
HAL Id: hal-00793811
https://hal.science/hal-00793811v1

Submitted on 23 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Ordinal Recursive Complexity of of Timed-Arc
Petri Nets, Data Nets, and Other Enriched Nets

Serge Haddad, Sylvain Schmitz, Philippe Schnoebelen

To cite this version:
Serge Haddad, Sylvain Schmitz, Philippe Schnoebelen. The Ordinal Recursive Complexity of of
Timed-Arc Petri Nets, Data Nets, and Other Enriched Nets. 27th ACM/IEEE Symposium on
Logic in Computer Science, Jun 2012, Dubrovnik, Croatia. pp.355–364, �10.1109/LICS.2012.46�. �hal-
00793811�

https://hal.science/hal-00793811v1
https://hal.archives-ouvertes.fr

The Ordinal-Recursive Complexity of
Timed-Arc Petri Nets, Data Nets, and

Other Enriched Nets
Serge Haddad, Sylvain Schmitz, and Philippe Schnoebelen

Laboratoire Spécification et Vérification (LSV),
ENS Cachan & CNRS

Cachan, France

Abstract—We show how to reliably compute fast-growing
functions with timed-arc Petri nets and data nets. This construc-
tion provides ordinal-recursive lower bounds on the complexity
of the main decidable properties (safety, termination, regular
simulation, etc.) of these models. Since these new lower bounds
match the upper bounds that one can derive from wqo theory,
they precisely characterise the computational power of these so-
called “enriched” nets.

Index Terms—Complexity theory, fast-growing hierarchy, for-
mal verification, Petri nets, well-structured systems

I. INTRODUCTION

We call enriched nets a handful of Petri net extensions
where tokens are coloured with data values, that still enjoy
decidable verification problems: timed-arc Petri nets (TPN)
where tokens carry real-valued clocks [6], data nets (DN) and
Petri data nets (PDN) where they carry a datum from some
dense domain [19], and constrained multiset rewriting systems
(CMRS) where they carry positive integers [3]. Their richer
structure makes enriched nets a natural choice when modelling
for instance parameterised systems, protocols, workflows, or
real-time systems—in fact, timed extensions of Petri nets have
been in use since the 1970’s for such modelling tasks. In spite
of the presence of two “sources” of infiniteness, the number
of tokens and their colours, enriched nets can be handled
by the now standard toolkit of well quasi-orders (wqo) and
well-structured transition systems (WSTS) [5, 14] so that e.g.
safety—which in this context corresponds to the coverability
problem—and other properties are decidable [4, 2, 9].

Recent investigations [1, 7] have shown that all these
formalisms are expressively equivalent, i.e. they define the
same class of so-called coverability languages, and thus in
particular their coverability problems are inter-reducible. Their
computational complexity, however, has rarely been analysed.
The employed wqo and WSTS techniques are generally seen
as non-constructive, hence the aforementioned works do not
provide any complexity analysis of the algorithms they pro-
pose ([19, Prop. 3.2] gives a lower bound: PDNs can simulate
lossy channel systems and hence inherit at least their Fωω
complexity [10], but this is far from optimal).

We prove in this paper that the complexity of enriched nets
is exactly at level Fωωω in the fast-growing hierarchy.

1) The upper bound is a consequence of a generic technique
described in [22]: the length-function theorem for elementary
wqos, here instantiated with (Nk)∗ as the underlying wqo. It
applies uniformly to DN, PDNs, TPNs, CMRSs (and to some
further extensions); see Sec. IV.

2) The matching lower bound is our main contribution: it
relies on the construction of PDNs with O(k) unbounded
places that can compute in a weak sense the fast-growing
functions F

ωωk
and their inverses and therefore simulate F

ωωk
-

bounded computations (see Sec. V for an overview). This
construction relies on several intermediate steps: we first
define in Sec. VI-A a cumulative encoding of ordinals below
ωω

ωk

in sequences of vectors of integers (or “codes”) along
with rewriting rules over codes implementing fast-growing
computations and their inverses (see Sec. VI-B). Because
this encoding is robust, i.e. safe wrt. Higman’s ordering on
codes, any weak implementation of the rewriting rules will
yield the desired behaviour (Sec. VI-C); in particular, a weak
PDN implementation is possible, as shown in Sec. VII. Once
established for PDNs, the new lower bound automatically
applies to TPNs and DNs.

3) Beyond the complexity of verification problems, our
techniques are easily applied to the study of the coverabil-
ity languages of WSTS models [17]. Here our construction
directly yields separation results; see Sec. VIII.

The details of the proofs and of the construction of PDNs
can be found in the long version of the paper.

II. PETRI DATA NETS

Although the complexity of decision problems in timed-
arc Petri nets provided our prime motivation—an important
body of literature is dedicated to their analysis [6, 4, 2, 9]
and they are actually employed in tools [e.g. 18]—, we will
work exclusively with Petri data nets, which proved easier to
manipulate, and rely on known interreducibility results [7, 1]
to capture the other classes of enriched nets.

A. Definitions

We denote by 0 the null vector in Nk for any k, and for a
word w = x1 · · ·xn we write |w| = n and w(i) = xi.

A Petri Data Net (PDN) is a Petri net where each token
carries an identity from a linearly ordered and dense domain

D. A marking s of a PDN with P as set of places could
be seen, e.g., as a multiset of pairs in D × P , or as a map
s ∈ (NP)D. However, two key features of PDNs will guide
our choice of (N|P | \ 0)∗ for representing markings:

1) a marking s only has finitely many tokens, thus denoting
d1 < · · · < dm the identities that occur in s and
gathering all the tokens that carry the same identity di,
one obtains a (non-null) place vector vi in N|P | \ 0:
s can be written as a sequence (d1, v1) · · · (dm, vm),
implicitly associating the null vector 0 with any d ∈
D \ {d1, . . . , dm};

2) the concrete identities di are irrelevant, and only their
relative order is useful wrt. the dynamics of the net, thus
s can safely be abstracted as the sequence v1 · · · vm in
(N|P | \ 0)∗. (Also the choice of the concrete set D is
irrelevant.)

Every transition t of a PDN specifies a sequence of n
ordered potential identities and for any such identity specifies
the tokens cons to be consumed and prod to be produced.
Thus cons(t) and prod(t) are two sequences of n (possibly
null) place vectors.

Definition 1 (Petri Data Nets). A k-dimensional Petri Data
Net (k-PDN) is a tuple N = (P, T, cons, prod , s0) where
• P is a finite set of k = |P | places,
• T is a finite set of transitions with P ∩ T = ∅,
• for every t in T , cons(t) and prod(t) are finite sequences

in (Nk)∗ with |cons(t)| = |prod(t)|, and
• s0 is an initial marking in (Nk \ 0)∗.

Consider now a marking s ∈ (Nk \ 0)∗. In order to fire
a transition t with |cons(t)| = n, nondeterministically select
n identities, consume some of their tokens as indicated by
cons(t), and produce new tokens with the identities specified
by prod(t). However, some of these n identities might not be
present in s, and we should introduce null vectors wherever
necessary: s′ ∈ (Nk)∗ is a 0-extension of s ∈ (Nk \ 0)∗ (or s
is the 0-contraction of s′) def⇔ s is obtained by removing all 0’s
from s′. Once an extension s′ is built, select in it a subword of
n vectors x1, . . . , xn s.t. every vector contains enough tokens,
i.e. with xi ≥ cons(t)(i). If the condition is fulfilled, the
corresponding tokens are consumed and prod(t)(i) is added to
the resulting vector, yielding a new sequence s′′. This s′′ may
contain null vectors, e.g. when all tokens with some identity
have been consumed, hence the reached marking really is the
0-contraction of s′′. Note that any way of firing t requires
at most n insertions. Examples of PDNs will be found in
Section VII.

Definition 2 (Semantics of PDNs). The transition system
associated with a k-PDN N = (P, T, cons, prod , s0) is
(S, s0,→) with state set S def

= (Nk \0)∗ and transition relation
→ def

=
⋃
t∈T

t−→, where s
t−→ s′ for t ∈ T iff, letting

n = |cons(t)|:
• there exists u0x1u1 · · ·un−1xnun a 0-extension of s with

for all i, ui ∈ (Nk)∗ and xi ∈ Nk;
• for i in {1, . . . , n}, xi ≥ cons(t)(i);

• and defining yi = xi − cons(t)(i) + prod(t)(i), s′ is the
0-contraction of u0y1u1 · · ·un−1ynun.

Below we consider three decision problems for PDNs:
(Strong) Coverability: Given N and p ∈ P , can we reach

a configuration where p holds at least one token?
Boundedness: Given N , is the set of reachable configura-

tions in S finite?
Termination: Given N , is every run finite?

B. PDNs as Well-Structured Transition Systems

A wqo (A,≤) is a set A endowed with a transitive and
reflexive relation ≤ s.t. every infinite sequence σ = a0, a1, · · ·
of elements of A contains a pair ai ≤ aj for some i < j. Some
classical examples of wqos are

Dickson’s Lemma: (Nk,≤) with the product ordering de-
fined by x ≤ y

def⇔ ∀0 ≤ j < k, x[j] ≤ y[j],
Higman’s Lemma: if (A,≤) is a wqo, then (A∗,≤∗) the set

of finite sequences of elements of A along with the
subword embedding ordering is also a wqo, where
≤∗ is defined by s ≤∗ s′ def⇔ s = a1 · · · an, s′ =
x0b1x1 · · · bnxn with x0, . . . , xn in A∗ and ai ≤ bi
for all 1 ≤ i ≤ n.

The transition system associated with a PDN (see Defi-
nition 2) is well-structured [5, 14] for the wqo (S,≤∗): if
s1

t−→ s2 and s1 ≤∗ s3, then there exists s4 s.t. s2 ≤∗ s4 and
s3

t−→ s4. This (strict) compatibility of the transition relation
with the ordering allows to employ generic algorithms for
deciding coverability, boundedness, and termination. In fact,
the same generic WSTS algorithms show that coverability,
boundedness and termination are decidable
• for TPNs [2], even when extended with read arcs [9] or

transport arcs [18],
• for CMRSs [3], and
• as far as coverability and termination are concerned, for

DNs [19]. Compared to PDNs, these allow so-called
whole-place operations that can e.g. duplicate or erase the
whole contents of some places, and/or transfer them to
other places, which makes their compatibility non-strict—
and indeed their boundedness problem is undecidable.

III. ORDINAL RECURSIVE COMPLEXITY

The enormous complexity of some decidable problems
on WSTSs requires the introduction of complexity classes
spanning way beyond the usual polynomial or exponential
hierarchies. The complexity classes we consider are generated
by ordinal-indexed subrecursive hierarchies, like the Hardy
hierarchy and the fast-growing hierarchy. See [12] for a self-
contained presentation; we only recall below the notions and
notations that are required for our construction in Section VI.

It is well-known that any ordinal α < ε0 can be written
uniquely in Cantor Normal Form (CNF). In this paper we use
a dotted addition symbol “+̇” when we want to stress that an
ordinal term is in CNF. Thus, when we write

α = ωα1 +̇ · · · +̇ ωαp , (1)

we mean that not only the equality (1) holds, but also that
αp ≤ . . . ≤ α1 < α, as required by CNF. (NB: we allow
writing α +̇ α′ when α or α′ is 0.)

Subrecursive hierarchies are defined through assignments
of fundamental sequences (λn)n<ω for limit ordinals λ < ε0,
verifying λn < λ for all x and λ = supn λn. A standard
assignment is defined by:
(
γ +̇ ωα+1

)
n

def
= γ +̇ ωα · ωn,

(
γ +̇ ωλ

)
n

def
= γ +̇ ωλn , (2)

together with ωn
def
= n. Writing Ω for the ordinal ωω

ωω

, this
yields for instance Ωk = ωω

ωk

and (Ωk)k = ωω
ωk−1·k

.
The Hardy hierarchy (Hα : N → N)α<ε0 is defined by

H0(n)
def
= n and

Hα+1(n)
def
= Hα(n+ 1), Hλ(n)

def
= Hλn(n). (3)

Observe that H1 is the successor function, and more generally
Hα is the αth iterate of the successor function, using diago-
nalisation to treat limit ordinals. The fast growing hierarchy
(Fα : N → N)α<ε0 can be defined by Fα

def
= Hωα , resulting

in F0(n) = H1(n) = n + 1, F1(n) = Hω(n) = Hn(n) =
2n, F2(n) = Hω2

(n) = 2nn being exponential, F3 non-
elementary, and Fω an Ackermannian function.

By applying elementary closure operations to the collection
of functions (Fβ)β≤α along with the addition, projection
and zero functions, one obtains a hierarchy (Fα)α known
as the extended Grzegorczyck hierarchy [20], which char-
acterises several natural classes of functions; for instance
F0 = F1 is the class of linear functions, F2 that of elementary
ones,

⋃
k∈N Fk of primitive-recursive ones, and

⋃
k∈N Fωk

of multiply-recursive ones. The hierarchy is strict for all
0 < α < α′: Fα (Fα′ , in particular because Fα′ 6∈ Fα.

The (Fα)α hierarchy provides a more abstract packaging of
the main stops in the extended Grzegorczyk hierarchy and
requires lighter notation than the Hardy hierarchy (Hα)α.
However, with its tail-recursive definition, the Hardy hierarchy
is easier to implement as a while-program or as a counter
machine. Below we weakly implement Hardy computations
with PDNs. Formally, a (forward) Hardy computation is a
sequence α0, n0 −→ α1, n1 −→ α2, n2 −→ · · · −→ α`, n` of
evaluation steps implementing Eq. (3) seen as left-to-right
rewrite rules. It guarantees α0 > α1 > α2 > · · · and
n0 ≤ n1 ≤ n2 ≤ · · · and keeps Hαi(ni) invariant. We say
it is complete when α` = 0 and then n` = Hα0(n0) (we
also consider incomplete computations). A backward Hardy
computation is obtained by using Eq. (3) as right-to-left rules.
For instance, Ω, k → Ωk, k → (Ωk)k, k constitute the first
three steps of the forward Hardy computation starting from
Ω, k if k > 0.

IV. COMPLEXITY UPPER BOUNDS

A key insight for the complexity analysis of WSTS al-
gorithms is that the use of wqos yields not only algorithm
termination, but also upper complexity bounds:

Theorem 3 (Upper Bound). Coverability and termination for
PDNs, DNs, TPNs, and CMRSs, are in Fωωω

(
n+O(1)

)
.

For this result, as explained in [13, 22], we merely need to
find out (1) what is the complexity of a step of the WSTS (in
the case of PDNs, transitions perform simple affine operations
in F1), and (2) the maximal order type of the wqo, which is
a measure of its complexity (this is Ωk for a k-PDN). By
the length function theorem for elementary wqos (see full
version of [22]), we then obtain a parameterised upper bound
in F

ωωk
for the decision problems of k-PDNs mentioned

in Section II-B, and a uniform Fωωω upper bound (which
asymptotically majorises every function in

⋃
k F

ωωk
) when

the dimension is not fixed.
These upper bounds hold more generally for k-DNs, as

they have the same order type and their extra whole-place
operations are still in F1. Regarding TPNs and CMRSs,
the Fωωω upper bound also holds; however here the main
parameter in the parameterised complexity—which appears as
the exponent on top of the tower of ω’s—is not simply the
dimension k but km where m is the maximal constant that
appears in the constraints put on transitions or in the initial
marking.

V. COMPLEXITY LOWER BOUNDS

We now describe the proof plan for our main result.

Theorem 4 (Lower Bound). Coverability and termination for
PDNs are Fωωω -hard.

This follows from a reduction from the halting problem
for Minsky machines (MM) M with counters bounded by
Fωωω (|M |). The proof is done by assembling two construc-
tions (described in the following sections). The schematics
(see Fig. 1) are similar to earlier constructions for lossy
channel systems or counter machines and the reader can refer
to [23, 10] where more lower-level details are given. We
outline it as a motivation for the following sections.

NH [k]

=(Ωk)k,k︷ ︸︸ ︷
α0, n0

r−→ · · · r−→ αi, ni
r−→ · · · r−→ αℓ,

≤Hα0 (n0)︷︸︸︷
nℓ

pstart
prewr phalt

trewr

NH−1[k]

0,m0
r−→−1 · · · r−→−1 α, n

p′′startp′′rewr
p′′halt

t′′rewr

NM
p′start

p′halt

simulate M
using cpt
as a budget

cpt

cM1

cMr

Fig. 1. Schematics for Theorem 4.

1) Direct Computation: For a provided size k, we first
construct (see Section VII) a PDN NH [k] initialised with a
pair α0, n0

def
= (Ωk)k, k and that tries to rewrite it α0, n0 −→

α1, n1 −→ · · · −→ α`, n` in a way that reflects precisely the
complete Hardy derivation issuing from α0, n0, thus comput-
ing n` = Hα0(n0) = HΩ(k). There are two difficulties here.
First, one has to encode ordinals in sequences of vectors (i.e.

in PDN configurations) and this is the topic of Section VI.
Secondly, our PDN only performs Hardy computations in a
weak sense. What is guaranteed is the following:

Lemma 5 (See Section VII). NH [k] is “complete”: Starting
with α0 = (Ωk)k, NH [k] can perform the exact Hardy
computation and halt with α` = 0 and n` = HΩ(k).
NH [k] is “safe”: Any halting computation in NH [k], correct
or incorrect, has n` ≤ HΩ(k).

2) Simulation: Now consider some MM M of size k. An
easy (see [11, §7] or [21, §4]) and classic construction yields a
PDN NM that simulates M as far as halting is concerned: NM
has unbounded places cM1 , . . . , cMr to simulate the r counters
of M . Starting from control place p′start and with empty
cM1 , . . . , cMr , it eventually reaches p′halt with cM1 , . . . , cMr
empty iff M halts. We further modify NM so that it uses cpt
(where NH [k] stores n`) as a budget, i.e. any incrementing of
a cMi is matched by decrementing cpt and vice versa, see [23,
§4]. Adding cpt as a budget has two consequences. First, M
is now simulated with an upper bound of n` for (the sum
of) its counters, at any time along its run. Second, when NM
reaches p′halt, witnessing that M halts, does not require testing
cM1 , . . . , cMr for emptiness: at this point, the value nf of cpt
is necessarily ≤ n`, and only equals n` if cM1 , . . . , cMr are
empty (NB: if M halts, nf = n` is indeed feasible).

3) Inverse Computation: We now connect NH [k], NM and
NH−1 [k] so that they run sequentially. Here NH−1 [k] is a PDN
for backward Hardy computations. It starts with α′0 = 0 and
m0 = nf (passed on by NM). Its backward computation
may reach (Ωk)k, k if m0 = HΩ(k). Here too, the PDN
only computes H−1 in a weak sense but it is guaranteed that
it can do exact backward computations (completeness) and
that incorrect backward computations halting on (Ωk)k, n have
H(Ωk)k(n) ≤ m0 (safety).

As a consequence, the resulting full PDN started with
(Ωk)k, k can reach a configuration with p′′halt and a pair α, n
that covers (Ωk)k, k (in terms of the places that store the
current Hardy pair) if, and only if, the Minsky machine M
with space bounded by HΩ(k) = Fωωω (k) halts.

Indeed, if M halts within the space bound, the PDN may
reach the required p′′halt, α, n by chaining exact Hardy compu-
tations and the simulation of M by NM . More interestingly, if
the required α, n is reached, we know, letting h def

= HΩ(k), that
n` ≤ h (safety of NH), that n` ≥ nf = m0 (budget of NM),
that Hα(n) ≤ m0 (safety ofNH−1), and that Hα(n) ≥ h (α, n
covers (Ωk)k, k). Thus h ≤ Hα(n) ≤ m0 = nf ≤ n` ≤ h.
Necessarily n` = nf , witnessing that M halts, and n` = h,
witnessing that M runs in space bounded by h = Fωωω (k).

In conclusion, the construction provides a (logspace) many-
one reduction from the halting problem for Minsky machines
running in space bounded by Fωωω (k) where k = |M | is
the size of the MM description. Using standard complexity-
theoretical arguments, Theorem 4 (for Coverability) follows.

4) Termination: Regarding termination, a similar reduction
works. One makes sure that NH [k] always halts or deadlocks
(it does) and stores two copies of n`: one is a time budget

that ensures the eventual halting-or-deadlock of NM , and the
other witnesses nf = n` as earlier. In the end, the whole
system has to eventually stop, unless it can cover (Ωk)k, k
with α, n, finally enabling an infinite loop. This reduces the
same MM problem to termination for PDNs. More details can
be found in [23, §7] where the same adaptation is done.

Using the simulations of PDNs by TPNs of [7] and of DNs
by CMRSs of [1, §5], we conclude:

Corollary 6. Coverability and Termination for TPNs, DNs,
and CMRSs are Fωωω -hard.

VI. ENCODING HARDY COMPUTATIONS

We define in this section a so-called “cumulative” encoding
of ordinals as codes (Section VI-A) and a rewriting system r−→
operating on codes that performs Hardy computations (Sec-
tion VI-B). Its crucial property is its robustness, which entails
that weak implementations, like the PDN implementation we
present in Section VII, are correct (see Section VI-C).

A. Encoding Ordinals as Cumulative Vector Sequences

Fix k ∈ N. An ordinal < ωk is “small” and we use β, β′, . . .
to denote small ordinals; an ordinal < ωω

k

is “medium” and
we use α, α′, . . . for such ordinals; finally, an ordinal < Ωk is
“large” and we use π, π′, . . . for such ordinals. A medium
ordinal can be written in CNF as α = ωβ1 +̇ · · · +̇ ωβp

where β1, . . . , βp are small ordinals, and a large ordinal can
be written as π = ωα1 +̇ · · · +̇ ωαm where α1, . . . , αm are
medium ordinals.

We now introduce an encoding of large ordinals that will
allow the computation of the Hardy functions with PDNs.
These data structures are 1) k-dimensional vectors in Nk for
small ordinals, 2) vector sequences in (Nk)∗ for medium
ordinals, and 3) cumulative encodings in (Nk] {#})∗ for
large ordinals, where # is a fresh tally symbol.

1) Small Ordinals as Vectors: For v ∈ Nk and an index
0 ≤ i < k, let v[i] ∈ N denote the i-th component of v. We use
two different orderings over Nk: the product ordering, denoted
v ≤ v′ and the lexicographic ordering, denoted v ≤lex v

′, with
most significant component at index k− 1. Recall that ≤ is a
wqo, and that ≤lex is a linearization of ≤.

With a vector v ∈ Nk, we associate the small ordinal

β(v)
def
= ωk−1 · v[k − 1] +̇ · · · +̇ ω0 · v[0] . (4)

This establishes a bijective correspondence between Nk and
small ordinals, and we write v(β) for β−1(β). We write 1i
for the vector with v[i] = 1 and v[j] = 0 for all j 6= i. Hence
β(0) = 0 and β(1i) = ωi.

The bijection relates the two linear orderings of small
ordinals and of vectors in Nk since

v ≤lex v
′ iff β(v) ≤ β(v′) . (5)

2) Medium Ordinals as Vector Sequences: With a finite
sequence V = v1v2 · · · vp ∈ Nk∗, we associate the ordinal

α(V) = α(v1v2 · · · vp) def
= ωβ(v1) + · · ·+ ωβ(vp) . (6)

This surjective1 embedding of Nk∗ into ωω
k

satisfies
α(VV′) = α(V) + α(V′). Write ε for the empty sequence
in Nk∗. Then α(V) = 0 iff V = ε, and α(V) = 1 iff V = 0.

Example 7. Consider k = 2: α(10) = α(|01) = ωβ(10) =

ωω
0·1 = ω1 = ω, thus α(|01 |01) = ω · 2, while α(2 × 10) =

α(|02) = ωω
0·2 = ω2.

We order vector sequences with ≤∗, the sequence extension
of ≤: it is a wqo since ≤ is.

We say that V = v1 · · · vp is pure if v1 ≥lex v2 ≥lex

· · · ≥lex vp: restricted to pure vector sequences, the embedding
in (6) is bijective since the expression giving α(V) in Eq. (6)
is in CNF. We write pure(V) for the only pure V′ such
that α(V) = α(V′): one obtains pure(V) by removing in
V = v1 · · · vp any vi such that vi <lex vj for some j > i.
Hence pure(V) ≤∗ V.

3) Cumulative Encodings for Large Ordinals: Fix a special
tally symbol # and let Nk#

def
= Nk∪{#}. A cumulative ordinal

description, or simple a “code”, is a sequence x in Nk#∗. Below
we see them as sequences in [Nk∗#]∗Nk∗, i.e. we single out
the tally symbols and factor codes under the form

x = V1#V2# · · ·#Vm#Vrest , (7)

where the Vi’s are vector sequences. We extend ≤∗ from
vector sequences to codes in the natural way, by requiring
that a # embeds into a #: this is still a wqo.

With x we associate a large ordinal π(x) via the following

π(V1#V2# · · ·#Vm#Vrest)
def
=

ωα(V1V2···Vm) +̇ · · · +̇ ωα(V1V2) +̇ ωα(V1) .
(8)

The above definition explains why codes are called cumulative.
One can also define π inductively by

π(V) = 0 , π(V#x) = ωα(V) · π(x) +̇ ωα(V) . (9)

We say that x is pure if each Vi, i = 1, . . . ,m, is pure, and
if in addition Vrest = ε. (NB: purity of, e.g., V1#V2#, does
not guarantee purity of V1V2.) For a code x, the unique pure
x′ such that π(x) = π(x′), denoted x′ = pure(x), is given by

pure(V1#V2# · · ·#Vm#Vrest) =

pure(V1)#pure(V2)# · · ·#pure(Vm)#ε .
(10)

Lemma 8. x ≤∗ x′ implies pure(x) ≤∗ pure(x′).

Lemma 9 (Bijection). Pure codes in Nk#∗ and large ordinals
in Ωk are in bijection by π.

1This is not bijective, e.g. for v <lex v
′, α(v v′) = ωβ(v) + ωβ(v

′) =

ωβ(v
′) = α(v′)

(
6= ωβ(v

′) +̇ ωβ(v)
)
.

If we write V (x) for the vector sequence obtained by
removing all tally symbols from x, i.e. the result of the
projection # 7→ ε applied to x, then

π(x1#x2) = π(pure(V (x1)x2)) +̇ π(x1#) . (11)

Example 10. Let k > 1; the initial Hardy computation step
x0, k → x1, k with pure codes x0, x1 is defined by

x0
def
= (1k−1)k# ; π(x0) = (Ωk)k ;

x1
def
= (1k−1)k−1(1k−2)k# ; π(x1) = ωω

ωk−1·(k−1)+ωk−2·k
.

B. Rewriting of Ordinal Codes

Let us turn to the encoding of Hardy computations (below
Ωk) as rewriting rules on codes. Such a system should e.g.
map x0 to x1 in Example 10. It turns out that the bulk of the
task when computing Hardy functions lies in computing the
elements in the fundamental sequences of limit ordinals.

1) Limit Ordinals: Observe that a code denotes a succes-
sor ordinal if it is of the form #x, as indeed π(#x) =
ω0 · π(x) + ω0 = π(x) + 1. Conversely, a pure code of
form Vv#x denotes a limit ordinal π(Vvx) +̇ ωα(Vv) s.t.(
π(Vv#x)

)
n

= π(Vvx) +̇ (ωα(Vv))n. We want to define
a similar mapping (.)n from codes to codes s.t. π

(
(x)n

)
=(

π(x)
)
n

; this mapping essentially needs to treat the head Vv,
which contributes the smallest term ωα(Vv) to the encoded
ordinal. Several cases arise depending on v:
• if v = 0, i.e. ωβ(v) = 1, then ωα(V0) = ωα(V)+1 verifies

(ωα(V0))n = ωα(V) · n, encoded through

(V0)n
def
= V#n . (12)

Thus we verify

π
(
(V0#x)n

) def
= π(V#n0x) (13)

= π(V0x) +̇ ωα(V) · n
=
(
π(V0#x)

)
n
.

• if v 6= 0 then (ωα(Vv))n = ωα(V)+̇(ωβ(v))n (recall that
Vv is pure) is encoded by

(Vv)n
def
= V(v)n# , (14)

and we need to further distinguish two cases: let i ∈
{0, . . . , k− 1} be the smallest index with v[i] > 0. Then
β(v) is a successor ordinal if i = 0 and a limit ordinal
otherwise, hence the definition

(v)n
def
=

{
(v − 10)n if i = 0,
v − 1i + n · 1i−1 otherwise.

(15)

Since every vector in the sequence (v)n is <lex v, this
verifies

π
(
(Vv#x)n

) def
= π(V(v)n#vx) (16)

= π(V(v)nvx) +̇
(
ωα(Vv)

)
n

= π(Vvx) +̇
(
ωα(Vv)

)
n
.

The definitions (12–16) thus result for a pure Vv in

π
(
(Vv#x)n

)
= π

(
(Vv)nvx

)
=
(
π(Vv#x)

)
n
. (17)

2) Rewriting System: We define a set of rewriting rules r−→
working on pairs (x, n) of a code x and a number n ∈ N, that
together encode an intermediate stage Hπ(x)(n) in the course
of a Hardy computation.

Definition 11 (r−→). The relation x, n r−→y,m is given by rules
(R1–R2) below.

#x, n
r−→ x, n+ 1 (R1)

Vv#x, n
r−→

(Vv)nx, n if x = ε or x = v′x′

with v <lex v
′

(Vv)nvx, n if x = #x′ or x = v′x′

with v′ ≤lex v

(R2)

Rule (R2) implements the case of limit ordinals and is
correct by (17)—the first subcase includes a purification step
when π((Vv)nvx) = π((Vv)nx)—while rule (R1) handles
successor ordinals:

Proposition 12 (Correctness of r−→). x, n r−→ y,m and x pure
imply Hπ(x)(n) = Hπ(y)(m).

Remark 13 (Purity is required). A step x, n
r−→ y,m is not

always correct when x is not pure: e.g. if k = 1, π(01#) =
ω + ωω = ωω but 01#, n

r−→ 0n+1#, n, which encodes ωn+1,
and Hωω (n) = Hωn(n) < Hωn+1

(n).

It is convenient to work with pure codes in proofs: the one-
to-one correspondence between pure codes and ordinals in
Ωk yields a one-to-one correspondence between a pair (x, n)
and a snapshot of a Hardy computation Hπ(x)(n), allowing to
transfer results from Hardy computations to r−→.

More importantly, note that Proposition 12 entails the
correctness of r−→ even when applied backwards: we capture
both forward and backward Hardy computations with the same
rewriting system.

C. Robustness of r−→
So far, our encoding of ordinals in Ωk and the rewriting sys-

tem r−→ can be seen as a (rather convoluted) way of performing
forward and backward Hardy computations using sequences of
vectors. Their critical interest compared to more basic ordinal
encodings is that r−→ is robust: if instead of computing with x, n
we first decrease the configuration in an uncontrolled way to
some y,m with y ≤∗ x and m ≤ n, we obtain a configuration
that codes a smaller value Hπ(y)(m) ≤ Hπ(x)(n). This
result is subject to hygienic conditions on x, n and y,m; see
Proposition 16 for the exact statement.

Remark 14 (Non-Robustness of CNF). Let us pause for a
moment and consider a natural encoding χ of large ordinals. In
this encoding, we use the CNF of the ordinal and separate pure
vector sequences with “+̇” symbols s.t. χ(V1 +̇ · · · +̇Vm)

def
=

ωα(V1)+̇· · ·+̇ωα(Vm); e.g. p = 1+̇0 codes χ(p) = ωω +̇ω for
k = 1. However, q = 10 verifies q ≤∗ p and codes the much
larger ordinal χ(q) = ωω+1, with Hχ(p)(n) = Hωω+̇ω(n) <
Hωω·(n−1)+̇ωn(n) = Hχ(q)(n) when n > 0. By contrast, with
cumulative codes, “losing” a tally symbol results in the loss of

a summand in the corresponding ordinal, which immediately
leads to smaller Hardy values.

a) Trim Codes: We introduce a restriction on codes that
allows to ensure that r−→ behaves as expected, especially when
performing backward computations: a pure code x is n-trim
if, for any vector v occurring in x, there exists 0 ≤ i < k s.t.
v[i] ≤ n and for all 0 ≤ j < i, v[j] = 0 and all i < j < k,
v[j] ≤ n− 1 (this restricts the ordinal β(v)). A configuration
x, n of r−→ is trim if x is n-trim, and a computation x0, n0

r−→
x1, n1

r−→ · · · r−→ xm, nm is trim if every configuration xi, ni
is trim. Write x′, n trim−−→ x, n if x ≤∗ x′ and x is n-trim (and
thus pure) and call trimming the transformation from x′, n to
x, n (nondeterministic but always possible, e.g. by decreasing
vector values in excess, or removing vectors). In particular,
trim−−→⊆≥∗ where we let x, n ≤∗ x′, n′ def⇔ x ≤∗ x′ and n ≤ n′.

Trimness allows us to focus on particular computations of
r−→:

Lemma 15. If x is n-trim, then there exists a trim computation
x, n

r−→∗ ε, Hπ(x)(n).

As our initial code x0 defined in Example 10 is k-trim, it
suffices in the following to consider trim computations, i.e.
forward computations in rt−→ or backward computations in
rt−→−1, where x, n rt−→ y,m

def⇔ x, n
r−→ y,m and x, n and y,m

are trim. (In other words, rt−→=
r−→∩ {x, n | x, n is trim}2).

The next proposition states the key monotonicity property
of trim computations:

Proposition 16 (Robustness). Let x, x′ be pure codes and
n′ > 0. If x′ is n′-trim and x, n ≤∗ x′, n′, then Hπ(x)(n) ≤
Hπ(x′)(n′).

b) Weak Implementations: The efforts put into defining a
robust computation for the Hardy functions pay when one tries
to implement them in a “weak” model like PDNs, as we do
in Section VII—but this could also be used in other models.
By a weak implementation, we mean—as usual in the Petri
net literature—an implementation that guarantees

1) completeness: it includes the desired behaviour, and
2) safety: it might also yield “smaller” results.

In the case at hand, we provide sufficient conditions (see
Definition 18) for two relations d−→ and b−→ on configurations
to be called weakenings of r−→ and r−→−1. The conditions will
be easy to check on the actual implementation by PDNs of
Section VII, and they entail:

Theorem 17 (Weak Implementations). If d−→ is a weakening
of r−→ and b−→ a weakening of r−→−1, then

1) For any n0-trim x0, x0, n0
d−→ ∗ε, Hπ(x0)(n0) and

ε, Hπ(x0)(n0)
b−→∗x0, n0.

2) If x0 is n0-trim and x0, n0
d−→∗ε, n then n ≤ Hπ(x0)(n0),

and if ε,m b−→∗x, n, then Hπ(x)(n) ≤ m.

Note that these are exactly the two properties required in the
main proof of Section V from the PDNs NH [k] and NH−1 [k].

Here are our sufficient conditions:

Definition 18 (Weakenings). A relation d−→ on codes is a
weakening of r−→ if rt−→ ⊆ d−→ ⊆ ≥∗; trim−−→;

rt−→;≥∗; trim−−→.
Similarly, a relation b−→ is a weakening of r−→−1 if rt−→ −1 ⊆
b−→ ⊆ ≥∗; trim−−→;

rt−→−1;≥∗; trim−−→.

Proof of Theorem 17: For (1), by Lemma 15, for
an n0-trim x0, x0, n0

r−→ ∗ε, Hπ(x0)(n) implies x0, n0
rt−→
∗

ε, Hπ(x0)(n) and ε, Hπ(x0)(n) (
rt−→−1)∗ x0, n0 since ε is(

Hπ(x0)(n)
)
-trim.

For (2), we reconstruct step by step pieces of a computation
of rt−→ or rt−→−1. For d−→, if x, n is trim and x, n ≥∗ x′, n′ trim−−→
x′′, n′′

rt−→ y′′,m′′ ≥∗ y′,m′ trim−−→ y,m, then

Hπ(x)(n) ≥ Hπ(x′′)(n′′) (by Prop. 16)

= Hπ(y′′)(m′′) (by Prop. 12)

≥ Hπ(y)(m) , (by Prop. 16)

from which a simple induction yields the result.
Similarly for b−→, if y,m is trim and y,m ≥∗ y′,m′ trim−−→

y′′,m′′
rt−→−1x′′, n′′ ≥∗ x′, n′ trim−−→ x, n, then

Hπ(y)(m) ≥ Hπ(y′′)(m′′) (by Prop. 16)

= Hπ(x′′)(n′′) (by Prop. 12)

≥ Hπ(x)(n) , (by Prop. 16)

and we proceed again by induction.

VII. PETRI DATA NET IMPLEMENTATION

We explain in this section how to construct NH and NH−1 ,
the PDNs that we announced and used in Section V. They
transform pairs x, n via a relation d−→ (or b−→ for NH−1) that
is a weakening of r−→ (resp., of r−→−1) so that Theorem 17 is
a proof of Lemma 5. We have to explain how to represent
pairs x, n in a PDN, how to transform them correctly, and
to engineer definitions for d−→ and b−→ that are both simple
enough for PDN implementability, but rigorous and complete
enough to fulfil the requirements of Definition 18. One can
loosely describe d−→ and b−→ as “trying to perform r−→ or r−→−1

on codes, tolerating decreases (wrt ≤∗) on x and n, all the
while trimming x regularly because Definition 18 requires it.”
The PDNs are highly nondeterministic (unlike r−→) and may
deadlock, but this is not a concern.

What makes PDNs relatively powerful is that they can make
weak copies of a counter and even of a sequence, and they
can use these weak copies for bounding the number of times
a loop is executed (“weak control”). We designed codes and
robustness precisely to fit this weak computational power.

In the rest of this section we explain how codes are
represented in a PDN (Section VII-A) and how to perform
trimming. Due to lack of space, the definitions and the
implementation of d−→ and b−→ can be found in the full version
of the paper, but all the main implementation ideas are already
present with the trimming process.

A. Encoding Configurations of r−→ in a PDN

The weak implementation of Hardy computations has to
maintain a PDN representation of a code/counter pair x, n.

1) Counter: The counter n is represented via two places
cpt and cpt.id. Place cpt.id is an identity place for
relevant tokens: the current value of the counter will be the
number of tokens in cpt whose identity match cpt.id.

2) Code: For a code x of length l, distinct identities I1 <
. . . < Il identify each item in x. Every item of the code is
identified by a unique identity, and the ordering of identities
lets one recover the code. All the identities that have been used
for items of the current and past codes are stored in two places,
vect and tally, letting one distinguish between vector and #
occurrences in x; note that each # occurrence has a different
identity. The representation of a vector v identified by some I
in a code is done via places c0, . . . , ck−1: v[i] is the number
of tokens in ci with identity I .

Identities evolve during a computation. In order to prevent
tokens with now irrelevant identities from disturbing the
computation, NH uses two identity places, low and high.
We make sure that at any time each of these two places
contains a single token, and we just write low or high to
denote the identity carried by that single token. Initially, one
has cpt.id < low < high and the identities I1, . . . , Il for
the (current) code are exactly those with low < I < high;
other identities are irrelevant for x.

When simulating an r−→ step (and except in simple cases),
cpt.id is decreased, high is increased and low is set to the
previous value of high. Thus tokens with (now) irrelevant
identities will never match the current value of cpt.id nor
belong to the open interval (low, high).

B. Counter Duplication

In most cases, r−→ requires that we iterate some operation at
most n times (or n−1, or ...) where n is the current value of the
counter. In NH this is systematically done in a modular way
by first duplicating the counter and then consuming the tokens
of the duplicate, thus controlling the number of iterations.

For this, NH uses two places, dpt and dpt.id, where it
stores duplicates of the tokens in cpt and cpt.id. The net
of Fig. 2 depicts the duplication.2 Transition dp1 performs the
identity updating: cpt.id acquires a smaller identity C′ < C

while dpt.id is updated with the previous identity of cpt.id,
namely C. Then transition dp2 transfers the tokens of cpt

(corresponding to the previous identity of the counter D) both
to the original counter and to the duplicated counter. Transition

2 We rely on the standard graphical depiction of enriched nets and use
(pictures of) Petri nets where arcs connected to a transition t are labelled with
bags of variables that must be instantiated by ordered identities. The number
of these variables is exactly |cons(t)| and the ordering of the corresponding
identities is carried by the transition. For concision and readability, it is
convenient to allow orderings of the variables that are not total: this stands
for all possible linearizations. We also use graphical conventions for better
readability: control places containing black tokens are greyed or filled some-
how, identity places containing at most one token per identity are represented
by simple circles, and the other places, used for counters or general storage,
are represented by double circles.

before dp1

dp2
dp3C'<C

dpt.id dpt

after

cptcpt.id

duplicate

C'
C

C

D

C

D

D
D

C

Fig. 2. Duplication of the counter value.

.
.
.

sk-1

ffirst

tsi

from ci di

T

to

F
F

T F
si

tsk-1

.
.
.

addone

ept.id ept

E E

F
F T F

T

ts'i

ifirst

ept := dpt - 1

ept := dpt - 1

.
.
.

Fig. 3. Copying the first vector (case i).

dp3 stops the process, and is slightly modified if we need to
put n−1 rather than n in dpt. (In order to avoid a special case
for the first duplication, the initial marking has dpt empty and
dpt.id with the same identity as cpt.id.)

This simple mechanism must be refined for the loops in
the trimming process (see below) where the value of n is
used to control that every component of a vector in the code
is ≤ (some value related to) n. Here one cannot just iterate
the previous mechanism: since every duplication possibly
decreases n and could violate the property already established
for previous components. A more elaborate implementation
is required: NH uses a second auxiliary counter ept and
ept.id (initialised using dpt and dpt.id) for such multiple
controls (as in Fig. 3). In order to avoid a clash of identities
for counters, at every initialisation of ept, the new identity
of dpt.id, namely D′ is selected by the guard C < D′ < D

where D and C are the current identities of dpt.id and cpt.

C. Weak Trimming

During most weak rule applications, a trimming is per-
formed on-the-fly while the exact rule is simulated, i.e. we
actually weakly implement rt−→ and its inverse. This trimming

consists in implementing ≥∗; trim−−→ during the selection and
copy of the rule left-hand side and is simultaneously ensured
from the rule right-hand side: it turns a configuration t, n into
another one t′, n′ ≤∗ t, n which is trim and pure.
• NH first duplicates the counter cpt, yielding a new value
n′ ≤ n (see Fig. 2). Below we assume that this stage is
already passed.

• NH scans (in increasing order) relevant identities (the
ones in vect or sharp, between low and high), purifies
the code and copies it beyond high as we explain.

• It purifies, one at a time, sequences separated by #s.
• When copying a vector sequence, the first vector is copied

but also duplicated in auxiliary places d0, . . . , dk−1 inter-
preted as the ci’s. The remaining vectors are also copied
and duplicated. Purity is enforced by checking that any
(copy of a) vector is lexicographically below the previous
vector, as stored in d0, . . . , dk−1.

• Finally, both vectors should fulfil the trimming constraint:
for some i < k, v[i] ≤ n, and v[j] < n when j > i, and
v[j] = 0 when j < i.

1) Controlling Trimming: Let us detail how this is con-
trolled. NH uses three additional identity places: from, to
and with. The current item’s identity is from, its copy after
trimming has the new identity to, and the purification of a
vector requires comparisons with the previous vector in the
sequence, whose identity is recorded in with, letting one
select the appropriate tokens in d0, . . . , dk−1. Fig. 4 describes
the overall control of this process, started by beg.pur,
looping, and concluded by end.pur. The body of the loop
copies one vector sequence followed by a #. If non empty,
the sequence has just one vector, or more, requiring two
different treatments. For readability, the labeling of the crucial
transitions is specified in the lower part of the picture:
• At start, beg.pur produces identity tokens in from and
to within the appropriate intervals (wrt. low and high),
guessing the identity of an item to be copied.

• When the treatment ends, end.pur updates low and
high to their new value.

• After copying the first vector, efirst guesses a new
identity (to be copied) in from and a new (target) identity
in to, while recording the current identity in with.

• After copying a remaining vector, erem guesses fresh
identities from and to, and updates the recorded identity
in with.

• csharp copies a # symbol, consuming a token in sharp

with identity from and producing a token with identity
to (while updating from and to as usual).

Observe that a bad guess in from can lead to deadlock but
no infinite looping is possible (as required by the proof of
Theorem 4).

2) Copy of a Vector Sequence:
a) First Vector: First, in order to guarantee a trim rep-

resentation, the copy of the first vector non deterministically
selects a component i, which is allowed to be less than or
equal to n. The rest of the process is depicted in Fig. 3. It

end.purbeg.pur

ifirst ffirst irem

Copy
first vector

Copy
remaining vectors

csharp

frem

from

vect

F

F

F

F

efirst erem

high

H

L<F<H<T

low

L

to

F

beg.pur

T

from with

H

F<F'<H<T<T'

high

F

to

F'

efirst T

from

T'

F

with

H

F<F'<H<T<T'

high

F

to

F'

erem T

from

T'

FW

sharp

H

F<F'<H<T<T'

high

T

to

F'

csharp T

from

T'

FF

high
H

low

L

to

F

end.pur

T

from

with

W

T

H

to
T T

T T

Fig. 4. Control part of the trimming phase.

consists for j > i in:
• setting the auxiliary counter ept to dpt;
• “updating” tokens in place cj from identity F to identity
n, and at the same time in memorising the transferred
tokens in place dj for j > i. With the help of the
counter ept, at most n − 1 tokens are transferred. This
is performed by transition tsj .

We then perform the same transfer for component i, but allow
one more token thanks to the firing of transition ts′i. No token
is transferred for any component j < i.

b) Remaining Vectors: For the sake of readability, we do
not represent the management of trimming, which is performed
as with the first vector, but rather focus on the purity of the
vector sequence.

Let us call v the vector to be copied (identified by variable
F), v′′ the last vector that has been copied (identified by W)
and v′ ≤ v the vector to be copied (identified by T). In order
for v′ to be lexicographically smaller than v′′ it must satisfy:
• either for all i, v′(i) ≤ v′′(i)
• or there exists some i s.t. for all j > i, v′(i) ≤ v′′(i) and
v′(i) ≤ v′′(i)− 1.

Then the simulation non deterministically selects one of these
cases. The purity check is thus largely similar to the trimming
one: copying is limited by some values, depending on W and
cpt.

Observe that one of the possible results of weak trimming
is (exact) trimming of the code, and that the other ones are
trimmings of a weaker code.

VIII. ON WELL-STRUCTURED LANGUAGES

Well-structured transition systems can be seen as language
acceptors (or generators). For M a class of WSTS models,
e.g. M = the Data Nets, let L(M) be the class {L(M) | M ∈

M} of languages (nondeterministically) accepted by systems
in M when their transitions carry labels, possibly ε, over some
alphabet, and when the set of “final”, or “accepting”, states is
upward-closed. Geeraerts et al. [17] shows convincingly that
this notion of well-structured languages (WSL), also called
coverability languages, is most relevant.

A series of recent papers (see [17, 1, 8] and the references
therein) successfully use WSLs as a tool for comparing the
descriptive power of varied WSTS models, showing equiva-
lence, e.g. of PDNs and TPNs, or, separating them from the
less expressive LCSs (lossy channel systems) or APNs (affine
Petri nets [15]).

It turns out that the simulation we develop in this paper (and
the matching complexity upper bounds) leads to a (relative but)
precise characterisation: Let L0 = {w#n | n = |w|} collect
all words (over a two-letter alphabet) equipped with a length
witness: L0 ⊆ (a+ b)∗#∗ is deterministic context-free.

Theorem 19.
1) L ∈ L(PDN)(= L(TPN) = L(DN)) implies L ∈⋃

k∈N TIME(F
ωωk

(n)).
2) L ∈ ⋃k∈N TIME(F

ωωk
(n)) implies L ∩ L0 ∈ L(PDN).

The proof relies on the possibility of simulating a space-
bounded MM. Using the simulations in [10, 23] and the upper
bounds in [13, 22] we derive in a similar way:

Theorem 20. For any L ⊆ L0:
1) L ∈ ⋃k∈N TIME(Fωk(n)) iff L ∈ L(LCS).
2) L ∈ ⋃k∈N TIME(Fk(n)) iff L ∈ L(APN).

This immediately entails separation results like L(APN) (
L(LCS) (L(PDN)(= L(TPN) = L(DN)) and the non-
collapse of hierarchies like {L(k-PDN)}k∈N, {L(k-LCS)}k
and {L(k-APN)}k where k-DN, k-APN and k-LCS restrict

to nets with at most k places (resp., to channel systems with
a k-letter internal message alphabet). These first separation
results are not stronger than those of [1, 8], but they provide
a standard measure (using Turing, or equivalently Minsky,
machines) rather than a myriad of relative ones.

IX. CONCLUDING REMARKS

Theorems 3 and 4 close the open question of the complexity
of decision problems over the family of “enriched” nets (our
terminology), and have immediate consequences, e.g. for sepa-
rating various WSTS models according to their computational
power. Interestingly, we are not aware of any other natural
decision problem sitting exactly at level Fωωω [16], which
makes of enriched net problems the canonical examples for
this complexity class.

Our main technical contribution is the robust encoding in
(Nk∗,≤∗) of ordinals in Ωk, together with rewrite rules that
describe Hardy computations. Enriched nets are not the only
computational model in which these rules can be weakly
implemented, and one may use them for proving complexity
lower bounds in other settings.

Finally, let us mention two questions raised by this work:
1) Can one improve on Theorem 20? We would prefer an

exact characterisation of L(PDN), not relatively to L0.
2) What about ν-Petri nets [21] and unordered PDNs? The

underlying wqo is simpler than Nk∗, hence we expect
lower complexities.

ACKNOWLEDGMENT

Work supported by ANR grant 11-BS02-001-01 and by the
Leverhulme Trust. The third author is currently visiting the
Computer Science Department at Oxford University.

REFERENCES

[1] P. A. Abdulla, G. Delzanno, and L. Van Begin, “A
classification of the expressive power of well-structured
transition systems,” Inform. and Comput., vol. 209, pp.
248–279, 2011.

[2] P. Abdulla, P. Mahata, and R. Mayr, “Dense-timed Petri
nets: Checking Zenoness, token liveness and bounded-
ness,” Logic. Meth. in Comput. Sci., vol. 3, p. 1, 2007.

[3] P. A. Abdulla and G. Delzanno, “On the coverability
problem for constrained multiset rewriting,” in AVIS
2006, 2006.

[4] P. A. Abdulla and A. Nylén, “Timed Petri nets and
BQOs,” in Petri Nets 2001, ser. LNCS, vol. 2075.
Springer, 2001, pp. 53–70.

[5] P. A. Abdulla, K. Čerāns, B. Jonsson, and Y.-K. Tsay,
“Algorithmic analysis of programs with well quasi-
ordered domains,” Inform. and Comput., vol. 160, pp.
109–127, 2000.

[6] T. Bolognesi, F. Lucidi, and S. Trigila, “From timed Petri
nets to timed LOTOS,” in PSTV ’90. North-Holland,
1990, pp. 395–408.

[7] R. Bonnet, A. Finkel, S. Haddad, and F. Rosa-Velardo,
“Comparing Petri Data Nets and Timed Petri Nets,”

LSV, ENS Cachan, Research Report LSV-10-23, Dec.
2010. [Online]. Available: http://tinyurl.com/82vwcxf

[8] ——, “Ordinal theory for expressiveness of well struc-
tured transition systems,” in FoSSaCS 2011, ser. LNCS,
vol. 6604. Springer, 2011, pp. 153–167.

[9] P. Bouyer, S. Haddad, and P.-A. Reynier, “Timed Petri
nets and timed automata: On the discriminating power
of Zeno sequences,” Inform. and Comput., vol. 206, pp.
73–107, 2008.

[10] P. Chambart and Ph. Schnoebelen, “The ordinal recursive
complexity of lossy channel systems,” in LICS 2008.
IEEE, 2008, pp. 205–216.

[11] C. Dufourd, A. Finkel, and Ph. Schnoebelen, “Reset nets
between decidability and undecidability,” in ICALP ’98,
ser. LNCS, vol. 1443. Springer, 1998, pp. 103–115.

[12] M. V. H. Fairtlough and S. S. Wainer, “Ordinal com-
plexity of recursive definitions,” Inform. and Comput.,
vol. 99, pp. 123–153, 1992.

[13] D. Figueira, S. Figueira, S. Schmitz, and Ph. Schnoebe-
len, “Ackermannian and primitive-recursive bounds with
Dickson’s Lemma,” in LICS 2011. IEEE, 2011, pp.
269–278.

[14] A. Finkel and Ph. Schnoebelen, “Well-structured transi-
tion systems everywhere!” Theor. Comput. Sci., vol. 256,
pp. 63–92, 2001.

[15] A. Finkel, P. McKenzie, and C. Picaronny, “A well-
structured framework for analysing Petri nets exten-
sions,” Inform. and Comput., vol. 195, pp. 1–29, 2004.

[16] H. M. Friedman, “Some decision problems of enormous
complexity,” in LICS 1999. IEEE, 1999, pp. 2–13.

[17] G. Geeraerts, J.-F. Raskin, and L. V. Begin, “Well-
structured languages,” Acta Inf., vol. 44, pp. 249–288,
2007.

[18] L. Jacobsen, M. Jacobsen, M. Møller, and J. Srba,
“Verification of timed-arc Petri nets,” in SOFSEM 2011,
ser. LNCS, vol. 6543. Springer, 2011, pp. 46–72.

[19] R. Lazić, T. Newcomb, J. Ouaknine, A. Roscoe, and
J. Worrell, “Nets with tokens which carry data,” Fund.
Inform., vol. 88, pp. 251–274, 2008.

[20] M. Löb and S. Wainer, “Hierarchies of number theoretic
functions, I,” Arch. Math. Logic, vol. 13, pp. 39–51, 1970.

[21] F. Rosa-Velardo and D. de Frutos-Escrig, “Decidability
and complexity of Petri nets with unordered data,” Theor.
Comput. Sci., vol. 412, pp. 4439–4451, 2011.

[22] S. Schmitz and Ph. Schnoebelen, “Multiply-recursive
bounds with Higman’s Lemma,” in ICALP 2011, ser.
LNCS, vol. 6756. Springer, 2011, pp. 441–452, Avail-
able: arXiv:1103.4399 [cs.LO].

[23] Ph. Schnoebelen, “Revisiting Ackermann-hardness for
lossy counter machines and reset Petri nets,” in MFCS
2010, ser. LNCS, vol. 6281. Springer, 2010, pp. 616–
628.

APPENDIX

A. Subrecursive Hierarchies and Monotonicity

1) Properties of the Hardy Hierarchy: Let us remind a
few useful facts about the Hardy hierarchy (see [12] or [22,
Appendix C] for details).

The first fact is that each Hardy function is expansive and
monotone in its argument n:

Fact 21 (Expansiveness and Monotonicity, see e.g. 22, Lem-
mata C.9 and C.10). For all α, α′ and n > 0,m,

n ≤ Hα(n) , (18)
n < m implies Hα(n) ≤ Hα(m) . (19)

However, the Hardy functions are not monotone in the ordi-
nal parameter: Hn+1(n) = 2n+ 1 > 2n = Hn(n) = Hω(n),
though n + 1 < ω. We will introduce two ordinal orderings
in Section A2 and Section A4 that ensure monotonicity of the
Hardy functions.

Another handful fact is that we can decompose Hardy
computations:

Fact 22 (see e.g. 22, Lemma C.7). For all α, γ in Ω, and x,

Hγ+̇α(x) = Hγ(Hα(x)) . (20)

2) Pointwise Ordering: The classical “pointwise at n”
ordering used e.g. in [12] and [22, Appendix C] is defined
for any n ∈ N as the smallest transitive relation ≺n s.t.

α ≺n α+ 1 , λn ≺n λ . (21)

The inductive definition of ≺n implies

α′ ≺n α iff
{
α = β + 1 is a successor and α′ 4n β, or
α = λ is a limit and α′ 4n λn.

This can be understood a “descent” through ordinals, eventu-
ally reaching predecessor ordinals, which are defined by

Pn(α+ 1)
def
= α , Pn(λ)

def
= Pn(λn) , (22)

and indeed
0 4n α , Pn(α) ≺n α .

The interesting observation here is that the ordinals that appear
in a Hardy computation α0, n→ α1, n→ · · · → α`, n where
n remains constant, i.e. no successor steps are used, are all
related by ≺n: α0 ≺n α1 ≺n · · · ≺n α`. The first successor
step will occur with Pn(α0) + 1, n→ Pn(α0), n+ 1.

Obviously ≺n is a restriction of <, the linear ordering of
ordinals. For example, n = ωn ≺n ω but n + 1 6≺n ω. The
≺n relations are linearly ordered themselves, and <, can be
recovered in view of [see 22, Appendix C.2]:

≺0 ⊂ · · · ⊂ ≺n ⊂ ≺n+1 ⊂ · · · ⊂
(⋃

n∈N
≺n
)

= < . (23)

Fact 23 (Congruence, see 22, Lemma C.2). For all α, α′, γ
and all n > 0

α ≺n α′ implies γ +̇ α ≺n γ +̇ α′ , (24)

α ≺n α′ implies ωα ≺n ωα
′
. (25)

Fact 24 (Monotonicity, see e.g. 22, Lemma C.9). For all α, α′

and n,m,

α ≺n α′ implies Hα(n) ≤ Hα′(n) . (26)

Since Fα = Hωα , the same statement holds for F using (25).
3) Almost Lean Ordinals: Leanness is a norm on ordinal

terms used extensively in [22]: Let n be in N. We say that
an ordinal α < ε0 is n-lean if it only uses coefficients < n,
or, more formally, when it is written under the strict CNF
α = ωβ1 · c1 +̇ · · · +̇ ωβm · cm with β1 > · · · > βm, if we
have ci < n and if, inductively, βi is also n-lean, this for all
i = 1, . . . ,m.

Let us introduce a slight variant of n-lean ordinals [see 22,
Lemma D.2]: let α = ωβ1 · c1 +̇ · · · +̇ ωβm · cm be an ordinal
in CNF with α > β1 > · · · > βm and ω > c1, . . . , cm > 0.
We say that α is almost n-lean if either (i) cm ≤ n and both∑
i<m ω

βi and βm are n-lean, or (ii) cm ≤ n,
∑
i<m ω

βi is
n-lean, and βm is almost n-lean. An almost n-lean ordinal is
not necessarily n-lean, but an n-lean ordinal is always almost
n-lean.

The interest of almost n-leanness is that it is an invariant
of the ordinals appearing during forward Hardy computations.
As the initial ordinal of (10) is almost k-lean, this property is
preserved by perfect computations.

Lemma 25. If a limit ordinal λ is n-lean, then λn is almost
n-lean.

Proof: By induction on λ, letting λ = ωβ1 · c1 +̇ · · · +̇
ωβm · cm as above. If βm is a successor ordinal β + 1 (thus
β is n-lean), λn = ωβ1 · c1 +̇ · · · +̇ ωβm · (cm − 1) + ωβ · n is
almost n-lean. If βm is a limit ordinal, λn = ωβ1 · c1 +̇ · · · +̇
ωβm · (cm − 1) + ω(βm)n is n-lean by ind. hyp. on βm.

Lemma 26. If a successor ordinal α+1 is almost n-lean then
α is n-lean.

Proof: If α + 1 = ωβ1 · c1 +̇ · · · +̇ ωβm · cm as above,
it means βm = 0, thus we are in case (i) of almost n-lean
ordinals with cm ≤ n, and α = ωβ1 · c1 +̇ · · · +̇ωβm · (cm−1)
is n-lean. The converse implication is immediate.

Lemma 27. If a limit ordinal λ is almost n-lean then λn is
almost n-lean.

Proof: We proceed by induction on λ, letting λ = ωβ1 ·
c1 +̇ · · · +̇ ωβm · cm as above.

If βm is a successor ordinal β + 1, λn = ωβ1 · c1 +̇ · · · +̇
ωβm ·(cm−1)+ωβ ·n, and either (i) cm ≤ n and βm
is n-lean, and then λn also verifies (i), or (ii) cm < n
and β + 1 is almost n-lean and thus β is n-lean by
Lemma 26, and λn is again almost n-lean verifying
condition (i).

If βm is a limit ordinal, then λn = ωβ1 · c1 +̇ · · · +̇ ωβm ·
(cm − 1) + ω(βm)n . Either (i) cm ≤ n and βm
is n-lean, and by Lemma 25 (βm)n is almost n-
lean and λn is almost n-lean by condition (ii), or
(ii) cm < n and βm is almost n-lean, and by ind.

hyp. (βm)n is almost n-lean, and λn almost n-lean
by condition (ii).

The following lemma relates leanness, the pointwise order-
ing, and the linear ordinal ordering; this is a refinement of [22,
Lemma B.1], as it handles the almost n-lean case instead of
the n-lean one:

Lemma 28. Let α be almost n-lean. Then α < α′ iff α ≺n α′.
Proof: If α = 0, we are done so we assume α > 0 and

hence n > 0, thus α = ωβ1 · c1 +̇ · · · +̇ωβm · cm in CNF with
m > 0.

We prove the claim by induction on α′, considering two
cases:

1) if α′ = α′′ + 1 is a successor then α < α′ implies

α ≤ α′′, hence α
ih
4n α′′ ≺n α′.

2) if α′ is a limit, we claim that α ≤ α′n, from which

we deduce α
ih
4n α′n ≺n α′. We prove the claim by

induction and considering three subcases on α′:
a) if α′ = ωλ with λ a limit, then α < α′ implies

β1 < λ, hence β1 ≤ λn by ind. hyp., applicable
since β1 is also almost n-lean. Thus α ≤ ωλn =
(ωλ)n = α′n.

b) if α′ = ωβ+1 then α < α′ implies β1 < β + 1,
hence β1 ≤ β. Now, since α is almost n-lean,
either
i) c1 = n and m = 1, hence α = ωβ1 · n ≤
ωβ · n = (ωβ+1)n = α′n, or

ii) c1 < n, hence α < ωβ1 · n ≤ ωβ · n =
(ωβ+1)n = α′n.

c) if α′ = γ +̇ ωβ with 0 < γ, β, then either α ≤ γ,
hence α < γ +̇ (ωβ)n = α′n, or α > γ, and then
α can be written as α = γ +̇ γ′ with γ′ < ωβ .
In that case γ′ ≤ (ωβ)n by ind. hyp., applicable
since γ′ is also almost n-lean. Thus α = γ +̇ γ′ ≤
γ +̇ (ωβ)n = (γ +̇ ωβ)n = α′n.

4) Embedding Ordering: We introduce a partial ordering
vo on ordinals, called embedding, and which can be seen as
a tree embedding on CNF’s that respects layers. Formally, it
is defined inductively as

α vo β
def⇔

α = ωα1 +̇ · · · +̇ ωαp

β = ωβ1 +̇ · · · +̇ ωβm

α1 vo βi1 ∧ · · · ∧ αp vo βip
for some i1 < i2 < . . . < ip .

(27)

Note that 0 vo α for all α, that 1 vo α for all α > 0. Observe
that, in general, α 6vo ωα and λn 6vo λ. This ordering is
obviously congruent for addition and ω-exponentiation:

α vo α
′ and β vo β

′ imply α +̇ β vo α
′ +̇ β′ , (28)

α vo α
′ implies ωα vo ω

α′ , (29)

and could in fact be defined alternatively by the axiom 0 vo α
and the two deduction rules (28) and (29).

When considering the encoding of small ordinals described
in Section VI-A-1), the following holds:

v ≤ v′ implies β(v) vo β(v′) . (30)

The reciprocal of (30) does not hold in general, e.g. β(11) =
ω vo ω

2 = β(12) while 11 6≤ 12.
We list a few useful consequences of the definition of vo:

α vo γ +̇ ωβ implies α vo γ

or α = γ′ +̇ ωβ
′

with γ′ vo γ and β′ vo β ,
(31)

n ≤ m implies λn vo λm , (32)
α vo λ implies α vo λn or α is a limit and αn vo λn .

(33)

Proof: (31): Intuitively, there are two cases when we
consider an embedding α vo α′ = γ +̇ ωβ : either the ωβ

summand of α′ is in the range of the embedding or not. If
it is not, then already α vo γ. If it is, then α must be some
γ′ +̇ ωβ

′
and ωβ

′ vo ω
β .

(32): By induction on λ: indeed if λ = γ +̇ ωβ+1 then λm =
γ +̇ωβ ·m by (2) which is λn +̇ωβ ·(m−n). If λ = γ +̇ωµ, the
i.h. gives µn vo µm, hence λn = γ +̇ωµn vo γ +̇ωµm = λm.
(33): By induction on λ. λ is some γ +̇ ωβ with β > 0 so
that λn = γ +̇ (ωβ)n. If α vo γ, then α vo λn trivially. If
α = γ′ +̇ 1 is a successor, 1 vo (ωβ)n and again α vo λn.
There remains the case where α = γ′ +̇ ωβ

′
is a limit (i.e.

β′ > 0) with γ′ vo γ and β′ vo β. If β is a limit, then by
i.h. either β′ vo βn and hence α vo λn, or β′ is a limit and
β′n vo βn, hence αn vo λn. Finally, if β = δ+1 is a successor,
then either β′ vo δ so that α vo γ + ωδ vo γ + ωδ · n = λn,
otherwise by (31), β′ is a successor δ′ + 1 with δ′ vo δ, and
then (ωβ

′
)n = ωδ

′ · n vo ω
δ · n = (ωβ)n, hence αn vo λn.

Proposition 29 (Monotonicity).

α vo β and 0 < n ≤ m imply Fα(n) ≤ Fβ(m) , (34)

α vo α
′ implies Hα(n) ≤ Hα′(n) . (35)

Proof of (34): We prove (34) by induction on β. There
are three cases:
1. If β = 0 then α vo β implies α = 0 and we are done.
2. If β = λ is a limit, then by (33) either α vo λn or α is a
limit and αn vo λn. In the first case Fα(n) ≤ Fλn(m) by i.h.,
in the second case Fα(n) = Fαn(n) ≤ Fλn(m), again by i.h.
Now (32) and the i.h. entail Fλn(m) ≤ Fλm(m) = Fλ(m)
and we are done.
3. If β = β′ +̇ 1 is a successor, then by (31) either α vo β

′,
or α = α′ +̇ 1 with α′ vo β

′.
In the first case, Fα(n) ≤ Fβ′(m) (by i.h.) ≤ Fmβ′ (m) (by

expansiveness) = Fβ(m).
In the second case, Fα(n) = Fα′+̇1(n) = Fnα′(n). Now,

since α′ vo β
′, the i.h. gives F kα′(n) ≤ F kβ′(m) for all k ∈ N

(by ind. on k). In particular Fnα′(n) ≤ Fnβ′(m) ≤ Fmβ′ (m) (by
expansiveness) = Fβ(n).

Proof of (35): Let us proceed by induction on a proof
of α vo α

′, based on the deduction rules (28) and (29). For
the base case, 0 vo α′ implies H0(n) = n ≤ Hα′(n) by
expansiveness. For inductive step with (28), if α vo α

′ and
β vo β

′, then

Hα+̇β(n) = Hα
(
Hβ(n)

)
(by (20))

≤ Hα
(
Hβ′(n)

)
(by ind. hyp. and (19))

≤ Hα′
(
Hβ′(n)

)
(by ind. hyp.)

= Hα′+̇β′(n) . (by (20))

For the inductive step with (29), Hωα(n) = Fα(n) ≤
Fα′(n) = Hωα

′

(n) by (34).

B. Monotonicity for Codes

This Appendix details the proof of Proposition 16.
1) Atomic Losses: Let us first investigate a few properties

of ≤∗ over pure codes. Write x ≤1
∗ x
′ when x ≤∗ x′ and the

difference between two pure codes x and x′ is in some sense
“minimal”.3 Formally, the relation is defined by three axioms:

x1x2 ≤1
∗ x1#x2 x1x2 ≤1

∗ x1vx2 x1vx2 ≤1
∗ x1(v + 1j)x2

(36)

with 0 ≤ j < k.
It is plain that ≤∗ is the reflexive and transitive closure of

≤1
∗. The following lemma allows reducing Proposition 16 to

the simpler case x ≤1
∗ x
′:

Lemma 30. If x ≤∗ x′ are two pure codes, then there exists
x = x0 ≤1

∗ x1 ≤1
∗ x2 ≤1

∗ · · · ≤1
∗ x` = x′ where the xi’s are

pure.

Proof idea: We explain how to build the sequence of
intermediary xi’s in three steps.

1) One starts with x and adds all missing # symbols one
by one: this maintains purity.

2) One then adds vectors in place where they are missing.
In order to maintain purity, an empty position is filled
by duplicating the vector immediately to the right of the
empty slot (or add 0 if there is a # to the right). Any
such addition maintains purity.
For example, assume

x = . . .#v1v3v6# . . . and x′ = . . .#v′1v
′
2v
′
3v
′
4v
′
5v
′
6v
′
7# . . .

with vi ≤ v′i for i ∈ {1, 3, 6}. Then x can be filled (in
4 steps) with

x = . . .#v1v3v6# . . . ≤1
∗≤1
∗≤1
∗≤1
∗ . . .#v1v3v3v6v6v60# . . .

If this filling process is done from right to left, every
inserted vector is smaller than the corresponding vector
in x′ (since x′ is pure) hence the constructed xi+1

remains ≤∗ x′.
3) We have now reduced the problem to the case where x

and x′ have same length. It suffices to add enough unit

3It would be minimal for arbitrary codes if the second axiom was reading
x1x2 ≤1

∗ x10x2, but it would not always relate pure codes to pure codes.

vectors to every v until we reach the corresponding v′

in x′ whenever v < v′. If this is done from left to right,
purity is maintained.

2) Code Honesty: We investigate in this section two restric-
tions on the size of representation of codes during computa-
tions. One is an upper bound on the length of the code, and
is true of any forward or backward computation with r−→. The
second, trimness, is a restriction on the values that can appear
in the vectors of the code: it is guaranteed by our forward
computation, but need to be enforced on backward ones;
however there exists one “perfect” backward computation that
verifies it: it suffices to reverse the forward computation!

a) Length Hierarchy: We define a hierarchy of func-
tions Hα(n) that bounds the length of any pure code x s.t.
Hπ(x)(n) = Hα(n). The strategy we adopt is to employ
the rules of Definition 11 in reverse from a configuration
(ε, Hα(n)), and bound the size of the resulting code. It will
turn out that this hierarchy is already known in the literature
as the length hierarchy [24].

We define accordingly

H0(n) = 0 , (37)
Hα+1(n) = Hα(n+ 1) + 1 , (38)
Hλ(n) = Hλn(n) . (39)

Observe that, indeed, ε is of length 0, thus justifying (37);
that if x is of length ≤ Hα(n+ 1), then applying rule (R1) in
reverse increments this length by 1, thus justifying (38); finally,
if x is of length ≤ Hλn(n), then applying rule (R2) in reverse
either decreases this length, or preserves it in case of a rewrite
“Vv#x, n

r−→ V(v)n#x, n” with (v)n = v−1i+n ·1i−1 for
some i > 0, justifying (39). By Proposition 12, we deduce:

Lemma 31. If x is pure and x, n
r−→∗ ε, Hα(n), then |x| ≤

Hα(n).

The length hierarchy is closely related to the Hardy hierar-
chy; in particular [see e.g. 22, Eq. (65)]:

Hα(n) = Hα(n)− n . (40)

An easy observation in the same line as Lemma 31 is that
backward rule applications from ε, Hα(n) cannot increment
the values in vectors to more that the total computed value
Hα(n). Thus,

Lemma 32. If x1vx2 is pure and x1vx2, n
r−→∗ε, Hα(n), then

v[j] < Hα(n) for all 0 ≤ j < k.

b) Almost Lean and Trim Computations: Lemma 32 does
not provide us with enough information on the values in
vectors for our purposes. Recall the definition of almost n-lean
ordinals from Appendix A3. Let us call a pure code x almost
n-lean if π(x) is almost n-lean. By extension, a configuration
x, n of r−→ is almost lean if x is pure and almost n-lean, and
a computation x0, n0

r−→ x1, n1
r−→ · · · r−→ xm, nm is almost

lean if every configuration xi, ni is almost lean, for every
0 ≤ i ≤ m. By Lemmas 25 to 27, we deduce:

Lemma 33. If π(x) is almost n-lean, then there exists an
almost lean computation x, n r−→∗ε, Hπ(x)(n).

Note that our initial code x0 from (10) is almost k-lean.
However, almost n-leanness is not a robust property of

codes: e.g. |20 |10 |10 |10 # encodes ωω
ω2+̇ω·3

and is almost 2-
lean, but the smaller code |10 |10 |10 |10 # that encodes ωω

ω·4
is

not almost 2-lean. We therefore introduce a slight relaxation
of almost leanness: a pure code x is n-trim if, for any
decomposition x = x1vx2, the ordinal β(v) is almost n-lean,
i.e. there exists 0 ≤ i < k s.t. v[i] ≤ n and for all 0 ≤ j < i,
v[j] = 0 and all i < j < k, v[j] < n. By analogy with almost
leanness, call a computation trim if in every configuration
xi, ni the code xi is ni-trim. Unlike almost leanness, trimness
is clearly preserved by ≥∗. Interestingly, it is also preserved
by direct computations, as shown by Lemma 15, which is a
version of Lemma 33 that restricts computations to trim ones
instead of almost lean ones:

Proof of Lemma 15: Define a large n-trim ordinal as
π(x) where x is n-trim. We need to prove that if π′ is an
n-trim large ordinal and π ≺n π′, then π is n-trim. This is
obvious for π′ = π+1, and we turn now to the different limit
cases when π = π′n. If π = (γ +̇ ωα+1)n = γ +̇ ωα · n, this
holds; otherwise π = (γ +̇ ωα)n = γ +̇ ωαn and we only
need to prove that the small ordinals in αn = (

∑p
i=1 ω

βi)n
are almost n-lean, under the hypothesis that each βi is almost
n-lean since π′ is n-trim. If βp = β+1 is a successor ordinal,
then αn =

∑p−1
i=1 ω

βi +̇ωβ ·n, then β is clearly almost n-lean.
If βp is a limit ordinal, then αn =

∑p−1
i=1 ω

βi +̇ ω(βp)n is s.t.
βn is almost n-lean by Lemma 27. Hence π is n-trim in all
cases.

Lemma 15 implies that forward computations preserve trim-
ness, but more importantly that we can restrict our backward
rule applications to enforce trimness. Such a restriction is
required because backward rule applications do not necessarily
preserve trimness: for instance with k = 2, we can go from a
configuration (0, n)#, n to a configuration #(0, n)#, n − 1
by applying (R1), and if n is sufficiently large, later to a
configuration (0, n + 1)#, n′ for a considerably smaller n′.
What Lemma 33 entails is that there is another computation
that fits our needs: for this example, applying (R2) backwards
on (0, n)#, n yields (1, 0)#, n instead.

3) Monotonicity in Presence of Losses: We prove a series
of monotonicity results that allow to handle losses in codes.
As we work with ordinals of form ωα, it is more convenient
to express these results using Fα = Hωα .

Lemma 34. Let α, α′, γ be ordinals. If γ+α is almost n-lean
and α < α′, then γ + α ≺n γ + α′.

Proof: Write γ = γ1 +̇γ2 +̇γ3 so that γ+α = γ1 +̇γ2 +̇α
and γ+α′ = γ1 +̇α′. Now γ2 +̇α < α′ and γ2 +̇α is almost
n-lean, so that γ2 +̇ α ≺n α′ by Lemma 28 and γ + α =
γ1 +̇ γ2 +̇ α ≺n γ1 +̇ α′ = γ + α by (24).

Lemma 35. If γ ≺n γ′ then Fγ+α(n) ≤ Fγ+α′(n).

Proof: We proceed by induction over α.

For α = 0, γ ≺n γ′ entails Fγ(n) ≤ Fγ′(n) by (26).
For α = β + 1 a successor ordinal, the ind. hyp. and (23)

gives Fγ+β(m) ≤ Fγ′+β(m) for any m ≥ n,
hence Fnγ+β(n) ≤ Fnγ′+β(n) by (19) and (18), hence
Fγ+β+1(n) ≤ Fγ′+β+1(n).

For α = λ a limit ordinal, we immediately have Fγ+λ(n) =
Fγ+λn(n) ≤ Fγ′+λn(n) = Fγ′+λ(n) by ind. hyp.

We exploit Lemma 34 in the two following lemmata, which
match cases 2 and 3 of atomic losses in codes:

Lemma 36. If γ is n-lean, then Fγ+α′+α(n) ≤
Fγ+α′+̇ωβ+α(n).

Proof: If α′ > 0, the lemma is trivial, as putting γ =
γ1 +̇ γ2 and γ + α′ = γ1 +̇ α shows that γ1 +̇ α′ + α vo
γ1 +̇α′ +̇ωβ +α and we conclude by (34). Assume therefore
α′ = 0; then Lemma 34 applies to show γ ≺n γ+ωβ since γ
is almost n-lean and 0 < ωβ , and applying Lemma 35 yields
the result.

Lemma 37. If γ + ωβ is almost n-lean and β vo β
′, then

Fγ+α′+̇ωβ+α(n) ≤ Fγ+α′+̇ωβ′+α(n).

Proof: As in the previous proof, the case α′ > 0 is trivial
since ωβ vo ωβ

′
by (29). Assume therefore α′ = 0, then

ωβ < ωβ
′

yields γ + ωβ ≺n γ + ωβ
′

by Lemma 34, and
applying Lemma 35 yields the result.

The following proposition together with (19) immediately
proves Proposition 16:

Proposition 38. Let x, x′ be pure codes and n > 0. If x′ is
n-trim and x ≤∗ x′, then Hπ(x)(n) ≤ Hπ(x′)(n).

Proof: We proceed by induction on the number of ≤1
∗-

steps between x and x′. If x = x′ the result hold vacuously.
Consider therefore for the induction step a pure code x′′ with
x′′ ≤∗ x′ and x ≤1

∗ x
′′; clearly x and x′′ are also n-trim. By

ind. hyp., Hπ(x′′)(n) ≤ Hπ(x′)(n), and we only need to prove
Hπ(x)(n) ≤ Hπ(x′′)(n).

1) The first axiom is easy to treat: if x = x1x2 and x′′ =

x1#x2, then π(x) vo π(x′′) and thus Hπ(x)(n)
(35)
≤

Hπ(x′′)(n). This simple proof is the main rationale for
our cumulative encoding of ordinals.

The next two axioms require more work. In both cases, we
decompose x′′ into x1#V1vV2#x2 where v is the particular
vector modified by ≤1

∗, so that x = x1#V#x2 verifies either
V = V1V2 (in the case of the second axiom) or V = V1(v−
1j)V2 for some 0 ≤ j < k (in the case of the third axiom). By
Lemma 15, there exists a trim computation on x′′; its initial
phase is of form:

x1#VvV′#x2, n
r−→∗ pure(V (x1)V1vV2#x2), n′ (41)

which we reach by evaluating x1 in full, i.e.

x1#, n
r−→∗ ε, n′ , (42)

where we define

n′
def
= Hπ(x1#)(n) . (43)

Assume that the following claim holds for all vector se-
quences V′ and all r ≥ n′:

Hωα(V (x1)VV′)
(r) ≤ Hωα(V (x1)V1vV2V′)

(r) . (44)

Let further x2
def
= V3# · · ·#Vm#, and consider the prefix

corresponding to (41) in the computation on x: it encodes a
Hardy computation

Hπ(x1#V#x2)(n)

=Hπ(V (x1)VV3#···#Vm#)
(
Hωα(V (x1)V)

(n′)
)

(by (20))

≤Hπ(V (x1)VV3#···#Vm#)
(
Hωα(V (x1)V1vV2)

(n′)
)

(by (44) with V′ = ε and (19))

=Hπ(V (x1)VV3V4#···#Vm#)
(
Hωα(V (x1)VV3)

(n′′)
)

(by (20) and setting n′′ def
= Hωα(V (x1)V1vV2)

(n′))

≤Hπ(V (x1)VV3V4#···#Vm#)
(
Hωα(V (x1)V1vV2V3)

(n′′)
)

(by (44) with V′ = V3 and (19))
...

≤Hπ(V (x1)V1vV2#x2)(n′)

=Hπ(x′′)(n) .

It only remains to prove the claimed (44). To this end, two
comments on the prefix of the computation (41) are in order:
by combining Lemma 31 and (40) on the computation (42),
we deduce that |x1| ≤ n′−n < n′ since n > 0, thus α(V (x1))
can be written as

∑p
i=1 ω

βi with p < n′. Using Lemma 32,
each βi, which is encoded by a vector appearing in x1, is
n′-lean, hence:

α(V (x1)) is n′-lean. (45)

In the same way, since the computation is trim, β(v) is almost
n′-lean. Recall that the CNF of α(V (x1)) has p < n′ terms.
As it is also n′-lean, adding an almost n′-lean term yields an
almost n′-lean term:

α(V (x1)) + ωβ(v) is almost n′-lean. (46)

Note that (45) and (46) also hold for all r ≥ n′.
Turning to the two remaining axioms:

2) For the second axiom, recall that V = V1V2.
Put γ = α(V (x1)), α′ = α(V1), β = β(v),
and α = α(V2V

′). Then, by (45) and Lemma 36,
Hωγ+α

′+α
(r) = Fγ+α′+α(r) ≤ Fγ+α′+̇ωβ+α(r) =

Hωγ+α
′+̇ωβ+α

(r).
3) For the third axiom, recall that V = V1(v−1j)V2. Put

γ = α(V (x1)), α′ = α(V1), β = β(v−1j), β′ = β(v),
and α = α(V2V

′). By (30), β vo β′, and by (46)
and Lemma 37, Hωγ+α

′+̇ωβ+α

(r) = Fγ+α′+̇ωβ+α(r) ≤
Fγ+α′+̇ωβ′+α(r) = Hωγ+α

′+̇ωβ
′
+α

(r).

C. Proof of Theorem 20 (Section VIII)

1. If L is L(N) for some PDN N , then the question whether
w ∈ L reduces to a coverability problem for N ′ def

= w ⊗ N ,
a PDN obtained by a synchronized product of N and (an
FSA for) w. Since |N ′| = O(|w|) (here N is a constant
of size O(1)) and since N ′ is k-dimensional when N is,
we have reduced L to coverability for k-PDNs, a problem
in TIME(F

ωω
k+O(1) (n)) by Theorem 3.

2. With a Minsky machine (MM) M and some k, the
construction in section V associates a PDN that simulates M
with space bounded by F

ωωk
(n). It is easy to modify the PDN

so that it (1) guesses a word w of length n; (2) outputs w while
weakly storing w#n in the work space of the MM and weakly
storing n in cpt; (3) generates F

ωωk
(n) extra workspace for

M and runs it on w; (4) after/if M accepts w, folds back the
workspace and reconstructs cpt; (5) outputs #n′ where n′ is
value now stored in cpt. As in Section V, the nature of weak
computations guarantees n′ ≤ n, and one only has n′ = n if
the simulation of the MM (and storing w) was perfect. Hence
the PDN only outputs words w#n s.t. n = |w| and that are
accepted by M in space F

ωωk
(n) (or s.t. n < |w| and hence

that are not in L0).

D. Weak Implementation of r−→
In Table I, we present the so-called “weak” rules that

define d−→, a weakening of both r−→ and r−→−1 in the sense
of Theorem 17, which proves its weak correctness. Note that
a general implicit condition on the rules is that they take and
produce trim configurations. Rule 1 corresponds to rule (R1)
but we have split the exact rule (R2) of r−→. Indeed in order
to correctly define d−→, we need to make explicit the implicit
different cases of rule (R2). More precisely, the application of
this rule may vary depending on two criteria:

• The type of the vector that is found in front of the first
#. Rules 2–5 correspond to the case of the null vector,
as in (12). Rules 6–9 correspond to the case of a vector
whose first component is non null, which is the first case
in (15). Rules 10–13 correspond to the remaining case of
(15).

• Inside any group of rules, there are four cases depending
on what follows the first #. It can be the empty sequence,
a second # or a vector. This last case is again split into
two subcases depending on a lexicographic relation.

This laborious presentation of all the rules has its uses, firstly
because writing the weak backward rules and performing
trimming on-the-fly without first breaking up the various cases
turned out to be an error-prone task, and secondly because
there is sufficient variation between the various cases of r−→
and especially of r−→−1 to warrant handling them separately
in a PDN implementation.

Let us repeat that these weak rules always produce a trim
representation. In order to prove the correction of the the
weak rules, we prove that they are weakenings as defined in
Definition 18.

Exact Rules Weak forward rules Weak backward rules

Rule 1 #t, n
r−→ t, n+ 1 s#t, n

d−→ t, n+ 1 t, n
d−→#t′, n′ + 1

with n′ ≤ n and t′ ≤∗ t

Rule 2 V0#, n
r−→V#n, n rvs#t, n

d−→V#n
′′
, n′ r#t0# . . .#tn′ , n

d−→V0#, n′

with n′′ ≤ n′ ≤ n and V ≤∗ r with n′ ≤ n and V ≤∗ r
Rule 3 V0##t, n

r−→V#n0#t, n rvs#s′#t, n
d−→V#n

′′
0#t′, n′ r#t0# . . .#tn′vs#t, n

d−→V0##t′, n′

with n′′ ≤ n′ ≤ n, V ≤∗ r and t′ ≤∗ t with n′ ≤ n, V ≤∗ r and t′ ≤∗ t
Rule 4 V0#0t, n

r−→V#n00t, n rvs#s′wt, n
d−→V#n

′′
00t′, n′ r#t0# . . .#tn′vsv

′t, n
d−→V0#0t′, n′

with n′′ ≤ n′ ≤ n, V ≤∗ r and t′ ≤∗ t with n′ ≤ n, V ≤∗ r and t′ ≤∗ t
Rule 5 V0#wt, n

r−→V#nwt, n rvs#s′wt, n
d−→V#n

′′
w′t′, n′ r#t0# . . .#tn′wt, n

d−→V0#w′t′, n′

with w > 0 with n′′ ≤ n′ ≤ n, V ≤∗ r, t′ ≤∗ t with n′ ≤ n, V ≤∗ r and t′ ≤∗ t
and 0 < w′ ≤ w and 0 < w′ ≤ w

Rule 6 Vv#, n
r−→V(v − 10)n#, n rvs#t, n

d−→Vv0 . . . vn′′#, n
′ rv0t0 . . . tn′−1vn′ t, n

d−→V(v′ + 10)#, n′

with 10 ≤ v with n′′ ≤ n′ ≤ n, V ≤∗ r, with n′ ≤ n, V ≤∗ r
10 ≤ v and v0 ≤ (v − 10) and v′ ≤ min(vi)

Rule 7 Vv##t, n
r−→V(v − 10)n#v#t, n rvs#s′#t, n

d−→Vv0 . . . vn′′#vn′′ + 10#t′, n′ rv0t0 . . . tn′−1vn′ tn′#svn′ + 10s′#t, n
d−→V(v′ + 10)##t′, n′

with 10 ≤ v with n′′ ≤ n′ ≤ n, V ≤∗ r, t′ ≤∗ t with n′ ≤ n, V ≤∗ r and t′ ≤∗ t
10 ≤ v, v0 ≤ (v − 10) and vn′′ ≤ vn′′ and v′ ≤ min(vi)

Rule 8 Vv#wt, n
r−→V(v − 10)n#vwt, n rvs#s′wt, n

d−→Vv0 . . . vn′′#vn′′ + 10w′t′, n′ rv0t0 . . . tn′−1vn′ tn′#svn′ + 10s′wt, n
d−→V(v′ + 10)#w′t′, n′

with 10 ≤ v and w ≤lex v with n′′ ≤ n′ ≤ n, V ≤∗ r and t′ ≤∗ t with n′ ≤ n, V ≤∗ r and t′ ≤∗ t
10 ≤ v, v0 ≤ (v − 10) and vn′′ ≤ vn′′ v′ ≤ min(vi) , w′ ≤ w and w′ ≤lex v

′ + 10

Rule 9 Vv#wt, n
r−→V(v − 10)n#wt, n rvs#s′wt, n

d−→Vv0 . . . vn′′#w
′t′, n′ rv0t0 . . . tn′−1vn′ tn′#swt, n

d−→V(v′ + 10)#w′t′, n′

with 10 ≤ v and v <lex w with n′′ ≤ n′ ≤ n, V ≤∗ r, t′ ≤∗ t with n′ ≤ n, V ≤∗ r and t′ ≤∗ t
10 ≤ v, v0 ≤ (v − 10) and v0 + 10 <lex w

′ v′ ≤ min(vi) , w′ ≤ w and v′ + 10 <lex w

Rule 10 Vv#, n
r−→Vv′′#, n rvs#t, n

r−→Vv′′#, n′ rvs#t, n
r−→V(v′′ + 1i)#, n

′

∃i > 0 v(i) > 0 ∧ ∀j < i v(j) = 0, V ≤∗ r, ∃v′ ≤ v Vv′ pure i > 0, ∀j < i v′′(j) = 0, v(i− 1) ≥ n′
∀j /∈ {i− 1, i} v′′(j) = v(j), ∃i > 0 v′(i) > 0 ∧ ∀j < i v′(j) = 0 ∀j > i v′′(j) ≤ v(i)

v′′(i) = v(i)− 1 and v′′(i− 1) = n v′′ ≤ v′ − 1i + (n′)1i−1 V ≤∗ r
Rule 11 Vv##t, n

r−→Vv′′#v#t, n rvs#s′#t, n
r−→Vv′′#v′#, n′ rvs#s′us′′#t, n

r−→V(v′′ + 1i)##, n′

∃i > 0 v(i) > 0 ∧ ∀j < i v(j) = 0, V ≤∗ r, v′ ≤ v Vv′ pure ∃v′ ≤ u ,∀j < i v′(j) = 0 ∧ v′ ≥ (v′′ + 1i)
∀j /∈ {i− 1, i} v′′(j) = v(j), ∃i > 0 v′(i) > 0 ∧ ∀j < i v′(j) = 0 i > 0, v ≥ v′ − 1i + (n′)1i−1

v′′(i) = v(i)− 1 and v′′(i− 1) = n v′′ ≤ v′ − 1i + (n′)1i−1 V ≤∗ r
Rule 12 Vv#wt, n

r−→Vv′′#vwt, n rvs#s′wt, n
r−→Vv′′#v′w′t, n′ rvs#s′us′′wt, n

r−→V(v′′ + 1i)#w
′t′, n′

∃i > 0 v(i) > 0 ∧ ∀j < i v(j) = 0, V ≤∗ r, v′ ≤ v Vv′ pure ∃v′ ≤ u ,∀j < i v′(j) = 0 ∧ v′ ≥ (v′′ + 1i)
∀j /∈ {i− 1, i} v′′(j) = v(j), ∃i > 0 v′(i) > 0 ∧ ∀j < i v′(j) = 0 i > 0, v ≥ v′ − 1i + (n′)1i−1

v′′(i) = v(i)− 1 and v′′(i− 1) = n v′′ ≤ v′ − 1i + (n′)1i−1 w′ ≤lex v
′ , V ≤∗ r and t′ ≤∗ t

w ≤lex v w′ ≤ w and t′ ≤∗ t
Rule 13 Vv#wt, n

r−→Vv′′#wt, n rvs#s′wt, n
r−→Vv′′#w′t, n′ rvs#s′wt, n

r−→V(v′′ + 1i)#w
′t′, n′

∃i > 0 v(i) > 0 ∧ ∀j < i v(j) = 0, V ≤∗ r, ∃v′ ≤ v Vv′ pure i > 0, ∀j < i v′′(j) = 0, v(i− 1) ≥ n′
∀j /∈ {i− 1, i} v′′(j) = v(j), ∃i > 0 v′(i) > 0 ∧ ∀j < i v′(j) = 0 ∀j > i v′′(j) ≤ v(i)

v′′(i) = v(i)− 1 and v′′(i− 1) = n v′′ ≤ v′ − 1i + (n′)1i−1 (v′′ + n′1i−1) <lex w ≤ w
v <lex w w′ ≤ w v′ <lex w and t′ ≤∗ t V ≤∗ r and t′ ≤∗ t

TABLE I
THE EXACT AND WEAK RULES.

E. PDN Simulation of d−→
The implementation of all the various cases described by the

rules of Table I is highly redundant, and relies on the same
core ideas that we have illustrated in Section VII. We only
present a few salient points that ought to convince the reader
that all rules can be implemented in a PDN.

1) Weak Forward Rule 1: Let us recall this rule:

s#t, n
d−→ t, n+ 1 (D1)

This (simple) rule does not require to copy the code in order
to be simulated. It is sufficient to select an identity between
low and high corresponding to a #, to update the low identity

with this identity (implicitly deleting the prefix #) and to
increment the counter. This is performed by a single transition
depicted in Figure 5.

2) Weak Forward Rule 3: Let us recall this rule:

rvs#s′#t, n
d−→V#n′′0#t′, n′ (D3)

where V ≤∗ r is pure, t′ ≤∗ t, and n′′ ≤ n′ ≤ n. In the
perfect case, these orderings are equalities, v is 0, and s, s′

are ε.
a) First Stage: It consists in duplicating the counter,

which corresponds to the following transition.

x, n→ x, n′ where n′ ≤ n

sharp

low

cpt

cpt.id
C

C

L

D

D L<D

Fig. 5. Implementation of (D1).

The subsequent stages consist of an appropriate copy with
update of the code.

b) Second Stage: It consists in extracting a non empty
vector sequence and in copying with purification a vector
sequence with the last vector (v) which is not copied. This can
be performed by a net similar to (and in fact simpler than) the
purification net of Figure 4. It corresponds to the following
partial transition. The up arrows are “lower bounds” of the
identities of from and to.

rv↑x
′, n′ → V↑ where V ≤∗ r,V pure and n′ ≤ n

c) Third Stage: It consists in picking two # in the
remaining code (x′) and in copying, with the help of the
duplicated counter, at most n′ # symbols followed by the
null vector and a #. This is performed by the net of Figure 6.
Transition mult1 checks that from contains the identity of a
symbol and adds such a symbol to the new code. Transition
mult2, which can be performed at most n′ times, also adds a
at the end of the new code. Finally, transition mult3 adds a
null vector to the new code and “moves forward” the identity
contained in from. All transitions also move forward the token
in to. Creating a null vector is easy since it simply consists
in adding a vect identity to the new code. We have not
represented the concatenation of the # which simply consists
in adding a token in place sharp with identity to and in
increasing the identity.

This stage corresponds to the partial transition:

rvs#s′#↑t, n
′ → V#n′′0#↑

where V ≤∗ r, V pure and n′′ ≤ n′ ≤ n
d) Fourth Stage: The last stage consists in copying the

remaining code t in a way similar to that of the weak trimming
net.

3) Weak Forward Rule 7: Let us recall this rule:

rvs#s′#t, n
d−→Vv0 . . . vn′′#(vn′′ + 10)#t′, n′ (D7)

where V ≤∗ r, v0 + 10 ≤ v, V(v0 + 10) pure, ∀0 ≤ i ≤ n,
vi ≤ vi, t′ ≤∗ t, and n′′ ≤ n′ ≤ n

We have already presented all the gadgets necessary to
simulate this rule. First we duplicate the counter which yields
a new value n′ ≤ n. Then we extract and copy a non empty
pure vector sequence, the last vector containing at least a token

from

T<T'

sharp

dmult

T

T'

dpt.iddpt

D

to

F

fmult

imult

mult1 F

T'

T

T

vect

Y

T D

mult2

T<T'

T' T

F<F'<H<T<T'
mult3F

F'

high

H

Fig. 6. Multiplying the tally symbol

in the 0-component; this sequence is V(v0 + 10). We delete
this token and extend it to a sequence of n non increasing
vectors v0 . . . vn′′#vn′′ (inserting a # before and after writing
the last vector). This can be done by a modified version of
the purification net where the duplicated counter controls the
length of the sequence (as for the duplication of # in rule
D2). We add a token to the last vector. Finally, we copy the
remaining code t at the end of the new code.

4) Weak Forward Rule 11: Let us recall this rule:

rvs#s′#t, n
d−→Vv′′#v′t′, n′ (D11)

where V ≤∗ r, v′ ≤ v, ∃i > 0 v′(i) > 0 ∧ ∀j < i v′(j) = 0,
Vv′ pure, v′′ ≤ (v′)n′′ , t′ ≤∗ t and n′′ ≤ n′ ≤ n

We simulate the rule in four stages. First we duplicate the
counter. Then we simulate the following partial copy:

rv↑x
′ → Vv′#v′

It consists in extracting and copying a non empty pure
vector sequence Vv′#v′. The copy of the last vector is
particular since
• we arbitrarily choose some component index i, such that
v′(i) > 0; we memorize this choice by marking place
derivi.

• we set v′(j) = 0 for all j < i;

ci

deri,1

oldoldto
ci-1

dpt

T

T

dpt.id

D D

ideri

derivi

cderi

fderi

deri,2

deri,3

TT

T

T

Fig. 7. Derivating a vector (case i)

• we duplicate v′ in the new code and separate them by a
#. This can be done by moving forward to three times
and keeping in auxiliary places oldto and oldoldto the
identities that precede the current one. Then the copy is
done simultaneously using to and oldoldto for the two
copies of the vector, while a # is inserted with identity
oldto.

The third stage consists in deriving it, i.e. in deleting a token
in ci and adding at most n′ tokens in ci−1. This is done by the
net of Figure 7 for some case i. Transition derivi,1 starts the
derivation by subtracting a token in ci. Then there are at most
n applications of derivi,2 adding tokens in ci−1. Finally,
derivi,3 stops the derivation by adding one more token in
ci−1.

The last stage consists in copying the remaining code #t
at the end of the new code.

We end this subsection by presenting the copy of remaining
vectors of a sequence during the weak trimming in figure 8.

ADDITIONAL REFERENCES

[24] E. A. Cichoń and E. Tahhan Bittar, “Ordinal recursive
bounds for Higman’s Theorem,” Theor. Comput. Sci., vol.
201, pp. 63–84, 1998.

irem

tk

di

.
.
.

qk-1

qi+1

ti+1

tj'+1

t0

qj'

frem

with

W

with

W

tqj'

from

cj' dj'

T

to

F

F
T F

(j≥i)

tj' .
.
. (j'<i)

.
.
.

tk-1

tj+1

qj

tqj

from

cj dj

T

to

F

F
T F

tj

.
.
.

W

tqk-1

.
.
.

.
.
.

.
.
.

W

Fig. 8. Weak Trimming: Copying the remaining vectors.

