
HAL Id: hal-00793954
https://hal.science/hal-00793954v1

Submitted on 2 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An LMI solution for a class of robust open-loop
problems

Benoit Bayon, Gérard Scorletti, Eric Blanco

To cite this version:
Benoit Bayon, Gérard Scorletti, Eric Blanco. An LMI solution for a class of robust open-loop problems.
2012 IEEE ACC, Jun 2012, Montréal, Canada. pp.5234-5239, �10.1109/ACC.2012.6315092�. �hal-
00793954�

https://hal.science/hal-00793954v1
https://hal.archives-ouvertes.fr


An LMI solution for a class of robust open-loop problems

Benoit Bayon, Gérard Scorletti, Eric Blanco1

Abstract— The robust filter design and the robust feed-
forward controller design are particular cases of a larger class
of problems: the robust open-loop problems. In this article,
we consider a class of uncertain open-loop plants, where a
filter needs to be designed to ensure that the plant satisfies
chosen specifications. The representation of uncertainties is
made in a very general framework: the Linear Fractional
Transformation (LFT). Associated with the Dynamic Integral
Quadratic Constraints framework, it allows the consideration
of many classes of structured uncertainties. This paper proves
that the design of a filter ensuring a robust L2-gain or
H2 performance for the complete plant can be expressed
as a convex optimization problem involving Linear Matrix
Inequalities Constraints which can be solved using an efficient
algorithm.

I. INTRODUCTION

The class of open-loop plants under consideration is
presented in figure 1. In this problem, a filter F (to be
synthesized), is placed between two systems G (referred to
as the input system) and H (referred to as the output system).
This plant is referred to as an open-loop plant as no feedback
is acting between the elements G, F , and H in the plant. The
uncertainty affects only the input system G and is represented
in an LFT framework through the uncertainty block ∆.
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Fig. 1. Robust Open-Loop Problem

In many applications the design of open-loop elements
(such as F ) is a critical issue. The synthesis needs to ensure
that the complete plant satisfies specifications. This problem
recovers the case of the robust filtering [15] and its dual
problem, the robust feed-forward case [6]. This also recovers
cases in power electronics such as the design of passive
elements in an energy transfer line [5]. In these cases the
sensitivity of the complete plant to coupling factors or loads
is a serious topic.

When models of the plant elements are supposed to be a
perfect representation of the reality, i.e no uncertainty affects
G, the design of a filter is a particular problem of control.
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Many solutions have been proposed involving Riccati equa-
tion [3] or Linear Matrix Inequalities (LMIs) [4], [13] en-
suring that the open-loop satisfies various specifications. But
these approaches do not consider the modeling error which
potentially cause great performance degradations when the
designed controller is implemented on the real system. The
gap between the real system and its model can be represented
with uncertainties to deal with this major issue. The robust
problem is to find a controller (for the closed-loop case) or
a filter (for the open-loop case) which ensures a guaranteed
performance for all the systems represented by the uncertain
model.

Many interesting cases can be modeled using Linear
Fractional Transformation (LFT) [18]. In this very general
framework, the uncertain model is a rational function of
several uncertainties. These systems are represented as an
LFT of an uncertain block ∆ by a nominal model. The
uncertain block is structured (block-diagonal) allowing to
take charge of several uncertainties of different classes at
once. In this framework, the uncertain block is related to
the nominal system using Integral Quadratic Constraints
(IQCs) [8]. These IQCs allow to have an input-output
characterization of systems and robust performance analysis
tools [14].

While the robust performance analysis is convex, the
general robust controller synthesis problem is proved to be
non-convex. But for specific open-loop cases, the synthesis
problem is convex. In [16] results were proposed for the
synthesis of robust filters for Linear-Time-Varying (LTV)
parametric and dynamic uncertainties using the LFT/IQC
framework with static IQCs. More general results were
proposed in [15], for the design of L2-gain sub-optimal filters
and feed-forward controllers, for parametric and dynamic
uncertainties, with the use of Dynamic IQCs. Compared
to static IQCs, the use of Dynamic IQCs allows to take
into account more types of uncertainties, such as Linear-
Time-Invariant (LTI) parametric and dynamic uncertainties,
non-linearities or delays [8]. More general results were
proposed for generalized IQCs, for the design of H2 and L2-
gain suboptimal filters [14] and feed-forward controllers [7].
A limitation with these results is that they cannot take into
account any system at the output of the filter. The system H
needs to have the form

[
W (jω) −W (jω)

]
, where W

is a stable transfer function with a stable inverse, which is
not always the case [9]. And even for this case, the order of
the designed filter is greater than necessary, except in [17],
where weigths can be taken into account without growth of
order for the deisgned filter.

When the control channel is not affected by uncertainties



the controller synthesis problem is proved to be convex [12]
using dynamic IQCs. A framework has also been developed
to tackle this problem. It allows for example the design
of observers for uncertain systems [1]. Unfortunately this
general framework also provides filters of order greater
than necessary for simpler cases such as the one under
consideration in this paper.

To overcome this problem, we present solutions for the
class of robust open-loop plants presented in figure 1, which
is a particular case of the problem presented in [12], and
more general than the problem under consideration in [15],
[14]. The representation of uncertainties is made using gen-
eral dynamic IQCs and allows the consideration of many
classes of uncertainties.

We present two theorems allowing to synthesize filters that
ensure an upper bound on a H2 and L2-gain performance
on the complete open-loop plant. For the case of the robust
weighted filtering problems, the filter designed are smaller
in terms of order compared to the one proposed for [15],
[14], [12]. These smaller orders are interesting in terms of
real-time implementation. It will allow to synthesize simpler
robust filters ensuring a performance for variant coupling
factors and loads for the design of passive elements in energy
transfer lines. Additionally, any matrices of transfer functions
can be considered at the end of the plant. Finally, the case
where the uncertainty affects the output system H can be
tackled using the solutions presented here, as it is the dual
problem of the one under consideration. The feed-forward
controller designed with these solutions will be of smaller
order than the ones designed with the methods presented in
[7].

Notations

AT is the transpose of the matrix A, A∗ its transpose
conjugate. (�)∗XA denotes (A)∗XA. In a matrix � also
denotes a symetric element. We also have A+AT = A+(•)T

Π(jω) defines the central term of an Integral
Quadratic Constraint, and can be factorized as

[�]∗
[

Φ11 Φ12

ΦT
12 Φ22

] [
K(jω) 0

0 K(jω)

]
. The state

space representation of the matrix of transfer function

C(jω − A)−1B + D is denoted
[
A B
C D

]
. P denotes

a matrix introduced by the Kalman-Yakubovitch-Popov
lemma. Finally Twe denotes the transfer function from w
to e, and ‖Twe‖2 denotes the H2 norm of this transfer
function, while ‖Twe‖i2 denotes the norm induced by the
L2 space of signals. The variables of the optimization
problems involving LMIs are written in bold.

II. PROBLEM DEFINITION

Consider the plant presented in figure 1. G is subject to
a non-measured input w ∈ Rnw . This system feeds a filter
F (to be synthesized) through the signal y ∈ Rny and H
through z ∈ Rnz . H is also fed by the output of the filter
f ∈ Rnf .The inputs and outputs of the uncertain block ∆
are respectively q ∈ Rnq and p ∈ Rnp . To consider many

classes of uncertainties, we consider that the uncertain block
∆ satisfies the Integral Quadratic Constraint defined by∫ ∞

−∞
(�)T Π(jω)

[
x(jω)

∆(x)(jω)

]
dω, ∀x ∈ L2 (1)

If ∆ is a structured uncertainty, then Π(jω) is also a
structured IQC, and its structure depends on the uncertainties
under consideration [15]. The transfer function Twe from w
to e is under consideration:

Twe = H(jω)

[
I 0
0 F (jω)

]
(G(jω) ?∆)

To characterize Twe we consider two norms on systems.
• For LTI systems the H2 norm represents the energy of

the impulse response. As the IQC presented equation 1
can allows to consider uncertainties such as delays, non-
linearities, we consider a generalization of the H2-norm
based on the output signal of the system, considering
as input an impulsion [14].

• The L2-gain norm is defined as a worst-case perfor-
mance along the frequency response of a system. In
this case, w is a signal of L2-gain norm less than one.

The H2 robust open-loop problem is then:
For a given γ > 0, find if a filter F exists (and compute

it) so that ∀∆ which satisfies (1), ‖Twe‖2 < γ.

The L2-gain robust open-loop problem is then:
For a given γ > 0, find if a filter F exists (and compute

it) so that ∀∆ which satisfies (1), ‖Twe‖i2 < γ.

A. Sketch of robust performance analysis using IQCs

The basic results for analysis of uncertain systems using
IQCs are presented here. The following fundamental theorem
is presented first.

Theorem 2.1: Stability Analysis theorem [8]
Let G be stable, and let ∆ be a bounded causal operator.

Assume that
1) for every τ ∈ [0, 1], the interconnection of G and ∆ is

well-posed;
2) for every τ ∈ [0, 1], the IQC defined by Π is satisfied

by τ∆
3) There exists ε > 0 such that[

G(jω)
I

]∗
Π(jω)

[
G(jω)
I

]
≤ −εI, ∀ω ∈ R (2)

Then, the feedback interconnection of G and ∆ is
stable.

To test the stability of a given interconnection, one has
to find Π(jω): this is a feasibility problem. This is hardly
feasible as all the matrices of transfer functions of every
order are candidates which means the number of variables of
the optimization problem is infinite. Moreover, the inequality
presented equation (2) has to be tested for all frequencies
which means an infinite number of constraints. To handle
these issues the common path [15], [14] is as follows:



• Restrict the matrix of transfer function Π(jω) to a finite
span of matrices of transfer functions, of a fixed order.

• Use the celebrated Kalman-Yakubovitch-Popov (KYP)
Lemma [11] to test all the frequencies at once: the
constraint is recast as a Linear Matrix Inequality con-
straint. The optimization problem becomes then a finite-
dimensional optimization problems, with a finite num-
ber of constraints, which can be solved using an efficient
algorithm [2].

An example of the application of these two steps is presented
here. Consider the equation (2). We restrict Π(jω) to the
matrices of transfer function such as

[�]∗
[

Φ11 Φ12

ΦT
12 Φ22

] [
K(jω) 0

0 K(jω)

]
(3)

To generate all the candidates, the choice of K(jω)
is highly non-unique. For example K(jω) =[
jωn . . . jω 1

]T ⊗ Inq
)/d(jω) is a suitable

basis, where d(jω) is a fixed Hurwitz polynomial with
n poles. With this representation, the order of Π(jw)
is restricted to 2n. This factorization introduces some
conservatism, but this conservatism decreases dramatically
when the order chosen for the IQC increases [14]. For
specific structures as parametric and dynamic LTI/LTV
structured uncertainties one can refer to [15] for economical
parametrization to reduce the computation time.

[�]∗
[

Φ11 Φ12

ΦT
12 Φ22

] [
K(jω)G(jω)

K(jω)

]
≤ −εI, ∀ω ∈ R (4)

Applying the KYP Lemma [11], the constraint (4) holds if
P = PT , Φ exist so that the condition (5) holds.

[�]T


0 P 0 0
P 0 0 0
0 0 Φ11 Φ12

0 0 Φ12
T Φ22


 I 0
A B
C D

 < 0 (5)

[
A B
C D

]
is a state space form of

[
K(jω)G(jω)

K(jω)

]
.

• G(jω) = C(jωI −A)−1B +D
• K(jω) = CK(jωI −AK)−1BK +DK .

[
A B
C D

]
=


AK 0 0 BK

0 AK BKC BKD
0 0 A B
0 CK DKC DKD
CK 0 0 DK


From equation (1), we can assume that

K∗(jω)Φ11K(jω) > 0, and this property has to be
ensured with the factorization presented equation (3).
Applying the KYP Lemma [11], this constraint holds if
PK = PK

T exists so that the condition 5 holds.

[�]T
 0 PK 0

PK 0 0
0 0 Φ11

 I 0
AK BK

CK DK

 > 0 (6)

These operations allow to transform an infinite dimensional
optimization problem into a finite dimensional convex opti-
mization problem with a finite number of constraints. The

initial condition (2) holds if the constraints (5),(6) holds.
Note that these conditions are only sufficient because the
factorization and the restriction of order induce some conser-
vatism. But IQCs of small orders have proven to be efficient
enough to reduce drastically the conservatism [14].

B. Robust Performance analysis theorems

These results lead to interesting results in robust perfor-
mance analysis. We consider the system presented figure 2.
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Fig. 2. Uncertain system

G =

[
Cq

Ce

]
(jωI −A)−1

[
Bp Bw

]
+

[
Dqp Dqw

Dep Dew

]
The condition (1) holds for ∆. The objective is to have

conditions to test a worst-case performance on the transfer
function Tew. The framework presented in the previous
subsection has led to useful results presented in theorem 2.2
and 2.3.

Theorem 2.2: Robust L2-gain Performance [14]
Let G be stable, the tranfer function Twe has an L2-gain less

than γ if P = PT , Φ =

[
Φ11 Φ12

Φ12
T Φ22

]
exist so that the

conditions (6,7) hold.

[�]T


0 P 0 0 0
P 0 0 0 0
0 0 Φ 0 0
0 0 0 I 0
0 0 0 0 −γ2I




I 0
A B
Cq Dq

Ce De

0 Dw

 < 0 (7)

with the following matrices:

 A B
Cq Dq
Ce De
0 Dw

 =



AK 0 0 BK 0
0 AK BKCq BKDqp BKDqw
0 0 A Bp Bw
0 CK DKCq DKDqp DKDqw
CK 0 0 DK 0
0 0 Ce Dep Dew
0 0 0 0 I


Theorem 2.3: Robust H2 performance [14]
Let G be stable, the tranfer function Twe has an H2 norm

less than γ if P = PT , Φ =

[
Φ11 Φ12

Φ12
T Φ22

]
, Q = QT

exist so that the conditions (6, 8-12) hold.

[�]T


0 P 0 0
P 0 0 0
0 0 Φ 0
0 0 0 I




I 0
A Bp
Cq Dqp

Ce Dep

 < 0 (8)

(
P PBw
BTwP Q

)
> 0 (9)



Trace(Q) < γ2 (10)

Dqw = 0 (11)

Dew = 0 (12)

with the following matrices:

 A Bp Bw
Cq Dqp 0
Ce Dep 0

 =


AK 0 0 BK 0
0 AK BKCq BKDqp 0
0 0 A Bp Bw
0 CK DKCq DKDqp 0

CK 0 0 DK 0
0 0 Ce Dep 0


For a given system and a given γ, constraints given in
theorems 2.2 and 2.3 define feasibility problems involving
LMIs constraints. This can also be recast as a minimization
problem of a cost function minimizing x = γ2, to find the
lower upper-bound reachable in this framework on the worst-
case performance.

III. MAIN RESULTS

In this section we consider the open-loop plant presented
in figure 1. Two theorems are revealed, allowing to test the
existence of a solution for the robust open-loop problem
for a given level of H2 or L2-gain performance. The
corresponding filter can be computed from the solution of the
optimization problems. We have the following definitions:

G(jω) =

 Cq
Cz
Cy

 (jωI−A)−1
[
Bp Bw

]
+

 Dqp Dqw
Dzp Dzw
Dyp Dyw


H(jω) =

[
Ce

]
(jωI−AH)−1

[
Bz Bf

]
+
[
Dez Def

]
Theorem 3.1: Robust L2-gain Open-Loop Synthesis
For a given γ > 0, if (1) holds ∀∆, a filter exists so

that ‖Twe‖i2 < γ, if Z1 = ZT
1 , Z2, Z3 = ZT

3 , P1 =[
P11 P12

PT
12 P22

]
, F, PK = PT

K, Φ =

[
Φ11 Φ12

ΦT
12 Φ22

]
of

appropriates dimensions exist so that conditions (13), (14),
(15) hold.

L1 + LT
1 + L2 + LT

2 + L3 + LT
3 + LΦ < 0 (13)

with the following matrices:

L1 =


Z1 0 0
−ZT

2 I 0
P11 P12 0
PT

12 P22 0
0 0 0
0 0 I


 AG 0 BG

BzCG2 AH BzDG2

DezCG2 Ce DezDG2

UL1

UL1 =

 I 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0



L2=


0 0
I 0
0 0
0 0
0 0
0 I


[
AH
Ce

] [
ZT

2 Z3 0 0 0 0
]

L3 =


0 0 0
0 0 Bf
I 0 0
0 I 0
0 0 0
0 0 Def

F


I 0 0
0 I 0
0 0 CTG3

0 0 0
0 0 DT

G3

0 0 0



T

LΦ = [�]T
 Φ 0 0

0 −γ2I 0
0 0 −I

 Cφ 0 Cφ 0 Dφ 0
0 0 0 0 Dw 0
0 0 0 0 0 I



[�]T
 0 PK 0

PK 0 0
0 0 Φ11

 I 0
AK BK

CK DK

 < 0 (14)


Z1 0 Z1 0
� Z3 −ZT

2 I
� � P11 P12

� � � P22

 > 0 (15)

with the following matrices:


AG BG

CΦ DΦ

CG2 DG2

CG3 DG3

0 Dw

 =



AK 0 0 BK 0
0 AK BKC BKDqp BKDqw

0 0 A Bp Bw

0 CK DKCq DKDqp DKDqw

CK 0 0 DK 0
0 0 Cz Dzp Dzw

0 0 Cy Dyp Dyw

0 0 0 0 I


Proof: Theorem 2.2 is applied on the system presented

in figure 1. The first condition is:

[�]T


0 P 0 0 0
P 0 0 0 0
0 0 Φ 0 0
0 0 0 I 0
0 0 0 0 −γ2I




I 0
A B
Cq Dq

Ce De

0 Dw

 < 0 (16)

with ACq
Ce

 =


AG 0 0

BzCG2 +BfDFCG3 AH BzCF
BFCG3 0 AF
CΦ 0 0

DezCG2 +DefDFCG3 Ce DefCF


 B
Dq
De
Dw

 =


BG

BzDG2 +BfDFDG3

BFDG3

DΦ

DezDG2 +DefDFDG3[
0 I

]


Using a Schur lemma [2, page 28], this can be recast as:

Ψ1︷ ︸︸ ︷ P 0
0 0
0 I

[ A B 0
Ce De 0

]
+

ΨT
1︷︸︸︷

(•)T + . . .

Ψ2︷ ︸︸ ︷
. . . (�)T

 Φ 0 0
0 −γ2I 0
0 0 −I

 Cq Dq 0
0 Dw 0
0 0 I

 < 0

(17)
We introduce the partitions of P and its inverse.

P =

[
P1 P2

� P33

]
=

 P11 P12 P13

� P22 P23

� � P33

 so that

PA =

 P11 P12 P13

� P22 P23

� � P33

 AG . . . . . .
. . . AH . . .
. . . . . . AF


P−1 = Q =

[
Q1 Q2

� Q33

]
=

 Q11 Q12 Q13

� Q22 Q23

� � Q33





Notice that P33, Q33, P2, Q2, P1, Q1 are square matrix
of the same dimensions, for the problem to be convex.

A congruent multiplication is made on equation (17) with
diag(V J, I, I), V and J defined equation (18).

J =

 Q11 Q12 Q13

QT12 Q22 Q23

I 0 0
0 I 0

 V =

 Z1 0 0 0
−ZT

2 I 0 0
0 0 I 0
0 0 0 I


(18)

Z1 = Q−1
11 , Z2 = Q−1

11 Q12, Z3 = Q22 −QT
12Q

−1
11 Q12.

V J =


I Z2 R1

0 Z3 R2

I 0 0
0 I 0

, V JP =


Z1 0 0
−ZT

2 I 0
P11 P12 P13

PT
12 P22 P23

.

Note that this congruent multiplication on the third term
Ψ2 of equation (17) gives the term LΦ of equation (13). The
result of this congruent multiplication on the first term Ψ1

(and its transpose) is as follows:

L1 + L2 +


0 0
0 0
P12 0
P22 0
0 0
0 0

AH
[

ZT
2 Z3 0 0 0 0

]
. . .

+


0 0 0
I 0 0
P12 P13 0
P22 P23 0
0 0 0
0 0 I


 BfDF BfCF

BF AF
DefDF DefCF



CTG3 R1

0 R2

CTG3 0
0 0

DG3 0
0 0



T

Rewrite both last terms as:

U1



 P13 P12Bf
P23 P22Bf
0 I

[ AF BF
CF DF

] [
RT1 RT2 0
CG3 0 I

]

· · ·+

 P12

P22

0

AH [ ZT
2 ZT

3 0
]

U2

with U1 =


0 0 0
0 0 Bf

I 0 0
0 I 0
0 0 0
0 0 Def

, U2 =


I 0 0
0 I 0
0 0 CT

G3

0 0 DT
G3

0 0 0
0 0 0



T

Apply the following bijective variable change to get L3.

F =



 P13 P12Bf
P23 P22Bf
0 I

[ AF BF
CF DF

] [
RT1 RT2 0
CG3 0 I

]

· · ·+

 P12

P22

0

AH
[

ZT
2 ZT

3 0
]


F has the same size as the original matrices of the state

space representation of the filter
[
AF BF

CF DF

]
. To build

the filter form the solution of the optimization problem, one
has to apply the inverse variable change.

With this congruent multiplication, the condition (13) of
the theorem is obtained. The condition (14) is obtained
using the theorem (2.2). Finally, the conditions V JPJTV T ,
equation (15) ensure the stability of the filter.

Theorem 3.2: Robust H2 Open-Loop Synthesis
For a given γ > 0, if (1) holds ∀∆, a filter exists

so that ‖Twe‖2 < γ, if Z1 = ZT
1 , Z2, Z3 = ZT

3 , P1 =[
P11 P12

PT
12 P22

]
, F, PK = PT

K, Φ =

[
Φ11 Φ12

ΦT
12 Φ22

]
,

W = WT of appropriates dimensions exist so that con-
ditions (19-24) hold.

L1 + LT
1 + L2 + LT

2 + L3 + LT
3 + LΦ < 0 (19)

L1 =


Z1 0 0
−ZT

2 I 0
P11 P12 0
PT

12 P22 0
0 0 0
0 0 I


 AG 0 BG2p

BzCG2 AH BzDG2p

DezCG2 Ce DezDG2p

UL1

UL1 =

 I 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0



L2=


0 0
I 0
0 0
0 0
0 0
0 I


[
AH
Ce

] [
ZT

2 Z3 0 0 0 0
]

L3 =


0 0 0
0 0 Bf
I 0 0
0 I 0
0 0 0
0 0 Def

F


I 0 0
0 I 0
0 0 CTG3

0 0 0
0 0 DT

G3p

0 0 0



T

LΦ = [�]T
[

Φ 0
0 −I

] [
Cφ 0 Cφ 0 Dφ 0
0 0 0 0 0 −I

]



Z1 0 Z1 0
� Z3 −ZT

2 I
� � P11 P12

� � � P22

 L4 + L5

� W

 > 0 (20)

L4 =


Z1 0
−ZT

2 I
P11 P12

PT
12 P22

[ BG2w

BzDG2w

]

L5 =

 0 0 0
0 0 Bf
I 0 0
0 I 0

F

 0
0
I



[�]T
 0 PK 0

PK 0 0
0 0 Φ11

 I 0
AK BK

CK DK

 < 0 (21)

Trace(W) < γ2 (22)

DKDqw = 0 (23)

DezDzw +Def

([
0 0 I

]
F [�]T

)
Dyw = 0 (24)

with the following matrices:

 AG
CΦ

CG2

CG3

 =



AK 0 0
0 AK BKC
0 0 A
0 CK DKCq
CK 0 0
0 0 Cz
0 0 Cy





 BGp BGw
DΦp DΦ

DG2p DG2w

DG3p DG3w

 =



BK 0
BKDqp BKDqw
Bp Bw

DKDqp DKDqw
DK 0
Dzp Dzw
Dyp Dyw


Proof: The proof of this theorem can be made using

the theorem 2.3 as a starting statement and then the proof of
theorem 3.1 can be followed. Make the congruent multipli-
cation as defined in the proof of theorem 3.1, then use the
same bijective variable change to get the conditions of the
theorem.

Both theorems present conditions to test the existence of
a filter completing the plant so that an upper bound on a
given worst-case performance is guaranteed. The conditions
presented are LMI conditions. For a given γ these conditions
define a feasibility problem. This can be tested using an
efficient algorithm. Furthermore, these constraints can be
recast as a minimization problem of a cost function. In this
case, minimizing x = γ2 allows to find the lower upper
bound reachable on the worst-case performance with this
framework.

If the conditions are feasible, the state space representation
of the filter can be reconstructed from the variable change
presented in the proof of theorem 3.1, using Packard com-
pletion lemma [10] to construct the required matrices.

Cases can be derived from this case. First of all, we recover
the case of the robust weighted filtering [15], [14], where the
output system H =

[
W (jω) −W (jω)

]
. In both papers,

a variable change is made as F̂ (jω) = W (jω)F (jω). The
order of the filter synthesized is in this case nF = 2nK +
nG + 2nW , where nK is the order of the IQC basis, nG
the order of the system considered, nW the order of the
weightings. The solution presented here allows to have a
filter of order nF = 2nK + nG + nW , which is cheaper in
terms of real-time implementation.

In the case of the robust feed-forward problem, the un-
certainty affects the output system H (see figure 1). As a
dual problem, this can be solved using the solution presented
here. The steps to compute this solution can be found in
[15], [7]. The solution proposed for the robust feed-forward
problem presents the same advantages as the one for the
robust filtering problem. It will be possible to have a reduced-
order feed-forward controller and to take into account any
transfer function for the input system.

Note that the general case for the robust open-loop prob-
lems can be solved using the solution presented in [12]. In
this case, it is possible to take into account uncertainties on
both the input system G, and the output system H .

IV. CONCLUSION

Solutions for the synthesis of a filter for a class of robust
open-loop problems have been presented. The filter synthe-
sized ensures an upper bound on the worst-case H2 norm
(theorem 3.2), or on the worst case L2-gain (theorem 3.1) of
the complete open-loop. The uncertainty is modeled using a

LFT representation and taken into account using Dynamic
IQCs which allows to consider structured uncertainties of
many classes. The synthesis is made through convex op-
timization problems involving Linear Matrix Inequalities
which can be solved efficiently. The results presented here
give improved conditions to tackle the robust weighted filter-
ing problem. In addition, it allows to take into account many
cases of open-loop plant design. This approach paves the
way to a generalized approach of robust open-loop synthesis
problems.
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