
ar
X

iv
:0

80
8.

41
00

v1
  [

m
at

h.
R

A
] 

 2
9 

A
ug

 2
00

8

CODES AND NONCOMMUTATIVE STOCHASTIC

MATRICES

SYLVAIN LAVALLÉE, CHRISTOPHE REUTENAUER, VLADIMIR RETAKH,
AND DOMINIQUE PERRIN

Abstract. Given a matrix over a skew field fixing the column t(1, . . . , 1),
we give formulas for a row vector fixed by this matrix. The same tech-
niques are applied to give noncommutative extensions of probabilistic
properties of codes.

1. Introduction

By a noncommutative stochastic matrix we mean a square matrix S =
(aij)1≤i, j≤n over a skew field, satisfying

∑n
j=1 aij = 1 for any i; in other

words, the row-sums are all equal to 1. Equivalently the vector t (1, . . . , 1) is
fixed by S. We are answering here the following problem: find a row vector
fixed by S.

In the commutative case, formulas are known. They occur in probability
theory, where this problem is relevant. Indeed, it amounts to finding the
stationary distribution of the finite Markov chain whose transition matrix
is S. See Appendix 1 for details.

But this problem may also be considered as a problem of noncommmuta-
tive linear algebra: given a square matrix over some skew field, which has a
given column as eigenvector for some eigenvalue, find a corresponding row
vector. It is easy to reduce this general problem to the previous one, where
the eigenvector is t(1, . . . , 1) and the eigenvalue is 1.

In order to give formulas, which necessarily involve inverses of elements of
the skew field and thus may be undefined, we take a generic noncommutative
stochastic matrix : this is the matrix (aij) of noncommuting variables aij

subject only to the condition that this matrix fixes t(1, . . . , 1).

We seek now a row vector fixed by the matrix. We work in the free
field generated by these variables (in the sense of Paul Cohn), which we call
the stochastic free field. The formula giving the row eigenvector uses the
theory of variable-length codes. Considering the complete digraph on the
set {1, . . . , n}, let Mi be the set of paths from i to i. This is a free monoid
and its basis Ci is a prefix code. Let Pi be the set of proper prefixes of
Ci, that is, the paths starting from i and not passing through i again. We

1

http://arXiv.org/abs/0808.4100v1
Philippe
Rectangle



2 S. LAVALLÉE, C. REUTENAUER, V. RETAKH, AND D. PERRIN

identify Pi with the noncommutative power series which is equal to the sum
of all the words in Pi and we still denote this series by Pi. Then we show
that the elements P−1

i can be evaluated in the stochastic free field and that

the vector (P−1
1 , . . . , P−1

n ) is fixed by our matrix; moreover, the P−1
i sum

to 1, hence they form a kind of noncommutative limiting probability. See
Theorem 1 and Example 1 to have a flavor of the result.

The second part of the article deals with general variable-length codes,
not necessarily prefix. One motivation is the fact that the proofs are quite
similar. The other motivation is that we obtain noncommutative general-
ization of well-known probabilistic results in the theory of codes, mostly due
to Schützenberger (see [4] and [5]), who generalized the recurrent events of
Feller.

In Appendix 1, we review the commutative case. In Appendix 2, we show
how the theory of quasideterminants may be used to obtain our results on
noncommutative stochastic matrices.

Acknowledgments
Thanks are due to Persi Diaconis and George Bergman for useful references;
the article was improved by many suggestions of the latter.

2. Basics

2.1. Langages and codes. A language is a subset of a free monoid A∗;
the latter is generated by the alphabet A. A language is rational if it is
obtained from finite languages by the operations (called rational) union,
product (concatenation) and star. The product of two languages L1L2 is
{w1w2 | w1 ∈ L1, w2 ∈ L2}, and the star of L is L∗ = {w1 . . . wn | wi ∈
L, n ≥ 0} =

⋃

n≥0 Ln.

It is well-known that rational languages may be obtained by using only
unambiguous rational operations; these are: disjoint union, unambiguous
product (meaning that if w ∈ L1L2, then w has a unique factorization
w = w1w2, wi ∈ Li) and the star L∗ restricted to languages which are codes,
or equivalently bases of free submonoids of A∗.

2.2. Series. By a series we mean an element of the Q-algebra of noncommu-
tative series Q〈〈A〉〉, where A is a set of noncommuting variables. A rational
series is an element of the least subalgebra of Q〈〈A〉〉, which contains the
Q-algebra of noncommutative polynomials Q〈A〉, and which is closed under
the operation

S 7→ S∗ =

∞
∑

n=0

Sn = (1 − S)−1,

which is defined if S has zero constant term. We denote by Q〈〈A〉〉rat the
Q-algebra of rational series. Each such series has a ∗- rational expression:
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this is a well-formed expression involving scalars, letters (elements of A),
products and star operations, the latter restricted to series with 0 constant
term. We say that a ∗-rational expression is positive if the scalars involved
are all ≥ 0.

Let L be a rational language. Since L may be obtained by unambigu-
ous rational expressions, it follows that its characteristic series

∑

w∈L w ∈
Q〈〈A〉〉 is rational. We shall identify a language and its characteristic series.
For all this, see [6] or [7].

2.3. Free fields. The ring Q〈〈A〉〉rat contains Q〈A〉; it is not a skew field.
There exist skew fields containing Q〈A〉. Among them is the so called free
field. We denote it F . It is generated by Q〈A〉 and has the following universal
property (which characterizes it): for each Q-algebra homomorphism µ :
Q〈A〉 → D, where D is a skew field, there exists a Q-subalgebra Oµ of F
and a homomorphism µ : Oµ → D, extending µ and such that

f ∈ Oµ, µf 6= 0 ⇒ f−1 ∈ Oµ.

The free field F is also characterized by the following property: say that a
square matrix M ∈ Q〈A〉n×n is full if there exists no factorization M = PQ,
P ∈ Q〈A〉n×r, Q ∈ Q〈A〉r×n, with r < n. Then the square matrices over
Q〈A〉 which are invertible in F are exactly the full matrices. See [9].

By a rational expression over Q〈A〉 we mean a well-formed expression
involving elements of Q〈A〉 and the operations sum, product and inversion.
Such an expression can be naturally evaluated in the free field F , provided
one never inverts 0. For example, (a + b−1)−1 can be evaluated in the free
field whereas (ab − (b−1a−1)−1)−1 cannot. If rational expression can be
evaluated in the free field, we say it is evaluable.

We shall consider also rational expressions over any skew field D, and say
that such an expression is evaluable if it can be evaluated without inversion
of 0. If the elements of D appearing in the rational expression are actually
in a subring R of D, we say that the expression is over R.

There is a canonical embedding of Q〈〈A〉〉rat into F , which can be seen as
follows: let S be any rational series; it has a ∗-rational expression; replace
in it the operation T ∗ by (1 − T )−1; then one obtains a rational expression
in F , which is evaluable and represents the image of S under the embedding
Q〈〈A〉〉rat →֒ F . Thus, each rational language and each rational series is an
element of the free field. See [12]. In this way, each ∗-rational expression is
equivalent to a evaluable rational expression over Q〈A〉.

In the sequel, we use the notation x∗ for (1 − x)−1, when x is in a ring
and 1 − x is invertible.
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2.4. The derivation λ of the free field. There is a unique derivation λ
of Q〈A〉 such that λ(a) = a, for any a ∈ A. It maps each word w ∈ A∗ onto
|w|w, where |w| is the length of w. It has a unique extension to the free
field F , which we still denote λ. Indeed, this follows from Th.7.5.17, p.451
in [11]; see also [10].

2.5. D[t] and other rings. Let D be a skew field and t be a central variable.
It is well-known that the ring of polynomials in t over D is a left and right
Euclidean ring, and thus an Ore ring. It has a field of fractions D(t), each
element of which is of the form PQ−1 and R−1S for suitable P,Q,R, S in
D[t]. The ring of series in t over D is denoted D[[t]]. It is contained in
the skew field of Laurent series D((t)). The latter also contains canonically
D(t), and we may identify D(t) with a subset of D((t)). A series S ∈ D[[t]]
is called rational if S is in D(t). The ring of rational series is denoted by
D[[t]]rat. Thus D[[t]]rat = D[[t]] ∩ D(t).

Each polynomial P ∈ D[t] may uniquely be written P = (1 − t)nQ, with
n ∈ N, Q ∈ D[t] and Q(1) 6= 0. Thus if S ∈ D(t), one has S = (1−t)nQR−1,
with n ∈ Z, Q, R ∈ D[t] and Q(1), R(1) 6= 0. We say that S is evaluable at
t = 1 if n ≥ 0, and in this case, its value at t = 1 is Q(1)R(1)−1 if n = 0,
and 0 if n ≥ 1. This value is a well-defined element of D, which does not
depend on the fraction chosen to represent S.

We extend this to matrices: a matrix over D(t) is said to be evaluable at
t = 1 if all his entries are, and then its value at t = 1 is defined correspond-
ingly.

Consider a rational expression E(t) over the skew field D(t). We obtain a
rational expression over the skew field D by putting t = 1 in E(t). Suppose
that the rational expression E(1) obtained in this way is evaluable in D and
evaluates to α ∈ D; then the rational expression E(t) is evaluable in D(t),
evaluates to an element P (t)Q(t)−1 in D(t), with P, Q ∈ D[t], and PQ−1

is evaluable at t = 1 with value α ∈ D. The standard details are left to the
reader.

2.6. Central eigenvalues of matrices over a skew field. Let M be a
square matrix over D. Then 1 − Mt is invertible over D[[t]], hence over
D((t)). Since D(t) is a skew field, contained in D((t)), and containing the
coefficients of 1 − Mt, the coefficients of its inverse (tM)∗ = (1 − tM)−1

lie also in D(t) and finally in D[[t]]rat. Recall that a square matrix over a
skew field is left singular (that is, has a nontrivial kernel when acting at the
left on column vectors) is and only if it is right singular. Thus M has an
eigenvector for the eigenvalue 1 at the left if and only if it holds on the right.

By the multiplicity of the eigenvalue 1 of M we mean the maximum of the
nullity (that is, dimension of kernel) of the positive powers of 1−M . Observe
that this coincides with the usual multiplicity (of 1 in the characteristic
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polynomial) if D is commutative. Note that the same properties hold for
any nonzero central eigenvalue λ by considering 1 − λ−1M ; we treat only
the case λ = 1 for the future application.

Lemma 1. Let M be a square matrix over the skew-field D and t be a central
variable.

(i) M has the eigenvalue 1 if and only if (1− tM)−1 is not evaluable
at t = 1.

(ii) If M has the eigenvalue 1 with multiplicity 1, then (1 − t)(1 −
tM)−1 is evaluable at t = 1, is nonnull and its rows span the eigenspace
for the eigenvalue 1.

Proof (i) Suppose that M has the eigenvalue 1. Then M is conjugate over D

to a matrix of the form N =

[

1 0
P Q

]

, where Q is square. Then, computing

in D[[t]], we have (1−tN)−1 =

[

(1 − t)−1 0
× ×

]

. This is clearly not evaluable

for t = 1, and therefore (1 − tM)−1 is also not evaluable for t = 1.
Conversely, suppose (1− tM)−1 is not evaluable for t = 1. Then, we have

(1− tM)−1 = ((1− t)nij Pij/Qij)i, j, with Pij , Qij ∈ D[t], Pij(1), Qij(1) 6= 0,
nij ∈ Z and some nij < 0. Let −n be the minimum of the nij. Then n > 0
and (1 − t)n (1 − tM)−1 is evaluable at t = 1 and its value P at t = 1 is
nonnull. Now, we have

(1 − tM)−1 = 1 + (1 − tM)−1tM,

thus
(1 − t)n(1 − tM)−1 = (1 − t)n + (1 − t)n(1 − tM)−1tM.

Since n > 0, we obtain for t = 1:

P = PM,

which shows that M has the eigenvalue 1, since each row of P is fixed by
M and P 6= 0.

(ii) We write as before N =

[

1 0
P Q

]

, where N is conjugate to M over D.

Then

(1 − tN)−1 = (tN)∗ =

[

t∗ 0
(tQ)∗tP t∗ (tQ)∗

]

.

We claim that (tQ)∗ is evaluable at t = 1. Indeed, otherwise, by (i), Q has

the eigenvalue 1 and is conjugate to a matrix N =

[

1 0
R S

]

, S square. Then

M is conjugate to N =





1 0 0
× 1 0
× R S



 and the square of 1 − M has nullity

≥ 2, contradiction.
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Now, we see that

(1 − t)(tN)∗ =

[

1 0
(tQ)∗tP (1 − t)(tQ)∗

]

is evaluable at t = 1 and that its value at t = 1 is nonnull. Thus, by the
first part of the proof, its rows span the eigenspace for the eigenvalue 1.

�

2.7. Rational series in one variable. Let R be a ring and t a central
variable. In the ring of formal power series R[[t]], we consider the subring
R[[t]]rat, which is the smallest subring containing R[t] and closed under
inversion. If R is a skew field, then R[[t]]rat canonically embeds into the
skew field R(t). If R → S is a ring homomorphism, then it induces a ring
homomorphism R[[t]]rat → S[[t]]rat fixing t.

3. Generic noncommutative stochastic matrices

3.1. Generic matrices. Let M = (aij)1≤i, j≤n be a generic noncommuta-
tive matrix ; in other words, the aij are noncommuting variables. We denote
by F the corresponding free field. Associated to M is the matrix S: it is
the same matrix, but this time we assume that the aij are noncommuting
variables subject to the stochastic identities

(1) ∀i = 1, . . . , n,
n

∑

j=1

aij = 1.

In other words, the row sums of S are equal to 1; equivalently, S has
t(1, . . . , 1) as column eigenvector with the eigenvalue 1. We call S a generic
noncommutative stochastic matrix. The algebra over Q generated by its co-
efficients (hence subject to the relations (1)) is a free associative algebra,
since it is isomorphic with Q〈aij , i 6= j〉. Indeed, we may eliminate aii using
(1). We denote this algebra by Q〈aij/(1)〉, referring to the relations (1).
Hence there is a corresponding free field, which we call the stochastic free
field, denoted S.

3.2. Existence of elements and identities in the stochastic free field.

We want to verify that certain rational expressions make sense in the sto-
chastic free field S. For example, anticipating on the example to come, we
want to show that (1+ bd∗)−1 = (1+ b(1− d)−1)−1 makes sense in S (hence
under the hypothesis a + b = c + d = 1). It is necessary to take care of
this existence problem, since otherwise, one could invert 0 (and our proved
identities will be meaningless). The idea is to prove the existence of certain
specializations of the variables, compatible with the identities in S (identi-
ties (1) above), such that the specialized rational expression makes sense.
In our example, we could take b = 0: then bd∗ specializes to 0 and 1+ bd∗ to
1, hence (1 + bd∗)−1 is evaluable under the specialization. A fortiori, since
S is a free field, (1 + bd∗)−1 is evaluable in S.
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By a Bernouilli morphism we mean a Q-algebra morphism π of the free
associative algebra Q〈aij〉 into R such that

(i) for any i = 1, . . . , n,
∑n

j=1 π(aij) = 1;

(ii) π(aij) > 0, for any i, j = 1, . . . , n.

Clearly, such a morphism induces naturally a Q-algebra morphism form
Q〈aij/(1)〉 into R.

Lemma 2. There exists a subring Sπ of the stochastic free field S such that

(i) Sπ contains Q〈aij/(1)〉;
(ii) there is an extension of π to Sπ (we still denote it by π);
(iii) if f ∈ Sπ and π(f) 6= 0, then f−1 ∈ Sπ.

Proof This is a consequence of the fact that S is a free field, corresponding
to the free associative algebra Q〈aij /(1)〉, hence is the universal field of
fractions of Q〈aij /(1)〉. This implies that there exists a specialization S → R

extending π : Q〈aij/(1)〉 → R, and the lemma follows from [9] 7.2 and Cor.
7.5.11.

�

Corollary 1. Suppose that π is a Bernouilli morphism and that S =
∑

w∈L w,
where L is a rational subset of the free monoid {aij}

∗ such that
∑

w∈L π(w) <
∞. Then any positive ∗-rational expression for S is evaluable in the stochas-
tic free field S.

Proof This is proved inductively on the size of the rational expression for
S. Note that for each subexpression and corresponding series S′, π(S′)
converges and is > 0. Hence, we apply inductively the lemma and see that
for each subexpression, the corresponding element is in Sπ.

�

Lemma 3. Let S be a ∗-rational series in Q〈〈aij〉〉 having a ∗-rational ex-
pression which is evaluable in S. Then it is evaluable in the free field F . If
moreover S = 0 in F , then S = 0 in S.

Proof There exists a specialization F → S, since F is the universal field
of fractions of Q〈aij〉, see [9] chapter 7. Hence there is a subring H of
F and a surjective Q-algebra morphism σ : H → S such that: ∀ f ∈ H,
σf 6= 0 ⇒ f−1 ∈ H, and such that H contains Q〈aij〉.

We may therefore prove, by induction on the size of the rational expres-
sion, that S exists in H and that σ(S) is the element of S defined by the
rational expression. It follows that, if S = 0 in F , then S = 0 in S.

�
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3.3. Paths. Each path in the complete directed graph with set of vertices
{1, . . . , n} defines naturally an element of the free associative algebra Q〈aij〉,
hence of the free field F . This is true also for each rational series in Q〈〈aij〉〉.

We define now several such series. First, consider the set of nonempty
paths i → i which do not pass through i; we denote by Ci the sum in Q〈〈aij〉〉
of all the corresponding words. It is classically a rational series, and thus
defines an element of the free field F . Now, let Pi be the sum of the paths
(that is, the corresponding words) from i to any vertex j, which do not pass
again through i; this set of words is the set of proper prefixes of the words
appearing in Ci. Likewise, Pi defines an element of F .

Example 1. M =

[

a b
c d

]

. The graph is

1 2a d

b

cThen

C1 = a + bd∗c, C2 = d + ca∗b,

P1 = 1 + bd∗, P2 = 1 + ca∗.

3.4. Results.

Theorem 1. The elements Pi can be evaluated in the stochastic free field
S and (P−1

1 , . . . , P−1
n ) is a left eigenvector of the noncommutative generic

stochastic matrix S. Moreover, in S,

(i)

n
∑

i=1

P−1
i = 1;

(ii) Ci can be evaluated in S and is equal to 1;
(iii) λ(Ci) can be evaluated in S and is equal to Pi.

Here λ is the unique derivation of the free field F which extends the
identity on the set {aij}.

Exemple 1. (continued) We verify that (P−1
1 , P−1

2 )

[

a b
c d

]

= (P−1
1 , P−1

2 ).

It is enough to show that P−1
1 a + P−1

2 c = P−1
1 . This is equivalent to

P−1
2 c = P−1

1 (1 − a)

⇔ c−1 P2 = a∗P1

⇔ c−1 + a∗ = a∗ + a∗bd∗.

Now, we take the stochastic identities:

a + b = 1 ⇒ 1 − a = b ⇒ a∗ = b−1 ⇒ a∗b = 1,

c + d = 1 ⇒ d∗ = c−1.

Thus, we may conclude.
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(i) Similarly:

P−1
1 + P−1

2 = 1

⇔ P2 + P1 = P1P2

⇔ 2 + bd∗ + ca∗ = 1 + bd∗ + ca∗ + bd∗ca∗

and we conclude since d∗c = ba∗ = 1.
(ii) In S, C1 = a + bd∗c = a + b = 1.
(iii) In F , λ(C1) = a + bd∗c + bλ(d∗)c + bd∗c, since λ is a derivation such

that λ(b) = b and λ(c) = c. Now

λ(d∗) = λ((1 − d))−1 = −(1 − d)−1λ(1 − d)(1 − d)−1 = d∗dd∗.

Thus, this time in S,

λ(C1) = a + 2bd∗c + bd∗dd∗c

= a + 2b + bd∗d

= a + b + b(1 + d∗d)

= 1 + bd∗ = P1.

3.5. Proof of the theorem.

Lemma 4. Consider the matrix (tS)∗ in S(t). Then (1 − t)(tS)∗ is can be
evaluated for t = 1 and is nonzero.

Proof By Lemma 1, it is enough to show that S has the eigenvalue 1 with
multiplicity 1. Now, by a change of basis over Q (replace the canonical basis
of column vectors e1, . . . , en by e1, . . . , en−1, e1 + . . . + en), we bring S to
the form

T =

[

N 0
λ 1

]

,

where nij = aij − anj for 1 ≤ i, j ≤ n− 1 and λj = anj for j = 1, . . . , n− 1.
We claim that N − 1 is inversible in S. It is enough to show that it is full
in Q〈aij /(1)〉. Suppose that N − 1 is not full: then N − 1 = PQ, with
P, Q over Q〈aij /(1)〉 of size n × (n − 1) and (n − 1) × n. By replacing anj

by 0 and aii by aii + 1, we find that the matrix (aij)1≤i, j≤n−1 is nonfull
over Q〈aij , 1 ≤ i, j ≤ n − 1〉, which is absurd, since it is a generic matrix.
Thus N − 1 is inversible, and no power of it has a kernel. Consequently, the
positive powers of T − 1 have all rank n− 1. Therefore the multiplicity of 1
as eigenvalue of T , hence of S, is 1.

�

Proof of Theorem 1
Let us identify paths in the complete directed graph on {1, . . . , n}, and

corresponding words in the free monoid {aij}
∗. We identify also an infinite

sum of paths with the corresponding series in Q〈〈aij〉〉. Let Pij denote the
set of paths from i to j that do no pass through i again. We therefore
have Pi =

∑

j Pij . Denote by D(u1, . . . , un) the diagonal matrix whose
diagonal elements are u1, . . . , un. Observe that each path from i to j may
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be decomposed as the concatenation of a path from i to i (thus, an element
of C∗

i ) and a path from i to j that does not pass again through i (thus,
an element of Pij). Since (M∗)ij is the sum of all paths from i to j, we
obtain the identity in Q〈〈aij〉〉 : (M∗)ij = C∗

i Pij . Thus we have the matrix
identity: M∗ = D(C∗

1 , . . . , C∗
n)(Pij). Now Pii = 1 and Pij has no constant

term. Hence (Pij) is invertible over Q〈〈aij〉〉.

Inverting, we obtain D(C1 − 1, . . . , Cn − 1) = (Pij)(M − 1), since M∗ =
(1 − M)−1 and similarly C∗

i = (1 − Ci)
−1. If we multiply by the column

vector γ = t(1, . . . , 1), we obtain t(C1 − 1, . . . , Cn − 1) = (Pij) (M − 1) γ.

This equality holds in Q〈〈aij〉〉, and actually, in its subalgebra of rational
series, since Ci, Pij are rational series. Hence it holds in the free field F .

We also obtain, applying the derivation λ of F :
t(λ(C1), . . . , λ(Cn)) = (λ(Pij)) (M − 1) γ + (Pij)M γ.

Now, we claim that Ci, Pij and λ(Ci) can be evaluated in the stochastic free
field S. Thus, since Mγ = γ in S, we obtain that in S :

t(C1 − 1, . . . , Cn − 1) = 0,

and
t(λ(C1), . . . , λ(Cn)) = (Pij) γ = t(P1, . . . , Pn),

which proves parts (ii) and (iii) of the theorem.

In order to prove the claim, we take a Bernouilli morphism π. Let i be
some element of {1, . . . , n} and consider the set E of paths not passing
through i. Then π(E) < ∞ since the matrix N , which is obtained from M
by removing row and column i, satisfies: π(N) has row sums < 1. It follows
that π(Ci), π(Pij) are finite. For λ(Ci), it is easy to see inductively on the
size of a rational expression of Ci that, since Ci can be evaluated in S, so is
λ(Ci); one has simply to use the identity λ(H∗) = H∗ λ(H)H∗. Note also
that π(Pi) > 0, hence Pi is nonzero in S, and P−1

i is an element in S, by
Corollary 1.

We now prove (i). Let Qi denote the set of paths from 1 to some vertex,
that do not pass by i; in particular, Q1 = 0. Then, for any i, j, we have

(M∗)1i Pi + Qi = (M∗)1j Pj + Qj,

since both sides represent all the paths departing from 1. Let t be a cen-
tral variable. Replacing each path w by t|w| w and writing correspondingly
P1(t), . . . , Pn(t), we obtain

(tM)∗1i Pi(t) + Qi(t) = (tM)∗1j Pj(t) + Qj(t).

This holds in Q〈A〉[[t]] and actually in its subalgebra of rational elements
Q〈A〉[[t]]rat. Now, we have canonical homomorphisms (see 2.5 and 2.7)

Q〈A〉[[t]]rat → Q〈A/(1)〉[[t]]rat → S[[t]]rat → S(t).
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The composition maps the matrix M onto S. Hence, we have in S(t)

(tS)∗1i Pi(t) + Qi(t) = (tS)∗1j Pj(t) + Qj(t),

where we keep the notation Pi(t) ∈ S(t) for the image under the composition.
Observe that Pi, by Cor. 1, has a rational expression which can be evaluated
in S. Hence Pi(t) can be evaluated for t = 1 and equal to Pi. Similarly,
Qi(t) can be evaluated for t = 1 and evaluates to Qi.

Multiply the last equality by 1 − t. By Lemma 4, (1 − t) (tS)∗1i can be
evaluated for t = 1 and is equal to αi say. Thus, we obtain

αi Pi = αj Pj .

Now (tS)∗ = 1 + (tS)∗ tS, so that, putting t = 1, we obtain that each row
of (1 − t)(tS)∗ |t=1 is fixed by S. In particular, so is (α1, . . . , αn). Since
by Lemma 4, (1 − t)(tS)∗ |t=1 is nonzero, some row of it is nonzero, and by
symmetry, each row is nonzero. Hence, since we already know that each Pi

is nonzero in S, we see that each αi is 6= 0. Thus, since P−1
i α−1

i = P−1
1 α−1

1 ,

(P−1
1 , . . . , P−1

n ) = P−1
1 α−1

1 (α1, . . . , αn),

which shows that (P−1
1 , . . . , P−1

n ) is fixed by S.

Now
∑n

i=1 (M∗)1i = M∗
11 P1, since both sides represent the paths de-

parting from 1. Thus we deduce that
∑n

i=1 αi = α1 P1 in S, by the same
technique as above. Thus

n
∑

i=1

P−1
i =

n
∑

i=1

P−1
1 α−1

1 αi = 1.

�

4. Unambiguous automata

4.1. Unambiguous automata. An unambiguous automata is equivalent
to a multiplicative homomorphism µ from the free monoid A∗ into Qn×n

such that each matrix µw, w ∈ A∗, has entries in {0, 1}. This may be
expressed by associating to µ the directed graph with edges labelled in A

with vertices 1, . . . , n, and edges i
a

// j if and only if (µa)ij = 1. Then

the non-ambiguity means that for any vertices i, j and any word w, there is
at most one path from i to j labelled w (the label of a path is the product
of the label of the edges). The matrix of the automaton is by definition
M =

∑

a∈A aµa.

We say that the unambiguous automaton is complete if the zero matrix
does not belong to the monoid µA∗. Equivalently, for each word w there
is some path labelled w. We say that the automaton is transitive is the
underlying graph is strongly connected. This means that for any vertices
i, j, there is some path i → j; equivalently, (µw)ij 6= 0 for some word w.
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The monoid µA∗ is finite. Hence it has a unique minimal ideal I. There
is a rank function on µA∗, and the elements of minimum rank are precisely
the elements of I. Since µA∗ ⊆ {0, 1}n×n, the rows of an element in µA∗

are ordered by inclusion (by identifying a subset of {1, 2, . . . , n} and its
characteristic row vector). It is shown that the nonzero rows of elements
of the minimal ideal are precisely the maximal rows of elements of µA∗.
Similarly for columns. The ideal I is the disjoint union of the minimal
right (resp. left) ideals of µA∗, and the intersection of a minimal left and a
minimal right ideal is a group. For this, see [4] Chapter V I, and [5] Chapter
V I, especially Exercice 3.4 and also [3].

We shall use the following result

Proposition 1. Let c be a maximal column and R be the sum of the distinct
rows of some element in the minimal ideal. Then Rc = 1.

Proof There exist x, y in I such that c is a column of x and R is the sum
of the distinct rows of y. The element xy is in I and belongs therefore to a
group with neutral element e, say. Then e has a column-row decomposition
e = st, where s (resp. t) is a n×r (resp. r×n) matrix with entries in {0, 1},
with r the minimal rank of µA∗, where ts = Ir (the identity matrix), and
where the set of nonzero rows of e is the set of rows of t, which has distinct
rows, and similarly for the columns of s (see [4] Prop. IV.3.3 or [5], Prop.
VI.2.3).

Now, xM is a minimal right ideal of µA∗, containing e, hence xM = eM
and therefore x = em = stm. Hence c is a sum of columns of s, and since
c is a maximal column, c is a column of s. Similarly, y = nst and each
nonzero row of y is a row of t. We have also e = n′y, hence each nonzero
row of t, being a row of e, is a row of y. Thus R is the sum of the rows of t:
R = λt, with λ = (1, . . . , 1). Finally Rc = λtc and since ts = Ir and c is a
column of s, tc is a column of Ir and λtc = 1.

�

Example 2.

The unambiguous automaton is
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1 2

3

c

a

a, b, c

b

b, c

a, b, c

The associated representation µ is defined by

µa =





0 1 0
1 0 1
0 0 0



 , µb =





0 0 1
1 0 1
1 0 0



 , µc =





1 0 1
1 0 1
0 0 0



 .

The matrix of the automaton is

M =





c a b + c
a + b + c 0 a + b + c

b 0 0





Idempotents in the minimal ideal are for example µc and µba =





0 0 0
0 1 0
0 1 0



.

The maximal rows are (1, 0, 1) and (0, 1, 0) and the maximal columns are
t(1, 1, 0) and t(0, 1, 1).

4.2. Codes. Recall that a code is the basis of some free submonoid of the
free monoid. Given an unambiguous automaton with associated represen-
tation µ, and some vertex i, the language {w ∈ A∗ | (µw)ii = 1} is a free
submonoid of A∗; we denote by Ci its unique basis, which is therefore a code.
This code is moreover rational. Explicitly, Ci is the set of labels of paths
i → i which do not contain i as internal vertex. Note that Ci is a rational
code and that each rational code is obtained in this way. We shall use also
the set Pi of labels of paths starting at i and not passing again through i.
See [4].
Example 2. (continued) Write A = a + b + c, then

C1 = c + aA(1 + Ab) + (b + c)b,

C2 = A(c + b2 + cb)∗a + Ab(c + b2 + cb)∗a,

C3 = b(c + aA)∗(b + c + aA),

P1 = 1 + a + aA + b + c,

P2 = 1 + A(c + b2 + cb)∗(1 + b + c) + A(1 + b(c + b2 + cb)∗(b + c)) + Ab(c + b2 + cb)∗,

P3 = 1 + b(c + aA)∗(1 + a).
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We shall use the following property of rational maximal codes: let C be
such a code; then there exists rational languages P, S, F , whose elements
are factors of words of C, such that in Q〈〈A〉〉

A∗ = SC∗P + F.

Moreover 1 6∈ F , 1 ∈ S, 1 ∈ P . This property is proved in [5] Lemma XII.4.3
for finite codes. The proof is extended straightforward to rational codes.

4.3. Bernouilli morphisms. A Bernouilli morphism is a multiplicative
morphism π : A∗ → R+ such that π |A is a probability on A such that
π(a) > 0 for any a in A.

It is known that if L is a language having the property that it does not
intersect some ideal in A∗, then π(L) =

∑

w∈L π(w) < ∞. This property is
true if L is rational code. See [4] Prop. I.5.6 and Prop. I.5.12.

From this, we deduce that π(L) < ∞ for each language L = Ci, Pi, S, P, F
considered in Section 4.2.

4.4. Probabilistic free field. We know that Q〈A〉 is embedded in the
corresponding free field denoted F . Consider now the Q-algebra Q〈A〉/A −
1, which is the quotient of Q〈A〉 by its two-sided ideal generated by A −
1 =

∑

a∈A a − 1. This Q-algebra is a free associative algebra, since the
relation A = 1 allows to eliminate one variable. We denote it Q〈A/(A− 1)〉
Hence, there is a corresponding free field, denoted P and which we call the
probabilistic free field.

Theorem 2. Let µ : A∗ → Qn×n be the homomorphism corresponding to
a complete and transitive unambiguous automaton. Let M =

∑

a∈A aµa be
its matrix, P the image of M in the probabilistic free field P, Ci the code
generating the fixpoints of vertex i, Pi the sum of the labels of all paths
starting at i and not passing again through i. Then Pi, Ci and P−1

i can be
evaluated in P. Moreover, the following equalities hold in P:

(i) Ci = 1;
(ii) (1 − t)(tP )∗ ∈ P(t) can be evaluated at t = 1 and its diagonal
elements are λ(Ci)

−1, i = 1, . . . , n.
(iii) (P−1

1 , . . . , P−1
n )P = (P−1

1 , . . . , P−1
n );

(iv)

n
∑

i=1

P−1
i = 1;

(v) for any maximal columns ℓ, ℓ′, (P−1
1 , . . . , P−1

n ) ℓ = (P−1
1 , . . . , P−1

n ) ℓ′.

Example 2. (continued)
C1 = 1 holds in P, since one has, even in Q〈A〉 : C1 − 1 = (1 + a)(a + b +

c − 1)(1 + b). Moreover, we have in P

C2 = (c + b2 + cb)∗a + b(c + b2 + cb)∗a = (1 + b)(c + b2 + cb)∗a.
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Now, in Q〈〈b, c〉〉, one has (1 + b)(c + b2 + cb)∗ = (b + c)∗, since {c, b2, cb}
is a complete suffix code with set of suffixes {1, b} (see [4]). Thus C2 =
(b + c)∗a = 1 since a = 1 − b − c. Also,

C3 = b(c + a)∗(b + c + a)

= b(c + a)∗ = 1.

In P, we have S =





c a b + c
1 0 1
b 0 0



. We show that P2 = a−1P1; indeed

P2 = 1 + (c + b2 + cb)∗(1 + b + c) + 1 + b(c + b2 + cb)∗(b + c) + b(c + b2 + cb)∗

= 2 + (1 + b)(c + b2 + cb)∗(1 + b + c)

= 2 + (b + c)∗(1 + b + c)

= 2 + (b + c)∗ + (b + c)∗(b + c)

= 1 + 2(b + c)∗ = 1 + 2a−1 = a−1P1,

since P1 = 2 + a. We deduce that P−1
1 a = P−1

2 . Moreover

P3 = 1 + b(c + a)∗(1 + a) = 2 + a = P1,

since b(c + a)∗ = 1. Thus

P−1
1 (b + c) + P−1

2 = P−1
1 (a + b + c) = P−1

1 = P−1
3 ,

P−1
1 c + P−1

2 + P−1
3 b = P−1

1 (c + a + b) = P−1
1 .

This shows that (P−1
1 , P−1

2 , P−1
3 )S = (P−1

1 , P−1
2 , P−1

3 ). Furthermore, P−1
1 +

P−1
2 + P−1

3 = P−1
1 (1 + a + 1) = 1. Now, the only two maximal columns are

t(1, 1, 0) and t(0, 1, 1). We have (P−1
1 , P−1

2 , P−1
3 )





1
1
0



 = (P−1
1 , P−1

2 , P−1
3 )





0
1
1





since P1 = P3.

4.5. Proof of theorem. We need the following lemma.

Lemma 5. Let P =
∑

a∈A aµa ∈ Pn×n be the image in Pn×n of the matrix
M of some complete and transitive unambiguous automaton, with associated
homomorphism µ : A∗ → Qn×n. Then P has the eigenvalue 1 with associated
eigenspace of dimension 1. Moreover, if t is a central variable, then in P(t),
(1 − t)(tP )∗ can be evaluated for t = 1 and its rows span the eigenspace
above.

Proof Consider the (left) P-subspace E of P1×n spanned by the maximal
rows. It has as subspace the subspace E′ spanned by the differences of such
rows. Let C be the sum of the distincts columns of some element of the
minimal ideal of µA∗. Then rC = 1 if r is a maximal row (dual statement
of Prop. 1). Thus E′ is strictly included in E.
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By Section 4.1, for each maximal row r and each a ∈ A, rµa is a maximal
row, denoted ra. Then

rP =
∑

a∈A

r(µa)a =
∑

a∈A

raa = r +
∑

a∈A

(ra − r)a,

since
∑

a∈A a = 1 in P. Thus r is fixed by P modulo the subspace E′. Hence
P has 1 as eigenvalue.

We show that its multiplicity is 1. Indeed the multiplicity does not de-
crease under specialization. For the latter, we take a positive Bernouilli
morphism π; then π(P ) is an irreducible matrix because the automaton is
transitive; it has nonnegative coefficients. We claim that its eigenvalues are
of module ≤ 1. Thus, we may apply the Perron-Frobenius theorem ([18]
Section 15.3 Th.1) and, since 1 is an eigenvalue of π(P ) by the previous
calculations, it is a root of multiplicity 1 of the characteristic polynomial.
But we know that 1 is an eigenvalue of P , hence it has multiplicity 1. We
conclude by using Lemma 1.

It remains to prove the claim. Since the automaton is unambiguous, the
matrix Mn =

(
∑

a∈A aµa
)n

=
∑

w∈An wµw has the property that each
entry is a subsum of

∑

w∈An w. Hence each entry of π(Mn) = π(Pn) is
bounded by 1. Hence each eigenvalue of π(P ) has module ≤ 1.

�

Proof of Theorem 2
Ci is a rational maximal code. So we may use the result at the end

of Section 4.2: A∗ = SC∗
i P + F , where S, P, F are rational languages

contained in the set of factors of Ci. Then, by Section 4.3., π(S), π(P ) and
π(F ) are < ∞ for any Bernouilli morphism. This implies that S, P, F can
be evaluated in P (cf. the proof of Corollary 1). The same holds for Ci and
Pi. Now the equality in Q〈〈A〉〉 above may be rewritten:

A∗ − F = SC∗
i P

⇒ 1 − (1 − A)F = (1 − A)SC∗
i P

⇒ (1 − (1 − A)F )−1 = P−1(1 − Ci)S
−1A∗

⇒ 1 − Ci = P (1 − (1 − A)F )−1(1 − A)S.

This holds in Q〈〈A〉〉rat and all these rational expressions can be evaluated
in P. Thus, in P, we obtain 1 − Ci = 0.

Let Qi be the set of paths from 1 to any vertex, that do not pass again
through i. Then we have, as in the proof of Th. 1, for any i, j,

(M∗)1i Pi + Qi = (M∗)1j Pj + Qj.

Arguing as in the latter proof, we find that, denoting αi the value of (1 −
t)(tP )∗1i at t = 1 (which exists by Lemma 5), we obtain αiPi = αjPj .
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Note that (tP )∗11 = C1(t)
∗, where C1(t)

∗ denotes the canonical image of
∑

w∈C∗

1

t|w|w ∈ Q〈A〉[[t]]rat under the composition of homomorphisms

Q〈A〉[[t]]rat → Q〈A/(A − 1)〉[[t]]rat → P[[t]]rat → P(t).

Thus α1 is the value at t = 1 of (1 − t)C1(t)
∗. Now taking the previous

notations with i = 1, we have in P(t): (tA)∗ = S(t)C1(t)
∗P (t) + F (t).

Multiplying by (1 − t) and putting t = 1, we obtain, since S, P, F can be
evaluated in P: 1 = Sα1P . Thus α1 = S−1P−1.

Now, we have also C1 − 1 = P (1 − (1 − A)F )−1(A − 1)S. Thus, in F ,
letting P ′ = P (1 − (1 − A)F )−1,

λ(C1) = λ(P ′)(A − 1)S + P ′λ(A)S + P ′(A − 1)λ(S).

We deduce that, in P, λ(C1) = P ′λ(A)S = PS. This shows that α1 =
λ(C1)

−1. This proves (ii) and in particular, α1 6= 0. Thus, since P1 6= 0 in
P, all αi and Pi are 6= 0 in P. Then (iii) and (iv) are proved as in the proof
of Th. 1.

In order to prove (v), we observe that the elements of the minimal ideal
I of µA∗ are those of this monoid which have a minimal number of distinct
nonnull rows (see [5] Exercice VI.3.5 or [3] Proposition 1). This implies that
if r1, . . . , rk are the distinct nonnull rows of some element µw of I, then
for any letter a, r1µa, . . . , rkµa are the distinct nonnull rows of µ(wa). We
deduce that the span of the elements r1 + . . . + rk is invariant under the
matrices µa. Let F denote this subspace, and F ′ the subspace spanned
by the difference of such elements. By Prop.1, we have that F ′ is strictly
included in F . Hence, there is a vector in F fixed by each µa. This implies
that the eigenvector for eigenvalue 1 of the matrix P is in F and is therefore
orthogonal to each difference of maximal columns of µA∗. This proves (v).

�

5. Appendix 1: the commutative case

The following result in an exercice on determinants.

Lemma 6. If the column eigenvector t(1, . . . , 1) is in the right kernel of a
square matrix over a commutative ring, then the row vector (m1, . . . , mn)
is in its left kernel, where mi is the i-th principal minor of the matrix.

From this, one may deduce the so-called Markov Chain tree theorem, by
using, as suggested in [20] page 4, the matrix-tree theorem, see e.g. [21] Th.
5.6.8.

The Markov chain tree theorem gives a formula, using spanning trees
of the complete graph, for the stationary distribution of a finite Markov
chain. Equivalently, this formula gives a row vector fixed by a matrix fixing
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t(1, . . . , 1). This theorem is attributed to Kirchoff by Persi Diaconis, who
gives a probabilistic proof of it (see [8] p. 443 and 444). See also [2], [1].

The Markov chain tree theorem is as follows: let (aij) be a stochastic

matrix (that is, fixing t (1, . . . , 1)). Then the row vector (b1, . . . , bn) is
fixed by this matrix, where bi is the sum of the weights of all spanning trees
of the complete digraph on {1, . . . , n}, rooted at i (the edges of the tree all
pointing toward i). Here the weight of a subgraph is the product of the aij,
for all edges (i, j) in the subgraph.

Using our Theorem 1, one easily deduces that B =
∑n

i=1 bi, the sum of
the weights of all rooted trees, is equal to the derivative of det(1 − (aij)),
with respect to the derivation fixing each aij .

6. Appendix 2: Quasideterminants of stochastic matrices

6.1. Theory of quasideterminants. The theory of quasideterminants was
developed as a tool for linear algebra over noncommutative rings replacing
the theory of determinants over commutative rings. Quasideterminants were
introduced in [14] and developed in [15], [13], [16] and [17]. Let R be an
associative unital ring and let A = (aij), i, j = 1, 2, . . . , n be a matrix over
R. Denote by Aij the submatrix of A obtained from from A by deleting
its i-th row and its j-th column. Set ri = (ai1, ai2, . . . , âij , . . . , ain) and
cj = (a1j , a2j , . . . , âij , . . . , anj). Recall, that for any matrix C we denote by
tC the transposed matrix.

Definition. Suppose that the matrix Aij is invertible. Then the quaside-
terminant |A|ij is defined as

|A|ij = aij − ri(A
ij)−1cj .

Example. If n = 2, then |A|12 = a12 − a11a
−1
21 a22.

Let matrix A be invertible and A−1 = (bpq). If the quasideterminant |A|ij
is invertible then bji = |A|−1

ij . In the commutative case, |A|ij = (−1)i+j det A/det Aij.

It is sometimes convenient to use another notation for quasideterminants
|A|ij by boxing the leading entry, i.e.

|A|ij =

∣

∣

∣

∣

∣

∣

. . . . . . . . .

. . . aij . . .

. . . . . . . . .

∣

∣

∣

∣

∣

∣

.

We remind now the basic properties of quasideterminants (see [14]). An
equality |A|pq = |B|rs means that the first quasideterminant is defined if
and only if the second quasideterminant is defined and that both quaside-
terminants are equal. The properties are:
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(i) Permutations of rows and columns: Let σ, τ be permutations of
{1, 2, . . . , n}. Set B = (aσ(i),τ(j)). Then |A|pq = Bσ(p),τ(q).

(ii) Multiplication of row and columns:

Let the matrix B = (bij) be obtained from matrix A by multiply-
ing the i-th row by λ ∈ R from the left, i.e. bij = λaij and bkj = akj

for all j and k 6= i. Then |B|kj = λ|A|kj if k = i, and |B|kj = |A|kj

if k 6= i and λ is invertible.

Let the matrix C = (cij) be obtained from matrix A by multi-
plying the j-th column by µ ∈ R from the right, i.e. cij = aijµ
and cil = ail for all i and l 6= j. Then |C|il = |A|ilµ if l = j, and
|C|il = A|il if l 6= j and µ is invertible.

(iii) Addition of rows and columns:
Let the matrix B be obtained from A by replacing the k-th row

of A with the sum of k-th and l-th row, i.e. bkj = akj + alj, bij = aij

for i 6= k. Then |A|ij = |B|ij, i = 1, 2, . . . , k̂, . . . , n, j = 1, 2, . . . , n.

Let the matrix C be obtained from A by replacing the k-th column
of A with the sum of k-th and l-th column, i.e. cik = aik + ail,
bij = aij , cij = aij for j 6= k. Then |A|ij = |C|ij, i = 1, 2, . . . , n,

j = 1, 2, . . . , l̂, . . . n.

In [14] a noncommutative analogue of the Cramer’s rule for systems of
left linear equations, i.e. the systems when coefficients are at the left of
the unknowns, was formulated. The analogue for systems of right linear
equations can be formulated as follows.

Let B = (bij) an n × n-matrix over R, ξ = (ξi) be a row-matrix over
R and x = (xi) be a row-matrix of unknowns. Here i, j = 1, 2, . . . , n. For
1 ≤ k ≤ n denote by B(ξ, k) the matrix obtained from B by replacing the
k-th row of B by ξ.

Proposition 2. If xB = ξ then

xk|B|kq = |B(ξ, k)|kq

for any k provided that the both quasideterminants are defined.

Example. For n = 2 one has

x1(b12 − b11b
−1
21 b22) = ξ2 − ξ1b

−1
21 b22

and also

x1(b11 − b12b
−1
22 b21) = ξ1 − ξ1b

−1
22 b21.
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6.2. Results.

Lemma 7. Let A = (aij), i, j = 1, 2, . . . , n be a stochastic matrix over R.
Consider the system of n + 1 equations

(2)

n
∑

i=1

xi aij = xj , j = 1, 2, . . . , n

together the equation
n

∑

i=1

xi = 1.

Then any of the n first equations of the system is a corollary of the other n
equations.

Proof Take any 1 ≤ k ≤ n and add all equations (2) for j 6= k. The right
hand side of the sum can be written as 1− xk and the left hand side can be
written as

∑n
i=1 xi(1 − aik). As a result we have

n
∑

i=1

xi(1 − aik) = 1 − xk

which implies
n

∑

i=1

xiaik = xk.

The lemma is proved.

�

Theorem 3. Let A = (aij), i, j = 1, 2, . . . , n be a stochastic matrix. The
system

n
∑

i=1

xiaij = xj , j = 1, 2, . . . , n,

n
∑

i=1

xi = 1

has a unique solution over the algebra of series in variables aij satisfying
the relations

∑n
j=1 aij = 1. The solutions are given by the formula

x−1
k = 1 +

∑

aki1ai1i2ai2i3 . . . ais−1is

where the sum is taken over all sets of naturals i1, i2, . . . , is where s ≥ 1 and
ip 6= k, p = 1, 2, . . . , s.

Proof Lemma 7 implies that x1, . . . , xn are solutions of the system
n

∑

i=1

xi = 1,
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n
∑

i=1

xi(aij − δij) = 0, j 6= k.

Write the system in the form xB = ξ, where x = (x1, . . . , xn) and
ξ = (1, 0, . . . , 0), and apply Proposition 11. Note that |B(ξ, k)|k1 = 1: in-
deed, the k-th row of B(ξ, k) is ξ and therefore, by the definition of quaside-
terminants, rk = (0, . . . , 0) and |B(ξ, k)|k1 = B(ξ, k)k1 = 1. Therefore,

xk|B|k1 = 1.

Recall that Akk is the submatrix of A obtained from A by omitting its
k-th row and k-th column. Set C = Akk. Let I be the unit matrix of order
n − 1 and a(k) = (ak1, ak2, . . . , âkk, . . . , akn). Note that the first column of
matrix B is γ = t(1, 1, . . . , 1). By the definition of quasideterminants

|B|k1 = 1 − a(k)(C − I)−1γ = 1 +

∞
∑

p=0

Cp = 1 +
∑

aki1ai1i2ai2i3 . . . ais−1is .

This proves the theorem.

�

Remark 1. Note that monomials aki1ai1i2 . . . ais−1is can be interpreted as
paths in the complete graph with vertices 1, 2, . . . , n.

6.3. Stochastic matrices and main quasiminors. Observe that a ma-
trix M is stochastic if and only if t(1, 1, . . . , 1) is in the kernel of M − I.
This justifies the next results.

Lemma 8. Let A = (aij), i, j = 1, 2, . . . , n over an associative unital ring

annihilate the column vector t(1, 1, . . . , 1). For p 6= q one has

|Apq|qp = −|App|qq

if the right hand side is defined.

Proof Without loss of generality one can assume that p = 1 and q = n.
Then

|A1n|n1 =

∣

∣

∣

∣

∣

∣

∣

∣

a21 a22 . . . a2n−1

a31 a32 . . . a3n−1

. . .
an1 an2 . . . ann−1

∣

∣

∣

∣

∣

∣

∣

∣

.

Since A is stochastic by hypothesis, we can rewrite the elements ak1,
k = 2, 3, . . . , n as ak1 = −ak2 − ak3 − · · · − akn. By adding the columns in
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the last quasideterminant to the first one and using property (iii), property
(ii) for the first column and µ = −1 and property (i) we get the expression

−

∣

∣

∣

∣

∣

∣

∣

∣

a2n a22 . . . a2n−1

a3n a32 . . . a3n−1

. . .
ann an2 . . . ann−1

∣

∣

∣

∣

∣

∣

∣

∣

= −

∣

∣

∣

∣

∣

∣

∣

∣

a22 a23 . . . a2n

a32 a33 . . . a3n

. . .
an2 an3 . . . ann

∣

∣

∣

∣

∣

∣

∣

∣

which is −|A11|nn. Our computations also show the existence of |A1n|n1.
The lemma is proved.

�

Theorem 4. Let A = (aij), i, j = 1, 2, . . . , n annihilate the column vector
t(1, 1, . . . , 1). Assume that all quasideterminants |Aii|jj = are defined for
i 6= j. Then xA = 0 where x = (x1, x2, . . . , xn) if and only if

xi|A
jj|ii = xj|A

ii|jj, i 6= j.

Remark 2. In the commutative case |Aii|jj = detAii/det Aij,ij provided
that the denominator is defined. Here Aij,ij is the submatrix of A obtained
from A by removing its rows and columns with the indices i and j. Thus the
theorem implies

ximj = xjmi

where mi’s are the main minors of the matrix and we may choose xi = mi,
i = 1, 2, . . . , n as a solution of the equation xA = 0 obtaining Lemma 6.

Proof of the theorem. We will prove the ”if” part. The ”only if” part can be
proved by reversing the arguments. Without loss of generality, we assume
that i = 1 and j = n. Note that xi’s satisfy the system of linear equations

n−1
∑

p=1

xpapq = −xnanq, q = 1, 2, . . . , n − 1.

The Cramer’s rules give us the equality

x1|A
nn|11 =

∣

∣

∣

∣

∣

∣

∣

∣

−xnan1 −xnan2 . . . −xnann−1

a21 a22 . . . a2n−1

. . .
an−11 an−12 . . . an−1n−1

∣

∣

∣

∣

∣

∣

∣

∣

.

By properties (i) and (ii), the right hand side equals to −xn|A
1n|n1.

The theorem now follows from Lemma 8.

�

By using the results from [15] and [13] we can show that Theorem 4 implies
Theorem 3 provided the corresponding quasideterminants are invertible.
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