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Abstract

The purpose of this paper is to estimate the self-similarity index of the Rosenblatt process by using the
Whittle estimator. Via chaos expansion into multiple stochastic integrals, we establish a non-central limit
theorem satisfied by this estimator. We illustrate our results by numerical simulations.
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1 Introduction

The Rosenblatt process appears as limit of normalized sums of long-range dependent series (see [8], [25]). In
the last years, this stochastic processes has been the object of several research papers (see [22], [27], [28], [29]
among others). Its analysis is motivated by the fact that the Rosenblatt process is self-similar with stationary
increments and moreover its exhibits long-range dependence (or long-memory). In this sense, it shares many
properties with the more known fractional Brownian motion (fBm in the sequel) except the fact that the
Rosenblatt process is not a Gaussian process. Recall that the fBm is the only Gaussian self-similar process
with stationary increments.

The practical aspects of Rosenblatt process are striking: it provides a new class of processes from which to
model long memory, self-similarity, and Hölder-regularity, allowing significant deviation from fBm and other
Gaussian processes. The need of non-Gaussian self-similar processes in practice (for example in hydrology) is
mentioned in the paper [26] based on the study of stochastic modeling for river-flow time series in [15].

The Hurst parameter H characterizes all the important properties of a Rosenblatt process, as seen above.
Therefore, estimating H properly is an important problem in the analysis of this process. The Hurst parameter
estimation from a N -length path of a fBm or more generally of self-similar or long-range dependent processes,
has a long history. Several statistics have been introduced and studied to this end, such as parametric
estimators (maximum likelihood estimator) as well as semi-parametric estimators (spectral, variogram or
wavelets based estimators). Informations on these various approaches can be found in the books of Beran [4]
or Doukhan et al. [10]. But in the particular case of the fBm, the main results concerning this estimation
were certainly obtained by [11] and [7]. Indeed the optimal method for estimating H is obtained from the
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maximization of the Whittle approximation of the log-likelihood introduced by Whittle in [30] (in the sequel,
the Whittle estimator). This estimator shares the same asymptotic behavior than the maximum likelihood
estimator (MLE), notably it is asymptotically efficient, but numerically the Whittle estimator is clearly many
more interesting than the MLE (no need to inverse the covariance matrix). These properties also hold for long
memory stationary Gaussian processes as it was established in [11] and [7] under almost general conditions:
the Whittle estimator is asymptotically normal with a

√
N convergence rate.

In the case of long memory non-Gaussian time series, there exist very few results concerning the limit
behavior of the Whittle estimator. In [13], the case of fourth order moment linear processes have been
considered and it was proved that the Whittle estimator is still asymptotically normal with a

√
N convergence

rate. But in [14], the cases of functionals of long memory Gaussian processes have been studied and the
conclusion is different: in general, the Whittle estimator satisfies a non-central limit theorem with a non
Gaussian limit distribution and a convergence rate smaller than

√
N . This is notably the case when the

functional is the Hermite polynomial H2(x) = x2 − 1.
Estimating the memory parameter of the Rosenblatt process appears to be a challenging problem. This is

due to the fact that this process is not a Gaussian process, the explicit expression of its probability density is
not know and standard techniques cannot be applied in this case. The development of new criteria, based on
the Malliavin calculus and chaos expansion into multiple Wiener-Itô integrals (see the monograph [17]), for the
convergence of sequences of random variables recently led to new results. In [28] and [6] the authors studied
the asymptotic behavior of the quadratic variations of the Rosenblatt process in order to obtain the asymptotic
properties of an estimator for the self-similarity index. An approach based on wavelets has been also proposed
in [3]. A common denominator of all these works is that the estimators constructed are consistent but in
general their limit behavior is not Gaussian. This not very convenient for practical aspects.

We want to put a new brick to the theory of the long-memory parameter estimation for non-Gaussian
stochastic processes. We analyze the limit behavior of the Whittle estimator for the self-similarity index H of
the increments of a Rosenblatt process (where 0.5 < H < 1). We will see that, as in the case of the estimators
based on the quadratic variations (see [28]), the Whittle estimator has a non-Gaussian limit behavior and the
convergence rate is N1−H . This is due to the fact that, if one compares with the fBm case, the chaos expansion
of the estimator involves a new term with a strong dependence structure that cannot be compensated by the
smoothness of the estimator. This result is not totally surprising. Indeed, from [25], the Rosenblatt can be

obtained as the limit of 1
n

∑[nt]
k=1 H2(Xk) when n → ∞, where (Xk) is a long memory Gaussian process and

we know from [14] that the Whittle estimator of (H2(Xk))k also satisfies the same kind of non- central limit
theorem.

Unfortunately, our new result concerning the Whittle estimator keeps open the following question: is it
possible to propose an asymptotically Gaussian estimator of the self-similarity parameter of a Rosenblatt pro-
cess? However, Monte-Carlo experiments attests that the Whittle estimator numerically provides accurate
estimations, clearly better than with other well known estimators and with almost the same quality than the
one obtained for the fBm when H is close to 0.5. Hence, even if it asymptotically satisfies a non-central limit
theorem, the Whittle estimator is really interesting for estimating the H parameter of a Rosenblatt process.

We organized our paper as follows. Section 2 contains some preliminaries on multiple stochastic integrals,
the Rosenblatt process and the Whittle estimator. In Section 3 we analyze the asymptotic behavior of the
Whittle estimator for the self-similarity index. Finally, Section 4 contains a numerical study of the estimator
and main proofs of this paper are established in Section 5.

2 Preliminaries

In this section we introduce the basic concepts used throughout the paper. We will present the the multiple
stochastic integrals, the definition and the immediate properties of the Rosenblatt process and the basic facts
concerning the Whittle estimator.

To begin with we call back some elements about multiple stochastic integrals.

2.1 Multiple stochastic integrals

Let W = (Wt)t∈R be a classical Wiener process on a standard probability space (Ω,F ,P). If f ∈ L2(Rn)
with n ≥ 1 integer, we introduce the multiple Wiener-Itô integral of f with respect to W . The basic reference
is the monograph [18]. Let f ∈ Sn be an elementary function with n variables that can be written as
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f =
∑

i1,...,in
ci1,...,in1Ai1

×...×Ain
, where the coefficients satisfy ci1,...,in = 0 if two indexes ik and il are equal

and the sets Ai ∈ B(R) are pairwise disjoint. For such a step function f we define

In(f) =
∑

i1,...,in

ci1,...,inW (Ai1) . . .W (Ain)

where we put W (A) =
∫
R
1A(s)dWs. It can be seen that the application In constructed above from Sn to

L2(Ω) is an isometry on Sn in the sense

IE [In(f)Im(g)] = n!〈f, g〉L2(Tn) if m = n (1)

and
IE [In(f)Im(g)] = 0 if m 6= n.

Since the set Sn is dense in L2(Rn) for every n ≥ 1 the mapping In can be extended to an isometry from
L2(Rn) to L2(Ω) and the above properties hold true for this extension.
It also holds that In(f) = In

(
f̃
)
, where f̃ denotes the symmetrization of f defined by

f̃(x1, . . . , xn) =
1

n!

∑

σ

f(xσ(1), . . . , xσ(n)),

σ running over all permutations of {1, ..., n}. We will need the general formula for calculating products of
Wiener chaos integrals of any orders m,n for any symmetric integrands f ∈ L2(Rm) and g ∈ L2(Rn), which is

Im(f)In(g) =

m∧n∑

ℓ=0

ℓ!

(
m

ℓ

)(
n

ℓ

)
Im+n−2ℓ(f ⊗ℓ g), (2)

where the contraction f ⊗ℓ g is defined by

(f ⊗ℓ g)(s1, . . . , sm−ℓ, t1, . . . , tn−ℓ)

=

∫

Tm+n−2ℓ

f(s1, . . . , sm−ℓ, u1, . . . , uℓ)g(t1, . . . , tn−ℓ, u1, . . . , uℓ)du1 . . . duℓ (3)

and by extension f ⊗0 g = f ⊗ g. Note that the contraction (f ⊗ℓ g) is an element of L2(Rm+n−2ℓ) but it is
not necessarily symmetric. We will denote its symmetrization by (f⊗̃ℓg).

2.2 The Rosenblatt process

Recall that a fBm B = (Bt)t≥0 with Hurst parameter H ∈ (12 , 1) and parameter C > 0 is a centered Gaussian
process with covariance function

Cov (Bt, Bs) = IE (BtBs) =
C2

2

(
s2H + t2H − |t− s|2H

)
, s, t ∈ [0,∞), (4)

with C = Var (B1). It is the only normalized Gaussian H-self-similar process with stationary increments. The
fBm admits the following moving average representation: for every t ≥ 0 and for every H > 1

2

Bt = CcB(H)

∫

R

(∫ t

0

(u − y)
H− 3

2

+ du

)
dW (y). (5)

where (W (y), y ∈ R) is a standard Brownian motion with time interval R and cB(H) is a strictly positive
constant that ensures that E(Bt)

2 = C2t2H for every t ≥ 0.
The Rosenblatt process is related to the fractional Brownian motion. It shares many properties of the

fBm. For instance, it has the same covariance function (4) as the fBm, it is H-self-similar and it has stationary
increments. It has the same order of the Hölder regularity of its sample paths as the fBm (that is, the
Rosenblatt process, as well as the fBm, are Hölder continuous of order δ with 0 < δ < H). There are also
some differences with respect to the fBm. One of them, is that it is defined only for the self-similarity index
H > 1

2 and another difference, more important, is that it is not Gaussian. It can be expressed as a double
multiple integral with respect to the Wiener process and therefore it is an element of the second Wiener chaos.

3



More exactly, a Rosenblatt process Z = (Zt)t≥0 with self-similarity order H ∈ (12 , 1) and parameter C > 0 is
defined by

Zt = CcZ(H)

∫

R

∫

R

(∫ t

0

(u − y1)
H

2
−1

+ (u− y2)
H

2
−1

+ du

)
dW (y1)dW (y2) (6)

where cZ(H) is a strictly positive constant such that E(Z1)
2 = C2, i.e.

c2Z(H) =
2H(2H − 1)

β2(1 −H, H
2 )

see e.g. [27]. (7)

We will call a (standard) Rosenblatt random variable every random variable that has the same law as Z1 with
parameter C = 1. In the sequel we will use the kernel LH of the Rosenblatt process defined by

LH(y1, y2) =

∫ t

0

(u− y1)
H

2
−1

+ (u− y2)
H

2
−1

+ du for (y1, y2) ∈ R
2. (8)

As the second order properties of a Rosenblatt process are the same than the ones of the corresponding
fBm, the process Y = (Yt)t≥0 of the increments of a Rosenblatt process, defined by

Yt = Zt+1 − Zt for t ≥ 0

with Z0 = 0 by definition, is a long memory stationary process with covariogram

rH,C(t) := Cov (Y0, Yt) =
C2

2

(
|t+ 1|2H + |t− 1|2H − 2|t|2H

)
for t ∈ R, (9)

and a spectral density fH,C defined for λ ∈ [−π, π] by:

fH,C(λ) :=
1

2π

∑

k∈Z

r(k) eikλ =
C2 HΓ(2H) sin(πH)

2π
(1− cosλ)

∑

k∈Z

|λ+ 2kπ|−1−2H , (10)

since
∫
R
(1− cosx)|x|−1−2Hdx = 2π

(
HΓ(2H) sin(πH)

)−1
(see Sinai, 1976, or Fox and Taqqu, 1986).

2.3 The Whittle estimator

Our purpose is to study the asymptotic properties of the Whittle estimator of parameters H and C computed
from a sample (Z1, · · · , ZN) of a Rosenblatt process Z = (Zt)t≥0 . Let us briefly introduce the Whittle
estimator. The first step is to define the periodogram of the process Y of the increments of Z:

ÎN (λ) =
1

2πN

∣∣∣
N−1∑

k=0

Yk e
−ikλ

∣∣∣
2

(11)

Now, let g : R → R be a 2π-periodic function such that g ∈ L
2([−π, π]) and define

ĴN (g) =

∫ π

−π

g(λ)În(λ) dλ, the integrated periodogram of Y

and J(g) =

∫ π

−π

g(λ)fH,C(λ) dλ,

with fH,C denotes the spectral density of Y defined in (10). From (9) and (11), we also have

ÎN (λ) =
1

2π

∑

|k|<N

r̂N (k)e−ikλ with r̂N (k) =
1

N

N−|k|∑

j=1

YjYj+|k|, (12)

which is a biased estimate of rH,C(k) (see the next section). Thus, the periodogram ÎN (λ) could be a natural
estimator of the spectral density; unfortunately it is not a consistent estimator. However, once integrated with
respect to some L

2 function, its behavior becomes quite smoother and can allow an estimation of the spectral
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density. The Whittle’s contrast is a special case of the integrated periodogram ĴN (g). Indeed, this contrast
can be written (see [30])

ÛN (H,C) =

∫ π

−π

(
log(fH,C(λ)) + ĴN (1/fH,C(λ))

)
dλ.

The Whittle estimator is thus:

(ĤN , ĈN ) := Argmin(H,C)∈(1/2,1)×(0,∞)ÛN (H,C).

But using a classical renormalization (see Fox and Taqqu, 1986 for instance), the spectral density fH,C of Y
can be decomposed as:

fH,C(λ) = σ2 gH(λ) with





σ2 =
1

2π

C2

aH
HΓ(2H) sin(πH)

gH(λ) = aH(1− cosλ)
∑

k∈Z

|λ+ 2kπ|−1−2H
(13)

for all λ ∈ [−π, 0) ∪ (0, π] with aH := exp
[
−
∫ π

−π

log
(
(1 − cos t)

∑

k∈Z

∣∣t+ 2kπ
∣∣−1−2H

)
dt
]
.

Then ∫ π

−π

log(gH(λ))dλ = 0 (14)

for H ∈ (1/2, 1) and the minimization of ÛN (H,C) can be write again as a minimization in (H,σ2) and this
implies that

ĤN = ArgminH∈(1/2,1)

{
ĴN (1/gH)

}
= ArgminH∈(1/2,1)

{∫ π

−π

ÎN (λ)

gH(λ)
dλ

}
(15)

and ĈN =
(
2π

aĤN
σ̂2
N

ĤNΓ(2ĤN) sin(πĤN )

)1/2

with σ̂2
N :=

1

2π
ĴN (1/gĤN

). (16)

Remark 1 However, for practical use, these definitions ĤN and σ̂2
N have to be modified. Indeed, the assump-

tion that the process has zero mean is unrealistic. Moreover, the integrals defining the estimators has to be
replaced by their approximations by a Riemann sum. Thus, define:

H̃N = ArgminH∈(1/2,1)

{2π

N

N∑

k=1

ĨN (πk/N)

gH(πk/N)

}
and σ̃2

N =
1

N

N∑

k=1

ĨN (πk/N)

gH̃N
(πk/N)

,

with ĨN (λ) =
1

2πN

∣∣∣
N−1∑

k=0

(Yk − Y N )e−ikλ
∣∣∣
2

for λ ∈ [−π, π] and Y N =
1

N

N−1∑

k=0

Yk.

3 Limit theorems for the Whittle estimator of parameters of a

Rosenblatt process

In this section, we prove limit theorems for the integrated periodogram ĴN (g) for g ∈ L
2[−π, π]) satisfying

certain conditions. Applied to g = 1/gH, we will prove the almost-sure convergence of ĤN . Applied to

g = ∂
∂H (1/gH) and then with a classical Taylor expansion also using the case g = ∂2

∂2H (1/gH) this will provide

a non-central limit theorem satisfied by ĤN .

Therefore, the main point is to obtain limit theorems for ĴN (g) . For this, we use a (now) standard approach

based on the chaotic decomposition of the random variable ĴN into a sum of multiple stochastic integrals.
Since the Rosenblatt process at fixed time is a multiple integral of order 2, the product YjYj+k is a product of
two double multiple integrals which can be expressed as a the sum of a multiple integral of order 4, a multiple
integral of order 2 and a deterministic function, which is the expectation of YjYj+k. This decomposition is
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transferred to the integrated periodogram ĴN , which will be written as sum of two multiple integrals (one of
order 2, one of order 4) plus its expectation. What we do next, is to analyze these three terms that compose

ĴN . We will see that, as in the case of the variation statistic of the Rosenblatt process (see [28]) or of wavelet
statistic (see [3]), the dominant term is the one in the second Wiener chaos, which will give the asymptotic

behavior of ĴN . A detailed study of this term shows that it converges to a Rosenblatt random variable.

3.1 Chaos decomposition of the integrated periodogram

The purpose of this part is to provide the asymptotic behavior of a sequence ĴN (g) using its chaos decompo-
sition. We start first with the analysis of r̂N (k) with fixed k ∈ Z. We will study the convergence of r̂N (k) to
the covariance function rH,C(k). We first observe that

IE r̂N (k) =
1

N

N−|k|−1∑

j=0

IE YjYj+|k| =
N − |k|

N
rH,C(k)

and this converges to rH,C(k) when N → ∞: r̂N (k) is an asymptotically unbiased estimator for rH,C(k). On
the other hand, for every j ≥ 1 we can write the increment of the Rosenblatt process as

Yj = Zj+1 − Zj = I2(∆LH
j )

where LH is the kernel of the Rosenblatt process (8) and we denoted by ∆LH
j the two-variables kernel

∆LH
j (y1, y2) = C cZ(H)

∫ j+1

j

(u− y1)
H

2
−1

+ (u− y2)
H

2
−1

+ du.

In the sequel we will simply denote LH := L. Then, for every |k| < N , by the product formula (2)

r̂N (k)− rH,C(k) =
1

N

N−|k|−1∑

j=0

I2(∆Lj)I2(∆Lj+|k|)

=
1

N

N−|k|−1∑

j=0

(
I4(∆Lj ⊗∆Lj+|k|) + 4 I2(∆Lj ⊗1 ∆Lj+|k|)

)

+IE r̂N (k)− rH,C(k).

Therefore, for g ∈ L
2([−π, π]),

ĴN (g)− IE ĴN (g) =
1

2πN

∫ π

−π

dλg(λ)
∑

|k|<N

N−|k|−1∑

j=0

eikλ
(
I4(∆Lj ⊗∆j+|k|L) + 4 I2(∆Lj ⊗1 ∆Lj+|k|)

)
(17)

= T̂2,N(g) + T̂2,N(g),

where T̂4,N(g) :=
1

2πN

∫ π

−π

dλg(λ)
∑

|k|<N

N−|k|−1∑

j=0

eikλ I4

(
∆Lj(y1, y2)∆Lj+|k|(y1, y2)

)
(18)

and T̂2,N(g) :=
2

πN

∫ π

−π

dλg(λ)
∑

|k|<N

N−|k|−1∑

j=0

eikλ I2

(∫

R

dx∆Lj(y1, x)∆Lj+|k|(y2, x)
)
. (19)

The notation T̂2,N(g), T̂4,N(g) suggests that the sequence T̂4,N(g) belongs to the fourth Wiener chaos while

T̂2,N(g) belongs to the second Wiener chaos.

3.2 Asymptotic behavior of the integrated periodogram

In order to study the asymptotic behavior of ĴN (g) let us first specify our assumptions on the function g. For
H ∈ (1/2, 1) and for g : [−π, π] 7→ R, we introduce

6



Assumption A(H): g ∈ L
2([−π, π]) and for any δ > 0, there exists C such that

|g(λ)| ≤ C |λ|2H−1−δ for all λ ∈ [−π, 0) ∪ (0, π].

A very useful point for us is the following (already proved in [12], p. 531):

Lemma 1 Let H ∈ (1/2, 1) and let gH be given by (10). Then, 1/gH, ∂
∂H (1/gH) and ∂2

∂H2 (1/gH) satisfy
Assumption A(H).

The limit in distribution of the sequence ĴN (g)−IE ĴN (g) asN → ∞ depends on the asymptotic behavior of

the two terms T̂2,N(g) and T̂4,N(g) above. First, let us analyze the term in the second Wiener chaos, denoted by

T̂2,N(g), of the decomposition ĴN (g) when the function g satisfies Assumption A(H). Its asymptotic behavior
is described by the following result.

Proposition 1 For every H ∈ (12 , 1) and all function g satisfying Assumption A(H),

N1−H T̂2,N(g)
D−→

N→∞
8

√
2(2H − 1)

H(1−H)2

(∫ π

−π

g(λ)f(H+1)/2,C(λ) dλ
)
R,

with R a standard Rosenblatt random variable (IE R2 = 1).

Under the normalization of T̂2,N(g) the summand T̂4,N (g) goes to zero:

Proposition 2 For every H ∈ (12 , 1) and all function g satisfying Assumption A(H),

N1−H T̂4,N(g)
L
2(Ω)−→

N→∞
0.

A non-central limit theorem satisfied by ĴN (g) is thus the consequence of both the previous Propositions
1 and 2:

Proposition 3 For every H ∈ (12 , 1) and all function g satisfying Assumption A(H),

N1−H
(
ĴN (g)− IE ĴN (g)

) D−→
N→∞

8

√
2(2H − 1)

H(1−H)2

( ∫ π

−π

g(λ)f(H+1)/2,C(λ) dλ
)
R,

with R a standard Rosenblatt random variable (IE R2 = 1).

The above Proposition 3 holds for any function g that satisfies Assumption A(H). The next result shows

that, when g = 1
∂H

(
1
gH

)
(with gH defined in (13)) under the normalization of T̂2,N(g) the deterministic term

in the chaos expansion of ĴN (g) converges to zero.

Proposition 4 With gH given by (10), we have

N1−H IE ĴN

( ∂

∂H

( 1

gH

))
−→
N→∞

0.

It is also possible to show the following almost sure limit theorem for the sequence ĴN (g) when g satisfies
Assumption A(H).

Proposition 5 For every H ∈ (12 , 1) and all function g satisfying Assumption A(H), we have

ĴN (g)
a.s.−→

N→∞
σ2

∫ π

−π

g(λ) gH(λ) dλ.

Now, we can state our main result.
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Figure 1: FFT estimation (Silverman’s method) of the density of the limit of ĤN for H = 0.65, N = 5000
from 1000 independent replications of Rosenblatt process paths.

Theorem 1 Let ĤN be defined by (15). Then

ĤN
a.s.−→

N→∞
H and N1−H

(
ĤN −H

) D−→
N→∞

γ(H)R

where R is a standard Rosenblatt random variable (with IE R2 = 1) and γ(H) is defined by:

γ(H) := 16π

√
2(2H − 1)

H(1 +H)2

( ∫ π

−π

f(H+1)/2,1(λ)

gH(λ)
dλ

)( ∫ π

−π

fH,1(λ)
∂2

∂H2

(
1

gH(λ)

)
dλ

)−1

(20)

It is also possible to provide the strong convergence of ĈN (defined in 16) to C:

Corollary 1 Under the assumptions of Theorem 1,

ĈN
a.s.−→

N→∞
C and N1−H

(
ĈN − C

) D−→
N→∞

C ρ(H)R,

where R is a standard Rosenblatt random variable (with IE R2 = 1) and ρ(H) is defined in (42).

4 Monte-Carlo experiments

We generated 200 paths of Rosenblatt processes for several values of H (= 0.55, 0.65, · · · , 0.95) and N
(= 1000, 5000 and 20000). These paths are obtained from the algorithm already used in [3] and deduced

from the asymptotic behavior of n−H
∑[nt]

i=1(Y
2
i − 1) when n → ∞ where (Yi) is a sequence of centered and

normalized LRD processes with memory parameter d = H/2 (typically FARIMA(0, H/2, 0) processes). Note
that the generator of Rosenblatt process paths as well as the computations of the estimators used in this
section are available on the website http://samm.univ-paris1.fr/-Jean-Marc-Bardet with a free access on
(in Matlab language).

We computed the Whittle estimator ĤN ofH . An example of the estimation of the probability density function
of ĤN provided by the Silverman’s nonparametric procedure is given in Figure 1. This estimated probability
density function appears could first appear as Gaussian density function but it is slightly asymmetric as the
Rosenblatt density function should be when H = 0.65 (see for instance Figure 1 in [29]).

The Whittle estimator ĤN of H applied to paths of Rosenblatt processes is also compared to both other
estimators:

• The extended local Whittle estimator ĤADG defined in [1] from the seminal paper [23]. The trimming
parameter is chosen as m = N0.65 (this is not an adaptive estimator) following the numerical recommen-
dations of [1].
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N = 1000 H = 0.55 H = 0.65 H = 0.75 H = 0.85 H = 0.95

mean ĤN 0.570 0.653 0.736 0.815 0.917

std ĤN 0.030 0.041 0.047 0.053 0.050

mean ĤADG 0.570 0.634 0.708 0.795 0.906

std ĤADG 0.072 0.084 0.094 0.105 0.102

mean ĤWa 0.499 0.542 0.619 0.685 0.766

std ĤWa 0.104 0.116 0.115 0.129 0.119

N = 5000 H = 0.55 H = 0.65 H = 0.75 H = 0.85 H = 0.95

mean ĤN 0.582 0.655 0.743 0.837 0.929

std ĤN 0.014 0.019 0.029 0.033 0.035

mean ĤADG 0.575 0.627 0.723 0.824 0.919

std ĤADG 0.041 0.052 0.062 0.067 0.072

mean ĤWa 0.550 0.610 0.698 0.800 0.891

std ĤWa 0.055 0.062 0.072 0.079 0.075

N = 20000 H = 0.55 H = 0.65 H = 0.75 H = 0.85 H = 0.95

mean ĤN 0.571 0.656 0.746 0.847 0.937

std ĤN 0.008 0.015 0.020 0.025 0.025

mean ĤADG 0.563 0.637 0.734 0.838 0.931

std ĤADG 0.033 0.040 0.052 0.040 0.045

mean ĤWa 0.569 0.630 0.728 0.838 0.931

std ĤWa 0.040 0.039 0.052 0.053 0.042

Table 1: : Comparison between the Whittle estimator ĤN and other famous semiparametric estimators of H (extended

local Whittle estimator ĤADG and wavelet estimator ĤWa) applied to 100 paths of Rosenblatt processes with several

H and N values

• The wavelet estimator ĤWa as it was already defined in [3].

Note that both these estimators are semi-parametric estimators (while ĤN is a parametric estimator) and

thus can be applied to other processes than Rosenblatt processes. However the asymptotic study of ĤADG for
Rosenblatt was not already done. The results are detailed in Table 1.

Conclusions of the simulations: The results obtained with the Whittle estimator ĤN are very convinc-
ing and fit the limit theorem we established. Indeed the estimator ĤN seems to be asymptotically unbiased
and its standard deviation is depending on H (the larger H the larger the standard deviation).
For giving a comparison, it could be interesting to compare these results with those obtained for fractional
Brownian motions (fBms) instead of Rosenblatt processes (the computation of the Whittle estimator is exactly
the same for both those processes). In additional simulations, we obtained the following results: the standard

deviation sN of ĤN applied to fBms almost not depends on H . Hence for almost all H ∈]0.5, 1[ and N = 1000,
sN ≃ 0.02, for N = 5000, sN ≃ 0.01 and for N = 20000, sN ≃ 0.005. As a consequence, from Table 1,

• when H = 0.55, the standard deviation of ĤN for Rosenblatt process is close to the one obtained for
fBm. In terms of theoretical convergence rate this is not surprising since the convergence rate of ĤN is
N0.45 in case of Rosenblatt process while it is N0.5 in case of fBm.

• when H = 0.95, the standard deviation of ĤN for Rosenblatt process is dramatically larger than the one
obtained for fBm. Once again, this is not surprising since the convergence rate of ĤN is N0.05 in case of
Rosenblatt process while it is still N0.5 in case of fBm.

Also from Table 1, we can compare the convergence rates of ĤN and both the semiparametric estimators
ĤADG and ĤWa. The standard deviation of ĤN is almost the half of those of ĤADG and ĤWa. The results
are really convincing and show the good accuracy of the Whittle estimator for estimating H . However, to be
fair, we have to underline that ĤN is a parametric estimator typically appropriated to Rosenblatt (or fBm)

increment processes while ĤADG and ĤWa are semiparametric estimators which can be applied to general
classes of long-memory processes.

Remark 2 As we improved the generator of Rosenblatt processes, the results obtained with ĤWa are a little
better than those obtained in [3], especially when H is close to 1.
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5 Proofs

The following technical lemma will be needed several times in the sequel.

Lemma 2 Let g satisfy Assumption A(H) with H ∈ (1/2, 1). Then, for any δ > 0 and k ∈ Z,
∫ π

−π

g(λ) eikλdλ = O
(
(1 + |k|)−2H+δ

)
.

Proof: This have been stated and proved in [12], Lemma 5.

Proof of Proposition 1: First, using the definition of the contraction ⊗1 (see (3)),

(∆Lj ⊗1 ∆Lj+|k|)(y1, y2) =

∫

R

dx∆Lj(y1, x)∆Lj+|k|(y2, x)

= C2 c2Z(H)

∫

R

dx

∫ j+1

j

du(u− y1)
H

2
−1

+ (u − x)
H

2
−1

+

∫ j+|k|+1

j+|k|

dv(v − y2)
H

2
−1

+ (v − x)
H

2
−1

+

= C2 c2Z(H)β(1 −H,
H

2
)

∫ j+1

j

du

∫ j+|k|+1

j+|k|

dv(u− y1)
H

2
−1

+ (v − y2)
H

2
−1

+ |u− v|H−1

where we changed the order of integration and we used the identity: for (a, b) ∈ (−1, 0)2 and a+ b < −1, for
(u, v) ∈ R

2 with u 6= v,
∫ u∧v

−∞

(u− y)a(v − y)bdy = β(−1− a− b, a+ 1) |u− v|a+b+1. (21)

Then

T̂2,N(g) = C2 4H(2H − 1)

β(1 −H, H
2 )πN

∫ π

−π

dλ g(λ)
∑

|k|<N

N−|k|−1∑

j=0

eikλ I2

(∫ j+1

j

du

∫ j+|k|+1

j+|k|

dv(u−y1)
H

2
−1

+ (v−y2)
H

2
−1

+ |u−v|H−1
)
.

By Lemma 3, the sequence (N1−H T̂2,N(g))N has the same limit in L
2(Ω) as the sequence (N1−H T̂ ′

2,N(g))N
where

T̂ ′
2,N(g) = C2 4H(2H − 1)

β(1 −H, H
2 )

1

πN

∫ π

−π

dλ g(λ)
∑

|k|<N

N−|k|−1∑

j=0

eikλ

× I2

( ∫ j+1

j

du

∫ j+|k|+1

j+|k|

dv|u − v|H−1

∫ j+1

j

du′(u′ − y1)
H

2
−1

+ (u′ − y2)
H

2
−1

+

)
.

But from the definition of a Rosenblatt process and the computation of
∫ j+1

j
du

∫ j+|k|+1

j+|k|
dv|u− v|H−1,

T̂ ′
2,N(g) = C2

√
8(2H − 1)

H(1 +H)2
1

πN

∑

|k|<N

(∫ π

−π

g(λ)eikλdλ
)(

|k + 1|H+1 + |k − 1|H+1 − 2|k|H+1
)
RN−|k|,

where (Rt)t is a standard Rosenblatt process with parameter H . But from Lemma 2, with δ > 0 that can
be chosen arbitrary small, we have

∫ π

−π g(λ)e
ikλdλ = O((1 + |k|)−2H+δ) and since

(
|k + 1|H+1 + |k − 1|H+1 −

2|k|H+1
)
∼ 1

2 (H + 1)H kH−1 when k is large enough, we deduce that

∑

k∈Z

( ∫ π

−π

g(λ)eikλdλ
)(

|k + 1|H+1 + |k − 1|H+1 − 2|k|H+1
)
< ∞.

Moreover, since a Rosenblatt process is a H-self-similar process, (N−HRN−|k|)|k|<N
D∼ (R

1− |k|
N

)|k|<N . This

is also a continuous process and therefore

N1−H T̂ ′
2,N(g)

D∼ 4C2

√
2(2H − 1)

H(1 +H)2
1

2π

∑

|k|<N

( ∫ π

−π

g(λ)eikλdλ
)(

|k + 1|H+1 + |k − 1|H+1 − 2|k|H+1
)
R

1− |k|
N

D−→
N→∞

4C2

√
2(2H − 1)

H(1 +H)2

∫ π

−π

dλg(λ)
1

2π

∑

k∈Z

eikλ
(
|k + 1|H+1 + |k − 1|H+1 − 2|k|H+1

)
R1.
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But
(
|k + 1|H+1 + |k − 1|H+1 − 2|k|H+1

)
= 2 r(H+1)/2,1(k) (see (9)) and therefore from the definition of a

spectral density,

N1−H T̂2,N (g)
D−→

N→∞
8

√
2(2H − 1)

H(1 +H)2

( ∫ π

−π

g(λ)f(H+1)/2,C(λ) dλ
)
R1.

Lemma 3 Define the sequence of functions (GN )N by

GN (y1, y2) := N−H

∫ π

−π

g(λ)dλ
∑

|k|<N

e−iλk

N−|k|−1∑

j=0

∫ j+1

j

du

∫ j+|k|+1

j+|k|

dv|u − v|H−1
[
(u− y1)

H

2
−1

+ (v − y2)
H

2
−1

+ −
∫ j+1

j

(u′ − y1)
H

2
−1

+ (u′ − y2)
H

2
−1

+ du′
]
.

Then,

GN (y1, y2)
L
2(R2)−→

N→∞
0.

Proof: 1. On the one hand, define the sequence of functions (GN,1)N by

GN,1(y1, y2) := N−H

∫ π

−π

g(λ)dλ
∑

|k|<N

e−iλk

N−|k|−1∑

j=0

∫ j+1

j

du

∫ j+|k|+1

j+|k|

dv|u− v|H−1(u − y1)
H

2
−1

+

[
(v − y2)

H

2
−1

+ − (u − y2)
H

2
−1

+

]
.

Then we have

‖GN,1(y1, y2)‖2L2(R2) = N−2H

∫

R2

dy1 dy2
∑

|k1|<N

∑

|k2|<N

∫ π

−π

g(λ1)e
−iλ1k1dλ1

∫ π

−π

g(λ2)e
−iλ2k2dλ2

×
N−|k1|−1∑

j1=0

N−|k2|−1∑

j2=0

(∫ j1+1

j1

du1

∫ j1+|k1|+1

j1+|k1|

dv1|u1 − v1|H−1(u1 − y1)
H

2
−1

+

[
(v1 − y2)

H

2
−1

+ − (u1 − y2)
H

2
−1

+

])

×
(∫ j2+1

j2

du2

∫ j2+|k2|+1

j2+|k2|

dv2|u2 − v2|H−1(u2 − y1)
H

2
−1

+

[
(v2 − y2)

H

2
−1

+ − (u2 − y2)
H

2
−1

+

])
.

Then, using (21), there exist D1 > 0 and D2 > 0 such as,

‖GN,1‖2L2(R2) = D1 N
−2H

∑

|k1|<N

∑

|k2|<N

∫ π

−π

g(λ1)e
−iλ1k1dλ1

∫ π

−π

g(λ2)e
−iλ2k2dλ2

×
N−|k1|−1∑

j1=0

N−|k2|−1∑

j2=0

∫ j1+1

j1

du1

∫ j1+|k1|+1

j1+|k1|

dv1

∫ j2+1

j2

du2

∫ j2+|k2|+1

j2+|k2|

dv2 |u1 − v1|H−1|u2 − v2|H−1|u1 − u2|H−1

×
[
|u1 − u2|H−1 − |u1 − v2|H−1 − |u2 − v1|H−1 + |v1 − v2|H−1

]

≤ D2

N2H

∑

|k1|,|k2|<N

1

[(1 + |k1|)(1 + |k2|)]2H−δ

N∑

j1,j2=1

∫

[0,1]4
du1dv1du2dv2

(
|u1 − v1 − |k1|| |u2 − v2 − |k2|| |u1 − u2 + j1 − j2|

)H−1

×
∣∣∣|u1 − u2 + j1 − j2|H−1− |u1 − v2 + j1 − j2 − |k2||H−1− |u2 − v1 + j2 − j1 − |k1||H−1+ |v1 − v2 + j1 − j2 + |k1| − |k2||H−1

∣∣∣

≤ D2

N2H−1

∑

|k1|<N

∑

|k2|<N

∑

|j|<N

I(k1, k2, j) (22)
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with

I(k1, k2, j) :=
1

[(1 + |k1|)(1 + |k2|)]2H−δ

∫

[0,1]4
du1dv1du2dv2

(
|u1 − v1 − |k1|| |u2 − v2 − |k2|| |u1 − u2 + j|

)H−1

×
∣∣∣|u1 − u2 + j|H−1 − |u1 − v2 + j − |k2||H−1 − |u2 − v1 − j − |k1||H−1 + |v1 − v2 + j + |k1| − |k2||H−1

∣∣∣
(23)

and where both the last inequalities are obtained from changes of variables, Lemma 2 (with δ > 0 which can be
chosen arbitrary small) and symmetry properties. For |x| ≥ 2 and (u, v) ∈ [0, 1]2, |x+u−v|H−1 ≤ 21−H |x|H−1

and for |x| < 2 and (u, v) ∈ [0, 1]2, u 6= v, |x+u−v|H−1 ≤ |u−v|H−1. Moreover from a usual Taylor expansion
of the function x 7→ |1 + x|H−1, there exists C > 0 such as

∣∣∣|y + j|H−1 − |j|H−1
(
1 + (H − 1)

y

|j|
)∣∣∣ ≤ C

y

|j|2−H
when 2|y| ≤ j.

Therefore, there exists C > 0 such as

∣∣∣|u1 − u2 + j|H−1 − |u1 − v2 + j − |k2||H−1 − |u2 − v1 − j − |k1||H−1 + |v1 − v2 + j + |k1| − |k2||H−1
∣∣∣

≤ C (1 + |k1|+ |k2|) |j|H−2

≤ C
[
(1 + |k1|)2H−1+δ + (1 + |k2|)2H−1+δ

]
|j|−H−δ

when |j| > 2max(|k1|, |k2|). Then for |j| > 2max(|k1|, |k2|) and for |k1| and |k2| large enough,

I(k1, k2, j) ≤
C

[(1 + |k1|)(1 + |k2|)]1+H−δ

[
(1 + |k1|)2H−1+δ + (1 + |k2|)2H−1+δ

] 1

|j|1+δ
.

Therefore,
D2

N2H−1

∑

|k1|<N

∑

|k2|<N

∑

|j|>2max(|k1|,|k2|)

I(k1, k2, j) −→
N→∞

0. (24)

Now, for 2 ≤ |j| ≤ 2max(|k1|, |k2|) and for |k1| and |k2| large enough,

I(k1, k2, j) ≤
C

[(1 + |k1|)(1 + |k2|)]1+H−δ
|j|H−1

×
(
|j|H−1 + |u1 − v2 + j − |k2||H−1 + |u2 − v1 − j − |k1||H−1 + |v1 − v2 + j + |k1| − |k2||H−1

)
.

But for β ∈ R
∗, since 1/2 < H < 1, there exists C > 0 such as for |β| ≤ M ,

M∑

j=2

1

(j(j + β))1−H
≤ CM2H−1.

Thus, for 2 ≤ |j| ≤ 2max(|k1|, |k2|) and for |k1| and |k2| large enough,

I(k1, k2, j) ≤
C

[(1 + |k1|)(1 + |k2|)]1+H−δ

(
max(|k1|, |k2|)

)2H−1
.

Therefore,
D2

N2H−1

∑

|k1|<N

∑

|k2|<N

∑

2≤|j|≤2max(|k1|,|k2|)

I(k1, k2, j) −→
N→∞

0. (25)

We can easily add to this asymptotic behavior the cases j = 0, j = 1 or j = −1 thanks to the convergence of
the integral defined in [0, 1]4. Finally, we obtain:

‖GN,1(y1, y2)‖2L2(R2) −→
N→∞

0. (26)
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2. On the other hand, define the sequence of functions (GN,2)N by

GN,2(y1, y2) := N−H

∫ π

−π

g(λ)dλ
∑

|k|<N

e−iλk

N−|k|−1∑

j=0

∫ j+1

j

du

∫ j+|k|+1

j+|k|

dv

∫ j+1

j

du′|u− v|H−1
[
(u− y1)

H

2
−1

+ (u− y2)
H

2
−1

+ − (u′ − y1)
H

2
−1

+ (u′ − y2)
H

2
−1

+

]
.

Then following the same kind of computations and expansions than for ‖GN,1(y1, y2)‖2L2(R2), we have

‖GN,2(y1, y2)‖2L2(R2) =N−2H
∑

|k1|<N

∑

|k2|<N

N−|k1|−1∑

j1=0

N−|k2|−1∑

j2=0

∫ π

−π

g(λ1)e
−iλ1k1dλ1

∫ π

−π

g(λ2)e
−iλ2k2dλ2

×
∫ j1+1

j1

du1

∫ j1+|k1|+1

j1+|k1|

dv1

∫ j1+1

j1

du′
1

∫ j2+1

j2

du2

∫ j2+|k2|+1

j2+|k2|

dv2

∫ j2+1

j2

du′
2 |u1 − v1|H−1|u2 − v2|H−1

×
(
|u1 − u2|2H−2 + |u′

1 − u′
2|2H−2 − |u′

2 − u1|2H−2 − |u′
1 − u′

2|2H−2
)

≤ C

N2H−1

∑

|k1|,|k2|<N

1

[(1 + |k1|)(1 + |k2|)]2H−δ

∫

[0,1]6
du1dv1du

′
1du2dv2du

′
2

(
|u1 − v1 + |k1|| |u2 − v2 + |k2||

)H−1

×
∑

|j|<N

∣∣∣|u1 − u2 + j|2H−2− |u′
1 + j − u2|2H−2− |u1 + j − u′

2|2H−2+ |j + u′
1 − u′

2|2H−2
∣∣∣

≤ C

N2H−1

∑

|k1|<N

∑

|k2|<N

∑

|j|<N

1

[(1 + |k1|)(1 + |k2|)]H+1−δ
(1 + |j|)2H−3.

As a consequence, since all the previous sums are finite, we deduce that

‖GN,2(y1, y2)‖2L2(R2) −→
N→∞

0. (27)

Then (26) and (27) imply Lemma 3 holds.

Proof of Proposition 2: In a first step we use the isometry of multiple integrals (1) and the fact that
the L2 norm of the symmetrized function is less than the L2 norm of the function itself. In a second step we
change the order of integration and we use (21). Then, for the last bound below, we use the same lines as in
the proof of Lemma 3. We have

IE
(
N1−H T̂4,N (g)

)2

≤ N−2H

∫

R4

dy1dy2dy3dy4

∫

[−π,π]2
dλ1dλ2g(λ1)g(λ2)

∑

|k1|<N

∑

|k2|<N

e−ik1λ1e−ik2λ2

N−|k1|−1∑

j1=0

N−|k2|−1∑

j2=0

∫ j1+1

j1

du

∫ j1+|k1|+1

j1+|k1|

dv(u − y1)
H

2
−1

+ (u− y2)
H

2
−1

+ (v − y3)
H

2
−1

+ (v − y4)
H

2
−1

+

×
∫ j2+1

j2

du′

∫ j2+|k2|+1

j2+|k2|

dv′(u′ − y1)
H

2
−1

+ (u′ − y2)
H

2
−1

+ (v − y3)
H

2
−1

+ (v′ − y4)
H

2
−1

+

= β4(1−H,
H

2
)N−2H

∑

|k1|<N

∑

|k2|<N

( ∫ π

−π

e−ik1λ1g(λ1)dλ1

)( ∫ π

−π

e−ik2λ2g(λ2)dλ2

)

×
N−|k1|−1∑

j1=0

N−|k2|−1∑

j2=0

∫ j1+1

j1

∫ j1+|k1|+1

j1+|k1|

∫ j2+1

j2

∫ j2+|k2|+1

j2+|k2|

du dv du′ dv′ |u− u′|2H−2|v − v′|2H−2

≤ cN1−2H
∑

|k1|<N

∑

|k2|<N

1
(
(1 + |k1|)(1 + |k2|)

)2H−δ

∑

|j|<N

∣∣rH,1(j) rH,1(j + |k1| − |k2|)
∣∣.

As in the proof of Lemma 3, we decompose the previous right left hand term in two parts: firstly, when
|j| > 2max(|k1|, |k2|), we have rH,1(j) ≤ c (1+ |j|)2H−2 and rH,1(j + |k1| − |k2|) ≤ c (1 + |j|)2H−2. Then, with

13



c > 0,

N1−2H
∑

|k1|<N

∑

|k2|<N

1
(
(1 + |k1|)(1 + |k2|)

)2H−δ

∑

2max(|k1|,|k2|)<|j|<N

∣∣rH,1(j) rH,1(j + |k1| − |k2|)
∣∣

≤ cN1−2H
∑

|k1|<N

∑

|k2|<N

1
(
(1 + |k1|)(1 + |k2|)

)2H−δ
N4H−3

≤ cN2H−2, (28)

since 2H − δ > 0 because H > 1/2 and δ > 0 can be chosen arbitrary small.
Secondly, when |j| ≤ max(|k1|, |k2|), using

∣∣rH,1(j + |k1| − |k2|)
∣∣ ≤ 1, we obtain

N1−2H
∑

|k1|<N

∑

|k2|<N

1
(
(1 + |k1|)(1 + |k2|)

)2H−δ

∑

|j|≤2max(|k1|,|k2|)

∣∣rH,1(j) rH,1(j + |k1| − |k2|)
∣∣

≤ cN1−2H
∑

|k1|<N

∑

|k2|<N

1
(
(1 + |k1|)(1 + |k2|)

)2H−δ
max(|k1|, |k2|)2H−1

≤ cN1−2H+δ. (29)

As a consequence, from (28) and (29),

IE
(
N1−H T̂4,N(g)

)2

−→
N→∞

0,

and the conclusion of Proposition 2 follows.

Proof of Proposition 4: The proof follows the lines of end of the proof of Theorem 2 in [12], p. 528-
529. Notice that

IE ĴN

( ∂

∂H

( 1

gH

))
=

∑

|k|≤N

∫ π

−π

dλ
∂

∂H

( 1

gH(λ)

)N − k

N
rH,C(k)e

−ikλ.

Denote

ek =

∫ π

−π

eikλ
∂

∂H

( 1

gH(λ)

)
dλ.

Then

IE ĴN

( ∂

∂H

( 1

gH

))
=

1

(2π)2N

N∑

j=1

N∑

k=1

rH,C(j − k) ej−k

From (3.3) in [12], we know that ∑

k∈Z

rH,C(k) ek = 0. (30)

Therefore,

N1−H IE ĴN

( ∂

∂H

( 1

gH

))
= N1−H

∑

|k|<N

(
1− k

N

)
rH,C(k) ek

= N1−H
∑

|k|<N

rH,C(k) ek −N−H
∑

|k|<N

k rH,C(k) ek. (31)

From Lemma 2 and since rH,C(k) = O(|k|2H−2), |k| → ∞, we have for all δ > 0

rH,C(k) ek = O
(
|k|−2+δ

)
. (32)

Then, from a usual comparison with a Riemann integral,
∑

|k|<N k rH,C(k) ek = O(N δ). Moreover, from (30),∑
|k|<N rH,C(k) ek = −∑

|k|≥N rH,C(k) ek and also from a usual comparison with a Riemann integral and (32),

we know that
∑

|k|≥N rH,C(k) ek = O(N−1+δ). As a consequence, from (31),

N1−H IE ĴN

( ∂

∂H

( 1

gH

))
= O

(
N δ−H

)
.

14



As δ can be chosen arbitrary small, we deduce that Proposition 4 holds.

Proof of Proposition 5: Note that the Fourier coefficients of ÎN are given by
∫ π

−π

eikxÎN (x)dx = r̂N (k)1(|k|<N).

The proofs of Proposition 1 and 2 imply that

r̂N (k)
L
2(Ω)−→

N→∞
rH,C(k). (33)

The above convergence holds almost surely by an argument in [9] (Theorem 7.1, p. 493).

Proof of Theorem 1: For establishing the strong convergence, define for h ∈ (1/2, 1),

V̂N (h) =
1

2π
ĴN (1/gh). (34)

From Proposition 5, V̂N (h)
a.s.−→

N→∞
V (h) = σ2

∫ π

−π gH(λ)/gh(λ)dλ. As H = Argminh∈(1/2,1)V (h) and ĤN =

Argminh∈(1/2,1)V̂N (h), from usual arguments (see for instance [12]), then ĤN
a.s.−→

N→∞
H .

For proving the non-central theorem, apply Proposition 3 to g = ∂
∂H

(
1
gH

)
and from Proposition 4, we obtain:

N1−H ∂

∂h
V̂N (H)

D−→
N→∞

1

2π

√
8(2H − 1)

H(1−H)2

(∫ π

−π

∂

∂H

( 1

gH(λ)

)
g(H+1)/2(λ) dλ

)
R,

with R a standard Rosenblatt random variable. Now use the following result established in Lemma 2 in [12].
Suppose that (bN )N is a sequence of real numbers such that bN −→

N→∞
+∞. Assume that

bN
∂

∂h
V̂N (H)

D−→
N→∞

Y, (35)

where Y is a random variable. Then

bN (ĤN −H)
D−→

N→∞
− 2π

(∫ π

−π

fH,C(λ)
∂2

∂H2

(
1

gH(λ)

)
dλ

)−1

Y.

Using bN = N1−H , Y = 8
√

2(2H−1)
H(1−H)2

( ∫ π

−π g(λ)f(H+1)/2,C(λ) dλ
)
R1, Proposition 3 applied to ∂

∂H

(
1
gH

)
and

Proposition 4, then (35) holds. This implies Theorem 1.

Proof of Corollary 1: Using V̂N (h) defined in (34), it is sufficient to write

ĈN =
(
µ(ĤN ) V̂N (ĤN )

)1/2
,

with
µ(h) = 2π

ah
hΓ(2h) sin(πh)

for h ∈ (1/2, 1), (36)

and the strong consistencies established in Proposition 5 and Theorem 1 allow to show the almost sure con-
vergence of ĈN .

For establishing the non-central limit theorem, the Taylor’s formula implies that

V̂N (H) = V̂N (ĤN ) +
1

2
(H − ĤN )2

( ∂2

∂h2
V̂N (HN )

)
,

with probability 1, and with |HN −H | < |ĤN −H |. From previous Theorem 1, it follows

N1−H(V̂N (H)− σ2) = N1−H(V̂N (ĤN )− σ2) +Op(N
H−1). (37)
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Moreover, from Proposition 3,

N1−H
(
V̂N (H)− IE

(
V̂N (H)

)) D−→
N→∞

4

π
C2 β(H)R. (38)

with β(H) =
√

2(2H−1)
H(1−H)2

( ∫ π

−π g
−1
H (λ)f(H+1)/2,1(λ) dλ

)
. Since IE

(
V̂N (H)

)
= σ2 + o(N−1/2) (see for instance

[12]), from (37) and (38), we deduce:

N1−H(V̂N (ĤN )− σ2)
D−→

N→∞

4

π
β(H)R. (39)

From Theorem 1 and using the Delta-Method,

N1−H
(
µ(ĤN )− µ(H)

) D−→
N→∞

(µ′(H))2 γ(H)R. (40)

Thus, using (39) and (40), we obtain:

N1−H
(
µ(ĤN )V̂N (ĤN )− µ(H)σ2)

D−→
N→∞

C2
(
(µ′(H))2 γ(H)

1

µ(H)
+

4

π
β(H)µ(H)

)
R. (41)

As a consequence, using again the Delta-Method, we have:

N1−H
(
ĈN − C)

D−→
N→∞

C

4µ(H)

(
(µ′(H))2 γ(H) +

4

π
β(H)µ2(H)

)
R, (42)

achieving the proof of Corollary 1.
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