Isaacs, 1988].
[4] Probabilistic approaches have been used on different

volcanoes such as Asama [Minakami, 1960], Kilauea [Klein,
1984], Etna [Mulargia et al., 1992; Vinciguerra et al., 2001;
Marzocchi et al., 2004], or Piton de la Fournaise [Grasso
and Zaliapin, 2004]. On Piton de la Fournaise volcano,
Stieltjes and Moutou [1989] performed a statistical analyses
of the eruption time series over the last 150 years in order to
improve long-term predictability of eruptions. More recently,
thanks to a statistical approach, Collombet et al. [2003]
identified precursory processes using the VT seismicity
over the period 1988–2001. They identified a power law
increase of seismicity up to15 days prior to eruption. Since
this pattern only appears when measured upon averaging
(and might not exist for a single eruption), Grasso and
Zaliapin [2004] tested the predictability of eruptions it gen-
erates by using a prediction algorithm based on pattern rec-
ognition techniques and the use of error diagrams.
[5] We are interested in extending the analysis of eruption

predictability on Piton de la Fournaise in the framework of
short-term statistics, using simultaneously 3 observables:
seismicity rate, deformation and seismic velocity changes.
Peltier et al. [2006] suggest that deformation of the volcanic
edifice measured using an array of extensometers displays
a precursory behavior up to several months before all the
14 eruptions of the period 1997–2003. Brenguier et al.
[2008] managed to measure tiny seismic velocity changes

prior to 5 eruptions using seismic noise cross-correlation
techniques on the 1999–2000 period, and also propose those
measurements as possible forerunners to eruptions on the
2000–2007 period.
[6] Therefore we chose to work on the time series of three

different forerunners: the seismicity rate, the deformation
and seismic velocity changes. We had two main goals:
[7] First, we analyzed the pre-eruptive behavior of the

three forerunners, in order to extract time patterns and
therefore to better constrain the mechanisms leading to
magma transfers up to the surface.
[8] Second, following Grasso and Zaliapin [2004], we

use the pattern recognition technique to quantify eruption
predictability [Mulargia et al., 1991]. This technique extracts
information from the observation and provides a phenome-
nological picture without the need of any physical model
[Mulargia et al., 1991]. We applied this technique to the
three previously defined forerunners and evaluate their pre-
dictive power either independently or as combined to each
others. For that purpose we used the error diagrams intro-
duced by Kagan and Knopoff [1987] and Molchan [1997].
This methodology has been first applied for eruption pre-
diction by Grasso and Zaliapin [2004] on the seismicity of
Piton de la Fournaise. The error diagrams are a useful tool
to determine the whole set of possible solutions. Using
alarm duration, failure to predict and false alarm rates, it
provides tools that will help decision makers for risk
assessment decisions.

2. Piton de la Fournaise Volcano

[9] The volcanic island “La Réunion” is situated in the
South-Western Indian Ocean (Figure 1). It is a hot spot
shield volcano of the hawaiian type, growing in an intra-plate
environment, mainly constituted of basaltic rocks, estimated
to be 540 000 years old [Gillot and Nativel, 1989]. It was
build by the successive stacking of several shield volcanoes
[Bachèlery and Mairine, 1990;Merle et al., 2010]. Courtillot
et al. [1986] showed that the hot spot at the origin of La
Reunion island is also responsible of the formation of the
Deccan trap volcanism (65 My), the Mascareignes basaltic
shelf (35 My) and the Mauritius island (7–1 My). Piton de la
Fournaise is the active volcano of La Réunion. It shows a
strong eruptive activity with a nine months average return
time for eruptions, during the 1900–2010 period. The mean
eruptive volume rate estimated over one century is about
0.01 km3.yr�1 [Lenat and Bachèlery, 1987]. It is 10 times
smaller than for the Kilauea hot spot volcano [Dzurisin et al.,
1984]. The current eruptive activity of Piton de la Fournaise
is concentrated inside the caldeira of Enclos Fouqué
(Figure 2) and the eruptive style is mostly effusive. In the last
three centuries, only 7 or 8 eruptions (5% of the total number
of recorded eruptions) occurred outside the Enclos Fouqué,
and the lava flows destroyed forests, sugar cane and vanilla
plantations, several houses and the main road [Stieltjes and
Moutou, 1989]. Purely phreatic and magmato-phreatic
explosions at the summit craters have been only observed in
1766, 1791, 1860, 1961, 1986 and 2007 [Peltier et al., 2012].
Since most of the eruptions are small, effusive and mostly
localized in uninhabited areas, Piton de la Fournaise does
not represent a strong threat to the population. However, the
vulnerability is increased by the high number of tourists on

Figure 1. Geographic location of La Réunion island.
(bottom left) La Reunion island showing the two main
features, Piton des Neiges volcano on the West, and the cur-
rently active Piton de la Fournaise volcano on the east.
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the volcano, the summit instability, and the risk for phreato-
magmatic eruptions or eruptions outside the enclos Fouqué,
as it occurred in the past. Its numerous eruptive episodes and
the available data from the volcano monitoring since 1980 by
the Volcanological Observatory (OVPF), make this volcano
a perfect test laboratory for prediction schemes.

3. Three Eruptions Forerunners: Seismicity Rate,
Deformation Rate and Seismic Velocity Changes

3.1. The Daily Data Over the 1999–2006 Period

[10] Different arrays of geophysical or geochemical instru-
ments are deployed on Piton de la Fournaise since the 80’s.
In Figure 2, we show the permanent seismic network (left)
and the permanent extensometers network (right).
[11] The OVPF seismic catalogue is built on daily manual

detection of seismic events (1988–2011). An event is
included into the catalog when the signal is recorded on more
than three stations. The seismicity at the Piton de la Fournaise
volcano is mainly composed of volcano-tectonic (VT) events
and rockfall signals. Those VT events are associated with
rupture or displacement along faults. Their frequency is
typical of tectonic earthquakes and the VT waveform shows
clear P and S wave arrivals (see McNutt [2002] for a review
on the seismic signals associated with volcanoes). Very few
long-period (LP events) are ever recorded on Piton de la

Fournaise [Aki and Ferrazzini, 2000] including in the 1999–
2007 period. The VT events are usually associated with shear
failure or slip on faults: their frequency content is typical of
tectonic earthquakes, with clear P and S phase onsets
[Minakami, 1960; Chouet, 1996; McNutt, 2002]. VT events
are considered as a sign of renewed volcanic activity since
they are usually contemporary to volcano processes [McNutt,
2002]. On Piton de la Fournaise, this local seismicity (Mw < 3)
has been related to damage processes occurring during
magma transfers, such as the overpressure in the magmatic
chamber or the propagation of a dike [Grasso and Bachèlery,
1995; Sapin et al., 1996; Aki and Ferrazzini, 2000]. Seis-
micity is the most used candidate to monitor volcanoes
worldwide.
[12] For the last 30 years, the OVPF has been monitoring

the Piton de la Fournaise volcano, and daily deformation
data are available. The inflation of the volcanic edifice
leads to surface deformations, measurable through either
opening of fractures, variations of the slope tilt or single
point displacement values. On Piton de la Fournaise, the
deformation on the edifice is measured from different net-
works of geophysical equipment: extensometers, tiltmeters,
and GPS arrays. We chose to use only the measurements
from one extensometer located at the base of the summit
cone (see FORx on Figures 2 and 3 for on-site instrument),
because it showed the longest recording period and it is

Figure 2. (left) Seismic and (right) extensometer networks on Piton de la Fournaise. In this study we
used a daily seismic catalog from a daily counting of events over all seismic stations, and the data from
extensometer FORx, south of the summital Dolomieu cone. We used the east-west component of the
extensometer, which is perpendicular to local crack extension (the crack orientations are red bars on the
map). The green polygon on the left figure delimits the area where the seismic stations are used for the com-
putation of the seismic velocity changes (Gauss Laborde coordinates).

SCHMID ET AL.: ERUPTION FORERUNNERS AND PREDICTABILITY B11203B11203

3 of 16



suggested to be the most sensitive to pre-eruptive defor-
mation of the volcano edifice [Bachèlery et al., 2001; Peltier
et al., 2006]. This very local measure along a single crack
may not characterize the whole volcanic edifice, however
some local circumstances drive a positive concomitance of
the measurement together with the eruption and we there-
fore consider this observable as a forerunner. The available
data are the daily value of a crack opening, in mm, over the
period 1997–2007.
[13] Brenguier et al. [2008] showed that from the cross-

correlation of ambient seismic noise, one could retrieve tiny
changes in the seismic velocity changes under the volcanic
edifice. When applied on the Piton de la Fournaise (1999–
2000) this technique suggests that a decrease of the seismic
velocities occurs a few days before eruptions. These varia-
tions in the seismic velocity are suggested by Brenguier et al.
[2008] to be driven by stress changes related to increase of
magma pressure in the magma storage zone or due to opening
cracks [Duputel et al., 2009]. For our analysis we use the
daily values of the seismic velocity for the period 1999–
2006. The velocity changes are estimated on 0.1–1 Hz fil-
tered data. For each station pair, a daily data is computed as
the averaged change in seismic velocity on the 10 days that
precedes the nominal day. The daily values used in this study
are averaged on all the seismic stations pairs included in the
green polygon of Figure 8 (left). The velocity changes
imaged through this technique characterize the medium
below those stations. Ongoing work is undertaken to localize
more precisely the location of those seismic variations.
[14] In order to be able to compare the three forerunners

on the same data set of eruptions, we chose the common
period of the available data. Therefore, the following study
is performed on the 06-23-1999 – 12-31-2006 period.
[15] Before most eruptions, we observe a clear increase of

either the seismicity, displacement or seismic velocity var-
iations (Figures 4, 5, and 6). For instance the July 2000

Figure 3. FORx extensometer located at the base of the
summit crater of Piton de la Fournaise. The length of the
crack is about 10 m and the opening of the crack is around
2 cm.

Figure 4. Temporal evolution of the daily cumulative VT event rate, 1999–2006. Grey areas represent
periods of eruption.
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eruption shows increases of the three observables before the
eruption (Figure 7). However, this observation is not sys-
tematic for all eruptions. It is the reason why we look at the
data from a statistical viewpoint, by averaging a mean pre-
eruptive behavior of the observables for the 22 eruptions of
the 1999–2006 period.

3.2. Forerunners Patterns

[16] To study the mean behavior of the three forerunners
to eruptions, we stacked the daily rates and cumulative data
over [�200; 200] days windows centered on eruption time,
for the 22 eruptions occurring in 1999–2006 (Figures 8 and
9 for daily rate and cumulative data respectively). This

200 days interval corresponds to the mean inter-eruption
time. This stack technique, previously used [Collombet et al.,
2003; Lemarchand and Grasso, 2007], allows us to extract
characteristic averaged patterns, which are not always seen
for a single eruption. We tested that the identified charac-
teristic trends are not driven by a single time series using a
bootstrap analysis (the test results are shown in Figure S1
in the auxiliary material).1

[17] As previously shown by Collombet et al. [2003] over
the period 1988–2001, we confirm a mean accelerating

Figure 5. Temporal evolution of the daily cumulative displacement recorded on the extensional compo-
nent of extensometer FORx, 1999–2006. Grey areas represent periods of eruption.

Figure 6. Temporal evolution of the daily cumulative seismic velocity change computed using cross-
correlations of ambient seismic noise, 1999–2006. Grey areas represent periods of eruption.

1Auxiliary materials are available in the HTML. doi:10.1029/
2012JB009167.
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pattern appears when stacking the pre-eruptive daily seismic
sequences prior eruptions over the period 1999–2006. This
acceleration starts about 10 days prior eruption (when the
seismic rate increases above noise level). The linear trend of
the seismicity in the log-log plot confirms that this acceler-
ating pattern follows a power law (Figure 8a, right).
[18] When analyzing individual eruptions, Peltier et al.

[2006] suggested that an increase of the cumulative dis-
placement is observable more than three months before
eruptions. On the cumulative displacement, we recover this
linear increase up to 200 days before eruption (Figure 9).
There is a possible change in the slope around 100 days

before eruptions. When analyzing the pattern as daily rates
on average for all eruptions (Figure 8b), we observe that the
opening rate of the crack, i.e. the derivative of the function
used by Peltier et al. [2006], significantly increases only one
day before eruptions (Figure 8b). Analysing individual
eruptions at Kilauea, Bell and Kilburn [2012] also find a
constant rate of surface deformation before eruptions.
[19] For the seismic velocity changes, it is possible to

identify a mean decrease in seismic velocity changes rate,
above noise level, 100 to 50 days before eruption
(Figure 8c). Then a flat plateau value is resolved for the last
50 days, which inhibits any time prediction. Consequently,

Figure 7. Temporal evolution of the three forerunners around July 2000 eruption. (top) Daily cumulative
VT event rate; (middle) daily cumulative displacement recorded on the extensional component of exten-
someter FORx; (bottom) daily cumulative seismic velocity change computed using cross-correlations of
ambient seismic noise. Grey areas represent periods of eruption.
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the analysis of the seismic velocity changes as a cumulative
data shows a linear increase 50–100 days before eruptions
(Figure 9c).
[20] The different characteristic times, and the different

laws governing pre-eruptive behaviors for the three fore-
runners raise the question of common pre-eruptive mecha-
nism leading to such asynchronous patterns. Whatever the
pre-eruptive processes that drive the observed patterns, the
characteristic times for change before eruptions imply a
possible predictive power for each observable.

4. Predictability of Eruptions

4.1. Pattern Recognition and Error Diagrams

[21] Within the framework of complex systems, we follow
a pattern recognition approach to explore the predictability
of Piton de la Fournaise eruptions (Keilis-Borok [2002] for a
review). The prediction algorithm is quite simple, and based
on the detection of a threshold value on the time function of
a given forerunner (Figure 10). This function, F, can be
written as

F t; twð Þ ¼
X
i

fi

tw
ð1Þ

where tw is the variable window length (as one of the input
alarm parameters). For our data sets, F will be successively
the VT earthquake rate (with fi being the observed number
of VT events in the time window [t-tw, t]), the displacement
rate (with fi being the displacement measured on the time
window [t-tw, t]), and the seismic velocity changes rate (with
fi being the seismic velocity change over the time window
[t-tw, t]). An alarm is detected when F(t, tw) ≥ NF, where the
threshold NF is an adjustable parameter. We use this func-
tion to predict whether an eruption will occur in the time
interval [t, t + D]. If F(t, tw) ≥ NF, we declare an alarm for
the time interval D. The alarm is relieved either after the
eruption occurred, or when the D time window has expired
[Grasso and Zaliapin, 2004]. Therefore, our prediction
scheme depends on three alarm parameters: (1) the time
window tw over which the precursory process F(t, tw) is
computed, (2) NF the threshold for the precursory parameter
over which an alarm is declared, and (3) the time window D
over which the alarm is declared.
[22] It is necessary to evaluate the quality of the predic-

tion considering not only the rate of successful prediction
but also the rate of false alarms it generates and the total
duration of the alarms. Those two last outputs are the “cost”
to achieve a given rate of successful predictions. For that
purpose, we used the “error diagrams”, introduced in

Figure 8. Stacked daily rates over [�200, 200] days windows around the 22 eruptions. t = 0 corresponds
to eruptions onsets. Data before eruption, as a function of (t0 � t), either in normal, lognormal or loglog
plot to outline any linear, exponential or power law tendency, from left to right respectively. We go closer
to the eruption time when going toward the left of the time axis. On all diagrams blue plain lines and blue
dotted lines are background level computed over a [�400; �100] days window before eruptions and
standard deviation respectively. (a) Seismicity rate (as the number of event per day); (b) displacement rate
(as the daily opening of a sensitive crack); (c) seismic velocity changes (as the daily variation of the seismic
velocity).
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seismology by Kagan and Knopoff [1981] and Molchan
[1997]. The formalization of error diagrams allows us to
characterize the performance of prediction outcomes using
the rate of success, the rate of false alarms, and the total
duration of alarms. When calling A the number of declared
alarms , Af the number of false alarms, Ne the number of
eruptions that occurred, As the number of successful pre-
dictions, Am the number of missed events, and FD the time
covered by the alarms, the three dimension-less results of
the prediction can be defined as follows:
• the rate of failures to predict fp = Am/Ne

• the rate of false alarms fa = Af /A
• the total duration of alarms t = FD/T where T is the

duration of the whole considered period.
[23] The values of t, fp and fa, when mapped on the two

error diagrams, allow us to compare the efficiency of any
prediction, depending on the three alarm parameters tw, NF
and D (Figure 12).

4.2. Predictability of the Eruptions Using Three
Forerunners of Piton de la Fournaise

4.2.1. Single Forerunner Prediction
[24] In a first step, we applied the pattern recognition

algorithm and designed the error diagrams for the three single
forerunners (seismicity, displacement and seismic velocity

Figure 9. Stacked cumulative data for the 22 eruptions over [�200, 200] day windows around eruption
time: t = 0 corresponds to eruptions onsets. After the end of each eruption, we reset each observable values
back to 0. Data before eruption, as a function of (t0 � t), either in normal, lognormal or loglog plot to out-
line any linear, exponential or power law tendency, from left to right respectively. We go closer to the
eruption time when going toward the left of the time axis. On all diagrams blue plain lines and blue dotted
lines are background level computed over a [�400; �100] days window before eruptions and standard
deviation respectively. (a) Cumulative seismicity (as the number of events); (b) cumulative displacement;
(c) cumulative seismic velocity changes.

Figure 10. Prediction scheme and prediction outcomes.
We defined an alarm threshold over a time function which
is our prospective precursor. Three outcomes may occur.
(1) The alarm is triggered and an eruption occurs. This is a
successful prediction. (2) An alarm is triggered but no erup-
tion occurs. This is a false alarm. (3) An eruption occurs but
no alarm has been triggered. This is a missed event, i.e. a
failure to predict case. From Grasso and Zaliapin [2004].
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changes), either using the daily or the cumulative rates. For
the cumulative data sets, we further imposed the function
back to 0 after each eruptions (Figure 11).
[25] The alarm parameters we tested as inputs for pattern

recognition are summarized in Table 1.
[26] Figure 12 shows the results of prediction displayed in

the error diagrams for the seismicity rate.

[27] The error diagrams represent all the possible pre-
diction outcomes for all the values of the alarm parameters
we explored (Table 1). On the left diagram of Figure 12, the
diagonal is the result of a random guess prediction strategy
(the points representing the prediction results would be aligned
on this diagonal). Consequently, the larger the distance from
the diagonal in this diagram, the larger the departure from a
random prediction, for the tested combination of alarm
parameters. Because a low failure to predict rate will have
a cost in terms of false alarms and total alarm duration, we
propose a tool to help the decision makers to extract optimum
prediction (i.e. the combination of alarm parameters) for a
given prediction strategy. This prediction strategy will
depend on the local vulnerability of the volcanic area. As a
first step application, our target is the closest point from the

origin points of each diagram of Figure 12 (i.e. the furthest
from the diagonal) when considering the three diagrams,
simultaneously. Mathematically, it corresponds to minimiz-
ing the three prediction outputs simultaneously. The deci-
sion-maker can favor some of the prediction outputs (missed
event rate, false alarm rate or total alarm duration) by usinga,
b and g weighting coefficients. We defined Dmin as:

Figure 11. Time evolution of the 3 observables, with two functions per observable: (a) daily seismic rate,
(b) daily displacement rate, (c) daily seismic velocity changes rate, (d) cumulative seismicity, (e) cumulative
displacement, (f) cumulative seismic velocity changes. To predict the time to the next eruption using the
cumulative data (Figures 11b, 11d and 11f), we reset the values back to 0 the day after the end of each
eruption. The grey vertical bars indicate periods of eruptions.

Table 1. The Alarm Parameter Values Tested for Pattern
Recognition on the Different Data Setsa

tw (days) 1:1:5

D (days) 1:5:100
Ns (events/day) 1:5:100
Nscum (events) 1:50:1000
Nd (mm/day) 10�3.(1:2:40)
Ndcum (mm) (1:50:1000).10�3

Nsvc (%/day) (1:1:20).10�2

Nsvccum (%) (1:50:1000)10�3

atw is the time window used to compute the Ni threshold values for alarm
onset. D is the alarm duration. Ns (seismicity), Nscum (cumulative seismicity),
Nd (displacement), Ndcum (cumulative displacement), Nsvc (seismic velocity
changes), Nsvccum (cumulative seismic velocity changes) are the threshold
over which an alarm is declared.

Dmin ¼ min
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a fp tw;NF;Dð Þ� �2 þ b fa tw;NF;Dð Þð Þ2 þ g t tw;NF;Dð Þð Þ2

q� �
ð2Þ

SCHMID ET AL.: ERUPTION FORERUNNERS AND PREDICTABILITY B11203B11203

9 of 16



Figure 12. Error diagrams for the daily seismicity rate alone. From left to right, failure to predict versus
alarm time fraction, false alarm rate versus total alarm duration, failure to predict versus false alarm rate.
Each black point corresponds to the prediction output given one set of alarm parameters (tw, N, D). With
the discrete step we used, we explored 2000 (5*20*20) combinations for the three parameters tested under
pattern recognition. The error diagrams image all the 2000 prediction outcomes we tested. The dotted line
on the left diagram is the expected outcome space for a random guess prediction strategy. The red point
corresponds to the optimum prediction outcome (i.e. the set of alarm parameters minimizing the D-value
defined in equation (2)). The red lines are the distance to origin point for this specific prediction output.

Figure 13. Envelops of the prediction outputs in the failure to predict versus alarm time fraction diagram
for the 3 forerunners, when minimizing equation (2). Plain lines are the rate values, dotted lines are the
cumulative values.

SCHMID ET AL.: ERUPTION FORERUNNERS AND PREDICTABILITY B11203B11203

10 of 16



where fp is the missed event rate, fa is the false alarm rate
and t the alarm time fraction when exploring all possible
values of input alarm parameters tw, NF and D. For this
first step application, we use a = b = g = 1.
[28] Figure 13 displays the minimum envelops (i.e. the

furthest outcomes from the random prediction outcomes) of
the prediction outputs in the missed event rate versus alarm
time fraction diagram, for the 6 functions previously defined.
[29] Figure 13 shows that for the six data sets, many points

(i.e. prediction results given different combinations of alarm
parameters) are below the diagonal. This statistically con-
firms that the prediction results obtained for all the consid-
ered data sets perform better than random, i.e. the three
observables taken as rate or cumulative functions have pre-
dictive performances. We also note that the seismicity shows
points further from diagonal than deformation or seismic
velocity changes. It favors seismicity to be more efficient
than deformation or seismic velocity changes when consid-
ering only failure to predict results. However, if we take
simultaneously into account all prediction results (including
false alarm rate) through the optimum point defined in

equation (2), the cumulative displacement emerges as the
best candidate regards to our prediction strategy with a =
b = g = 1 (Table 2 and Figure 14).
[30] The optimum for the cumulative deformation, and

therefore the best prediction results in our strategy, corre-
sponds to a missed event rate of 18% and the lowest false
alarm rate at 14%. It corresponds to a displacement threshold
of 0.71 mm since the previous eruption, and an alarm dura-
tion of 36 days. For cumulative displacement values, the gain
to minimize the D-value defined in equation (2), relatively
to the others forerunners, emerges from a lower false alarm
rate (Figure 14).
4.2.2. Prediction From Forerunners Combinations
[31] Another target of this study is to test the relative per-

formance of the combination of the forerunners in a prediction
scheme. For this purpose we run the same prediction algorithm
as previously but using conditional combinations on fore-
runners patterns for the triggering of alarms. The logical link
between the two conditions may be either “AND” or “OR”.
An “AND” link will tend to allow lower false alarm rates
whereas a “OR” link will tend to improve failure to predict.

Table 2. Prediction Outputs for the Combinations of Forerunners We Considereda

Dmin tw D Ns Nd Nsvc fp fa t

s 0.61 1 41 46 - - 18.18% 40.00 % 42.69%
scum 0.59 4 36 801 - - 36.36% 26.32% 39.74%
d 0.55 4 96 - 11 - 22.73% 32.00% 38.97%
dcum 0.50 1 36 - 71 - 18.18% 14.29% 45.05%
svc 0.85 5 81 - - 14 30.00% 44.00% 45.43%
svccum 0.83 5 41 - - 301 45.00% 54.17% 41.66%
scum OR dcum 0.56 4 36 751 51 - 22.73% 29.17% 43.34%
scum AND dcum 0.44 1 31 301 11 - 22.73% 22.73 % 30.31%

aIn the left column, s refers to seismic rate, scum refers to cumulative seismicity, d refers to displacement rate, dcum refers to cumulative displacement, svc
refers to seismic velocity changes rate and svccum refers to cumulative seismic velocity changes. Dmin is the minimum value as described in equation (2).
tw, D, Ns, Nd, Nsvc give the values of the alarm parameters (Table 1) associated with the values of Dmin. The three last columns give the corresponding
prediction results.

Figure 14. Prediction outputs for the different observables when using Dmin as defined in equation (2).
Red is seismicity, green is displacement and blue is seismic velocity changes. Open and plain markers are
used for the discrete and cumulative data respectively. Brown and yellow are used for the combinations of
cumulative seismicity and cumulative displacement (respectively AND and OR combinations, Figure 15).
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Figure 16. Comparison of the normalized stacked pre-eruptive patterns of the three forerunners: seismicity,
displacement and seismic velocity changes, 1999–2006, 22 eruptions, as (left) daily rates and (right) cumu-
lative data.

Figure 15. Error diagrams from combining seismicity and deformation data. (top) Seismicity OR defor-
mation; (bottom) seismicity AND deformation. The red dots correspond to the optimum points as defined
in equation (2).
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[32] From the performances of independent prediction
skills (Table 2), we chose to work only with the two best
candidates for prediction, i.e. cumulative seismicity and
deformation. Therefore, we explored a combined prediction
for cumulative seismicity and the cumulative deformation
(Figure 15).
[33] At first sight, the “cumulative seismicity AND cumu-

lative deformation” results (lower diagrams of Figure 15)
show that the best performance in the failure to predict space is
largely dominated by the “only seismicity” results (Figure 12).
However, when we consider the second error diagrams, the
number of false alarm is dominated by the “only deformation”
results. As a result when calculating the optimum point for
the different combinations, we find that cumulative seismicity
AND cumulative deformation allows a smaller D-value (see
equation (2)), i.e. 0.44 and 0.88 for AND and OR predictive
schemes, respectively (Table 2). It means that in our definition
of the predictive power of any given forerunner sets (allowing
the smallest distance as defined in equation (2)), we improve
the prediction results when using combinations of observables,
by decreasing the false alarm rate.
[34] It is important to note that those results emerge from

choices on both an optimum point to compare the prediction
outputs, and the weights used to combine the forerunners in
the prediction algorithm. In the definition we used for opti-
mum prediction (with a = b = g = 1), we find that cumulative
deformation is the best candidate, and that we can improve
the prediction when combining cumulative seismicity and
cumulative deformation (Figure 14 and Table 2). The alarm
parameters corresponding to this optimum point (Table 2)
allow almost 80% of successful prediction with only 22%
of false alarms and 30% of time under alarm.

5. Discussion and Conclusions

5.1. Constrains on the Pre-eruptive Process From
Average Forerunner Patterns

[35] It is known that the deterministic forecast of eruption
time is not yet achieved by the geoscientist community [e.g.

Voight, 1988; Chouet, 1996; McNutt, 1996]. As a first sim-
plification test of the forecast problem, we used superposed
epoch analysis for seismicity rate, surface displacement and
seismic velocity change. This approach hypothesizes that
there are common patterns before eruptions. Fluctuations
around this mean common pattern are supposed to be second
order patterns associated with the local volcano heteroge-
neity (e.g. either within the passive volcano property of rock
matrices or as embedded in a deviation from a simple pro-
cess that leads toward eruption). For the Piton de la Four-
naise volcano, using signals before 21 effusive eruptions, the
3 observables we considered display non-homogeneous pat-
terns (Figures 8, 16, and 17). The major signal for the daily
seismicity rate emerges as a peak value for seismicity rate 1–
2 days from eruption day (Figure 8). As highlighted by the
log-log plot on Figure 8a, this climax peak value is the final
trend of a continuous power law increase that is resolved
above the noise level 15 days before the eruption days.
The displacement data, which corresponds to a local crack
opening at the surface of the volcano, estimates volcano
surface changes (inflation of the edifice prior to eruptions).
This measurement captures shallow phenomena as com-
pared to seismicity rate that encompasses seismicity located
within 0–5 km depth range [e.g. Aki and Ferrazzini, 2000;
Battaglia, 2001]. The signal fluctuations during the 50 days
before eruption days are large. However, a clear increase of
the displacement rate occurs the day of eruption with a peak
value above background level and standard deviation. In
the log-log plot (Figure 8b), we observe a possible power law
increase, if any, within 8–10 days from the eruption day,
however dominated by large fluctuations. The change in
seismic velocity displays lower frequency changes relatively
to the two previous observables (Figure 8c). The eruptions
are preceded by a decrease in velocity change in the 70–
50 days window before the eruption day. Then the veloc-
ity change remains constant at its strongest plateau value
during the last 50 days before eruptions. We do not resolve
accelerating pattern at shorter timescale before eruptions
(Figure 8c). Note that the high frequency fluctuations during

Figure 17. Stacked pre-eruptive patterns of the seismicity rate and the displacement rate (red and green
respectively), 1999–2006, 22 eruptions. Plain black line is the background value computed over a [�400;
�100] days window before eruptions. Dotted black line is the standard deviation.

SCHMID ET AL.: ERUPTION FORERUNNERS AND PREDICTABILITY B11203B11203

13 of 16



the larger amplitude and lower frequency changes in seismic
velocity prevent the low frequency signal to be efficient in
the prediction scheme we used.
[36] From these three observables, a possible coupling

emerges between seismicity rate and crack aperture but the
change in velocity appears to capture independent longer
time patterns. Merged together as daily rate values, these
stacked data support a three-step process as a mean field
volcano dynamics before eruption.
[37] First, the seismic velocity change within 70–50 days

from the eruptions onsets is followed by a plateau value up
to eruption onset. The decrease in velocity is proposed to be
the signature of in-depth cracks opening due to stress changes
within the volcano [Brenguier et al., 2008]. It may support a
change in the magma storage volume as driven by pressure
increase due to either crystallization process or new reservoir
feeding from depth (e.g. Lahaie and Grasso [1998] for a
conceptual model of upper volcano dynamics). The seismic
velocity changes suggest a progressive increase in the
magma storage forcing (70–50 days before eruptions), then a
rough constant forcing rate for the last 50 days. Note that the
70–50 days timescale roughly corresponds to the timescale
proposed by Peltier et al. [2006] for the possible determin-
istic forerunner pattern using surface crack opening only,
considering the 14 eruptions on the 1997–2003 period.
However, using Figure 8 we do not resolve, in the 100–
50 day window before eruptions, any mean pattern above
noise level for displacement values using the 21 eruptions on
the 1999–2006 period.
[38] Second, during the 50 days constant forcing phase

from the storage area, a power law increase in seismicity rate
is resolved above the noise level 15 days before eruption
time. This power law increase in seismicity rate is also
recurrent on both 1988–2001 [Grasso and Zaliapin, 2004],
and 1998–2003 [Collombet et al., 2003]. This observation,
which is suggested to map the brittle damage before failure,
argues for a brittle damage of the reservoir wall through time
[e.g. Grasso and Zaliapin, 2004]. This brittle damage is
recorded at laboratory scale either during the final step of
tertiary creep acceleration toward failure [Voight, 1988;
Amitrano and Helmstetter, 2006], or as pure brittle failure in
heterogeneous materials [Guarino et al., 2002]. At the vol-
cano scale, both processes are suggested to correspond to
damage in the storage zone injection [Collombet et al., 2003;
Grasso and Zaliapin, 2004; Traversa and Grasso, 2009],
which further allow injection of magma in the shallow vol-
canic edifice as a dyke pathway. It is also in agreement with
the damage signature of multiple aborted dyke injections,
which lead to the final route of a dyke intrusion toward free
surface as a non-yet mature dyke injection, in an early per-
colation phase.
[39] This later dyke intrusion phase is well resolved by the

increase of displacement rate on the eruption day, contem-
porary to huge constant seismicity rate recorded a few hours
before eruption [Peltier et al., 2005; Traversa and Grasso,
2009]. The displacement rate increases above background
level only one or two days before eruption (Figure 8b),
imaging strong localized deformations. Due to the one-day
accuracy of the data sampling, it confirms that the acceler-
ating pattern happens in the few hours preceding the erup-
tion. It supports the last day crack opening rate to map the
local deformation induced by the propagating dyke [e.g.

Toutain et al., 1992; Peltier et al., 2005; Peltier et al., 2006;
Battaglia and Bachèlery, 2003].
[40] These results validate a three-step mechanism leading

to magma transfers toward the surface as magma storage
maturation, damage of the storage area, and dyke propagation.

5.2. Predictability of Eruptions Thanks to the Three
Forerunners

[41] When applying the pattern recognition and error
diagram analysis on the VT event rate of Piton de la Four-
naise volcano (1988–2001), Grasso and Zaliapin [2004]
showed that the best prediction results were obtained when
averaging the daily seismicity rate over 5 days and issuing
a prediction alarm for the next 5 days. Then 65% of the
eruptions are predicted for an alarm time fraction smaller
than 20%.
[42] When considering VT event rate on 1999–2006

period and the optimum point as defined in equation (2), we
find slightly different results. The best prediction result is
obtained for a time-window s = 1 day, when issuing an alarm
for 41 days, with a threshold of 46 events per day. Such
alarm parameters allow to predict more than 80% of the
eruptions, with 40% of false alarm and an alarm duration of
42% of the time considered. This specific choice of alarm
parameters allows more successful predictions than Grasso
and Zaliapin [2004] results, however with a larger alarm
time fraction.
[43] This work is a first attempt to quantify the predictive

power for three forerunner on a same volcano. The seis-
micity rate resolves the minimum failure to predict rate, and
the cumulative deformation allows the smallest D-value
(equation (2)) when minimizing together the false alarm rate,
the alarm duration and the failure to predict. We show that,
even simple AND or OR rule to combine forerunners allow
to improve the prediction results relatively to the one issued
using each single forerunner independently. When consid-
ering the cumulative seismicity or the cumulative deforma-
tion, the optimum value decreases to 0.44 (against 0.50 for
the cumulative deformation alone), corresponding to a missed
event rate of 22%, a false alarm rate of 22% and an alarm
time fraction of 30%. From Figure 6, the velocity changes
are the noisiest observable and it may explain why the
average decrease in velocity changes rate 50 days from
eruptions (Figure 8) does not come out as a powerful fore-
runner (Figure 14). Accordingly, within the prediction strategy
and the prediction scheme we use in this study, seismicity
rate and crack opening data are the most efficient forerunners.
[44] These prediction outputs depend on the choice we

made regarding the time function we analyzed, the pattern
tested in the pattern recognition algorithm and the choice of
prediction strategy. Many other data combinations are to be
explored. The prediction strategy we chose is not unique and
the exploration of the best prediction scheme remains the
decision-makers choice. Given the context and the vulnera-
bility, some might favor a maximal successful prediction
rate, whatever the cost in terms of false alarms or alarm
duration. In some cases, it might be more reasonable for
societal impacts to minimize the number of false alarm rate.
Because the error diagrams give all the possible prediction
outcomes, it is a powerful tool for the decision-makers to
adapt consequently weighting coefficients (equation (2)).
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[45] Therefore, one major impact of this study is to dem-
onstrate cross-analysing different kind of geophysical data
leads to improve the predictive power, and to reduce the
uncertainties in the volcanic hazard assessment. This cross-
correlation of two or more geophysical or geochemical
techniques in order to improve the assessment of volcanic
activity is the very basis of daily working routine of vol-
cano observatories. When in most observatories the cross-
correlations of observable are on the basis of expert skills,
our analysis quantifies the strict prediction power for the
3 sets of available data.
[46] As a next step to this work, the comparison between the

performances of observatory routines and our “theoretical”
approach could be performed. To our knowledge there is no
information on the performances of the OVPF routines for
prediction, which are expert based skills, especially on the
1999–2006 period. When the expert based skills would out-
perform our “theoretical” results, it would indicate that there
are implicit information we failed to explicitly use in our
prediction scheme. Either there would be additional infor-
mation not included in the time series we used, or we would
have failed to identify it through pattern recognition tools.
As a final remark, one may note in this study that we only
focused on time prediction, without any size nor space location
for the ongoing eruptions, thus attesting a comprehensive
eruption forecast is still a goal to be achieved.
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