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The volume product of convex bodies

with many hyperplane symmetries

F. Barthe and M. Fradelizi
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Abstract

Mahler’s conjecture predicts a sharp lower bound on the volume of the polar of a convex body in
terms of its volume. We confirm the conjecture for convex bodies with many hyperplane symmetries in
the following sense: their hyperplanes of symmetries have a one-point intersection. Moreover, we obtain
improved sharp lower bounds for classes of convex bodies which are invariant by certain reflection groups,
namely direct products of the isometry groups of regular polytopes.

Mathematic Subject Classification: 52A20; 52A40; 52A38; 52B15; 46B10

1 Introduction

We work in Rn equipped with its canonical Euclidean structure. The scalar product is denoted by 〈·, ·〉 and
the norm by | · |. Let K be a convex body in Rn. For z ∈ Rn, the polar body of K with respect to z is
defined by

Kz =
{
y ∈ Rn; 〈y − z, x− z〉 ≤ 1 for every x ∈ K

}
.

We write K◦ for z = 0, which should not be confused with Int(K), the interior of K. In what follows, the
volume of a convex set K ⊂ Rn is denoted by |K|n and simply |K| when there is no ambiguity. The volume
product of K is by definition

P(K) := inf
z∈Rn

|K| |Kz|.

It is known (see [15]) that the above infimum is achieved for a unique point, called the Santaló point of
K and denoted by s(K). The volume product and the Santaló point are affine-invariant in the sense that
for every non singular affine transform A, one has P(AK) = P(K) and s(AK) = As(K). Hence if there
are affine maps which fix K globally and whose only common fixed point is the origin then s(K) = 0 and
P(K) = |K| |K◦|. This is the case in particular if K is origin-symmetric (i.e. K = −K). A celebrated result
of Blaschke ([1] for n = 2 or 3) and Santaló ([24] for general n) asserts that among n-dimensional convex
bodies, the Euclidean ball has maximal volume product. The so-called Mahler’s conjecture (see [12]) asserts
that, among convex bodies having a center of symmetry, the volume product should be minimal for the cube
(and also for its dual and for some combinations of the two sets, see the end of section 5 for more details),
equivalently, the conjecture predicts that for such a convex body K ⊂ Rn,

|K| |K◦| ≥ |Bn1 | |Bn∞| =
4n

n!
,

where Bn∞ = [−1, 1]n and for p ∈ (0,∞), Bnp = {x ∈ Rn;
∑
|xi|p ≤ 1}. A corresponding question asks if

among general convex bodies the volume product is minimal for simplices: is it true that for every convex
body K ⊂ Rn and every z ∈ Rn the following inequality holds

|K| |Kz| ≥ |∆n| |(∆n)◦| = (n+ 1)n+1

(n!)2
,
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where ∆n is a regular simplex in Rn, with 0 as center of mass.
The conjectures were fully confirmed in dimension 2 by Mahler [13]. A few positive results were obtained

in arbitrary dimension. The symmetric version of the conjecture was established for unconditional bodies
by Saint Raymond [23] (see also Meyer [14] for a simple proof). Recall that a convex body in Rn is called
unconditional if for all choices of signs ε = (ε1, . . . , εn) ∈ {−1, 1} we have

x = (x1, . . . , xn) ∈ K =⇒ (ε1x1, . . . , εnxn) ∈ K.

Equivalently, Si(K) = K for i = 1, . . . , n where Si denotes the orthogonal symmetry with respect to the
coordinate hyperplane {x ∈ Rn; xi = 0}. The conjecture was proved by Reisner [21] for zonoids (see also [8]
for a simple proof) and by Meyer and Reisner [17] for polytopes with less than n + 3 vertices. For convex
bodies close, in Banach-Mazur distance, to the cube (resp. to the simplex) the inequalities were established
by Nazarov, Petrov, Ryabogin and Zvavitch [19] (resp. by Kim and Reisner [10]).

An asymptotic version of the conjectures was also considered. Bourgain and Milman [2] established that
there is a universal constant c > 0 such that for every integer n ≥ 1 and every convex body K in Rn,

P(K)
1
n ≥ c

n
.

Other proofs were given by Pisier [20] and more recently by Kuperberg [11] and Nazarov [18].
Functional versions of Mahler’s conjectures were also investigated by the second author and Meyer [5, 6, 7].

The aim of the present paper is to confirm Mahler’s conjecture under rather general symmetry assump-
tions and to improve the conjectured bound in certain cases. The idea of the proof is to adapt Meyer’s
argument [14] for unconditional convex bodies to the case of more general symmetry assumptions.

To state our results more precisely, we need to introduce some notations. We denote the orthogonal
group (the set of linear isometries of Rn) by O(Rn). For a subset A ⊂ Rn, we define the group of linear
isometries of A as O(A) = {g ∈ O(Rn); g(A) = A}. Also span(A), conv(A) and pos(A) denote respectively
the smallest vector space, the smallest convex set and the smallest convex cone containing A. Given a vector
subspace E ⊂ Rn, PE stands for the orthogonal projection onto E and SE = 2PE − IdRn for the orthogonal
symmetry with respect to E. The orthogonal symmetry with respect to a hyperplane is also called a reflec-
tion. Eventually, if a group G acts on Rn, Fix(G) = {x ∈ Rn; ∀g ∈ G, gx = x} is the set of points which are
fixed by the whole group.

The main results of this article are contained in the following theorem.

Theorem 1. Let n ≥ 2 and K ⊂ Rn be a convex body.
(i) If O(K) contains O(P ) for some regular polytope P in Rn then P(K) ≥ P(P ) with equality if and only
if K is a dilate of P or P ◦.
(ii) If O(K) contains O(P1)× · · · × O(Pk) for some regular polytopes or Euclidean balls P1 in Rn1 , . . . , Pk
in Rnk , with n1 + · · ·+ nk = n then P(K) ≥ P(P1 × · · · × Pk).
(iii) If O(K) contains m reflections SH1 , . . . , SHm with respect to m hyperplanes H1, . . . ,Hm such that⋂m
i=1Hi = {0} then P(K) ≥ P(∆n), with equality if and only if K is a simplex.

Section 2 is devoted to convex sets in the plane. We establish the sharp lower bounds under symmetry
assumptions and prove that regular polygons play an extremal role. This study allows to put forward some
of the key ingredients which will be crucial in higher dimensions. In particular, the method requires an
essential partition of the convex body K of the form K =

⋃
iK ∩Ci where the sets Ci are convex cones with

the property that any point y ∈ Ci is “normed” by a point of K ∩ Ci in the following sense

sup
x∈K∩Ci

〈y, x〉 = sup
x∈K
〈y, x〉.
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Section 3 shows how to ensure this property when a convex body K in arbitrary dimension has many
symmetries. Section 4 deals with regular polytopes. The main result there is that a convex body having the
same symmetries as a regular polytope has a larger volume product. This is a warm-up for Section 5 where
a similar statement is established for convex bodies which are invariant by the direct product of the isometry
groups of regular polytopes. Section 6 deduces from the result of Section 5 that Mahler’s conjecture is indeed
true for convex bodies having enough hyperplane symmetries. The classification of reflection groups plays a
crucial role here. In section 7, we deduce Mahler’s conjecture for some bodies of revolution, equivalently we
establish functional forms of Mahler’s conjecture for concave functions having many symmetries. The final
section collects remarks and further questions.

2 In the plane

Given a convex body containing the origin it its interior, a natural strategy in order to evaluate |K| |K◦| is
to divide the plane into convex cones with apex at the origin and to work separately in each cone. This is
possible only when K meets the boundary of the cone in a certain way, as the next statement shows.

Proposition 2. Let α ∈ (0, π) and u1, u2 be unit vectors in R2 with angle α, i.e. 〈u1, u2〉 = cosα. Denote
by C := pos(u1, u2) the positive convex cone generated by u1, u2. Let Ci := R+ui and Pi the orthogonal
projection onto Rui. Let K be a convex body containing the origin in its interior, with the property that

K ∩ Ci = Pi(K) ∩ Ci.

Then

|K ∩ C|2 |K◦ ∩ C|2 ≥
1
4

(
2−

( |K ∩ C1|1
|K ∩ C2|1

+
|K ∩ C2|1
|K ∩ C1|1

)
cosα

)
,

with equality if and only if K ∩C = conv(0, λ1u1, λ2u2) or K ∩C = {x ∈ C; 〈x, u1〉 ≤ 1
λ1

and 〈x, u2〉 ≤ 1
λ2
}

for some λ1, λ2 > 0 such that λ1 ≥ λ2 cosα and λ2 ≥ λ1 cosα.

Proof. First let us comment on our hypothesis. Let λ1, λ2 > 0 such that K ∩Ci = [0, λiui]. The hypothesis
Pi(K) ∩ Ci = K ∩ Ci = [0, λiui] for i ∈ {1, 2} is equivalent to

[0, λiui] ⊂ K ⊂ {x; 〈x, ui〉 ≤ λi}.

Since, for j 6= i ∈ {1, 2}, λjuj ∈ K, we get that 〈λjuj , ui〉 ≤ λi hence λj cosα ≤ λi. Moreover taking polars,
notice that the preceding inclusions are also equivalent to

[0,
ui
λi

] ⊂ K◦ ⊂ {x; 〈x, λiui〉 ≤ 1}

and thus to Pi(K◦) ∩ Ci = K◦ ∩ Ci = [0, ui/λi]. Let v1, v2 be the inner (unit) normal vectors to the edges
of C so that C = {x; 〈x, vi〉 ≥ 0, i = 1, 2}. We follow the argument of Meyer [14]. For every x ∈ K ∩ C

|K ∩ C| ≥
2∑
i=1

|conv(x,K ∩ Ci)| =
2∑
i=1

|K ∩ Ci|〈x, vi〉
2

=
〈x, λ1v1 + λ2v2〉

2
.

This implies that the vector

y0 :=
λ1v1 + λ2v2

2|K ∩ C|
=

(λ2 − λ1 cosα)u1 + (λ1 − λ2 cosα)u2

2|K ∩ C| sinα
,

verifies 〈x, y0〉 ≤ 1 for all x ∈ K∩C. In order to continue the argument we need to establish that y0 ∈ K◦∩C.
Since λj cosα ≤ λi for i 6= j ∈ {1, 2}, we already know that y0 ∈ C.
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Next let us check that y0 ∈ K◦. Since supx∈K∩C〈x, y0〉 ≤ 1, we are done if we prove that for all y ∈ C,

sup
x∈K\C

〈x, y〉 ≤ sup
x∈K∩C

〈x, y〉.

Since K ⊂ {x; maxi=1,2〈x, ui〉 ≤ λi}, we have

K \ C ⊂ {x;x 6∈ C,max
i=1,2
〈x, ui〉 ≤ λi} = C◦ ∪ S1 ∪ S2,

where C◦ = {x;∀y ∈ C, 〈x, y〉 ≤ 0} is the dual cone of C and S1 and S2 are two half-slabs defined by

Si = {x; 〈x, ui〉 ∈ [0, λi] and 〈x, vi〉 ≤ 0} = {λui − µvi ; λ ∈ [0, λi], µ ≥ 0}.

Let y ∈ C be fixed. Then 〈vi, y〉 ≥ 0 hence supx∈Si〈x, y〉 ≤ max(0, 〈λiui, y〉). Thus we deduce that

sup
x∈K\C

〈x, y〉 ≤ max(0, 〈λ1u1, y〉, 〈λ2u2, y〉) = sup{〈x, y〉; x ∈ conv(0, λ1u1, λ2u2)} ≤ sup
x∈K∩C

〈x, y〉.

Therefore y0 ∈ K◦ ∩ C and we can reproduce the above reasoning to deduce

|K◦ ∩ C| ≥
2∑
i=1

|conv(y0,K◦ ∩ Ci)| =
2∑
i=1

|K◦ ∩ Ci|〈y0, vi〉
2

=
1
2
〈y0,

v1
λ1

+
v2
λ2
〉.

Using the definition of y0 and 〈v1, v2〉 = − cosα, the previous inequality gives

4|K ∩ C| |K◦ ∩ C| ≥ 2− cosα
(
λ1

λ2
+
λ2

λ1

)
.

This proves the inequality. Now let us establish the equality case. If there is equality then

K◦ ∩ C = conv(y0,K◦ ∩ C1,K
◦ ∩ C2) = conv

(
0, y0,

u1

λ1
,
u2

λ2

)
where y0 :=

λ1v1 + λ2v2
2|K ∩ C|

.

Defining the sets T = conv(0, u1/λ1, u2/λ2) and Q = {y ∈ C; 〈λiui, y〉 ≤ 1, i = 1, 2} and using the
hypothesis, we have T ⊂ K◦ ∩ C = conv(T, y0) ⊂ Q. Our aim is to prove that K◦ ∩ C is either equal to T
or Q. Since, as noticed at the beginning of the proof, our hypothesis is symmetric between K and K◦, we
can exchange their role and we get that

K ∩ C = conv (0, x0, λ1u1, λ2u2) , where x0 =
1

2|K◦ ∩ C|

(
v1
λ1

+
v2
λ2

)
.

Since for every y ∈ C, supx∈K〈x, y〉 = supx∈K∩C〈x, y〉, it follows that

K◦ ∩ C = {y ∈ C; 〈x0, y〉 ≤ 1, 〈λiui, y〉 ≤ 1, i = 1, 2} = Q ∩ {y; 〈x0, y〉 ≤ 1}.

Therefore K◦ ∩ C doesn’t have any vertex in the interior of Q. This implies that y0 is in T or for some
i ∈ {1, 2}, 〈λiui, y0〉 = 1. In the first case, we get K◦ ∩C = T , in the second case, using the definition of y0,
we get |K ∩ C| = λ1λ2 sinα

2 = |conv(0, λ1u1, λ2u2)|, hence K ∩ C = conv(0, λ1u1, λ2u2).

Corollary 3. Under the hypotheses of the previous proposition the inequality

|K ∩ C|2 |K◦ ∩ C|2 ≥
1
2

(1− cosα)

is valid provided α ∈ [π/2, π) or |K ∩ C1|1 = |K ∩ C2|1. Moreover there is equality if and only if K ∩ C =
λ conv(0, u1, u2) or K ∩ C = {x ∈ C; 〈x, λui〉 ≤ 1, i = 1, 2}, for some λ > 0.
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Proof. If α ∈ [π/2, π) then − cosα ≥ 0 and we may apply Proposition 2 and the arithmetic mean-geometric
mean inequality

(
|K∩C1|
|K∩C2| + |K∩C2|

|K∩C1|

)
/2 ≥ 1. The equality case follows immediately.

Let us set w(θ) = (cos θ, sin θ). For m ≥ 3 we consider the regular polygon with m vertices and unit
circumcircle:

Cm := conv
{
w
(2kπ
m

)
; k = 0, . . . ,m− 1

}
.

Note that

C◦m =
{
x;
〈
x,w

(2kπ
m

)〉
≤ 1; k = 0, . . . ,m− 1

}
is also a regular polytope (obtained by rotating and dilating Cm).

Proposition 4. Let K be a convex subset of R2 such that Cm ⊂ K ⊂ C◦m, then

|K| |K◦| ≥ |Cm| |C◦m| = P(Cm),

with equality if and only if K is Cm or C◦m.

Proof. For L = Cm or L = C◦m, note that

L ∩ R+w
(2kπ
m

)
= PRw( 2kπ

m )(L) ∩ R+w
(2kπ
m

)
=
[
0, w

(2kπ
m

)]
,

is valid. Hence it is inherited by K. For each k = 0, . . . ,m− 1 we consider the cone

C(k) := pos
(
w
(2kπ
m

)
, w
(2(k + 1)π

m

))
with angle α = 2π/m. In view of the previous remark and since the two sections of K with the sides of the
cone have the same measure, we may apply the later corollary to get:

|K ∩ C(k)| |K◦ ∩ C(k)| ≥ 1
2

(1− cosα)

with equality if and only if K∩C(k) is Cm∩C(k) or C◦m∩C(k). Next, applying the arithmetic mean-geometric
mean inequality

|K| |K◦| =

(
m−1∑
k=0

|K ∩ C(k)|

)(
m−1∑
k=0

|K◦ ∩ C(k)|

)

≥ m2

(
m−1∏
k=0

|K ∩ C(k)| |K◦ ∩ C(k)|

) 1
m

≥ m2 1− cosα
2

= P(Cm).

And if there is equality then |K ∩ C(k)| is independent of k. Therefore K is Cm or C◦m.

As a consequence, we obtain a sharp lower bound on the volume product of planar convex sets with a
rotation invariance.

Corollary 5. Let K be a convex subset of R2 which is invariant by the linear rotation of angle 2π
m , where

m ∈ N is at least 3. Then
P(K) ≥ P(Cm),

with equality if and only if K = λUCm, for some λ > 0 and some isometry U ∈ O(R2).
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Proof. ¿From the rotation invariance P(K) = |K| |K◦|. Without loss of generality we may assume that w(0)
is the point with maximal norm in K. Hence [0, w(0)] ⊂ K ⊂ {x; 〈x,w(0)〉 ≤ 1}, by rotation invariance, this
is true if we replace w(0) by w(2kπ/m). Hence Cm ⊂ K ⊂ C◦m. We conclude with the previous proposition.

Remark 1. The above statement is of interest when m ≥ 5 only. Indeed in dimension 2, it is known from
Mahler [13] that the triangle C3 has minimal volume product, whereas the square C4 has minimal volume
product among sets having a center of symmetry.
Remark 2. We collect here useful information for further use. First note that for all integer m ≥ 3, the
regular polygon Cm is invariant by the reflection with respect to the x-axis. Note that Cm = −Cm if and
only if m is even. Hence if m is even, Cm is invariant also by the reflection with respect to the y-axis; it
is therefore unconditional. Eventually we observe that m 7→ P(Cm) is an increasing function. Indeed, the
above formula gives

P(Cm) = m2 1− cos(2π/m)
2

=
(
m sin(π/m)

)2
and the function x 7→ sin(x)/x is positive and decreasing on [0, π).
Remark 3. After we had finished this work, we learned from Meyer that he and Böröczky, Makai and Reisner
have some similar results for the volume product of planar convex bodies in a paper in progress.

3 Preliminaries in arbitrary dimension

It is natural to ask about bodies of minimal volume product under various invariance assumptions, in higher
dimensions. An important technical step in the previous section was to divide the convex set K under
study according to a collection of convex cones having the property that for all y ∈ C, supx∈K∩C〈x, y〉 =
supx∈K〈x, y〉. For the sake of shortness we will sometimes say that C has the norming property for K. The
goal of this section is to provide such good cones when K has a large group of isometries. Our argument
is inspired by the elementary observation that when K is invariant by a hyperplane symmetry SH then
K ∩H = PH(K). Nevertheless more work is needed as we will have to consider cones with empty interior.
Our main result in this section is the following proposition.

Proposition 6. Let G be a finite subgroup of O(Rn). Let v1, . . . , vm be m unit vectors in Rn such that
Sv⊥i ∈ G for all i = 1, . . . ,m. Assume that the cone

D :=
m⋂
i=1

{
x ∈ Rn; 〈x, vi〉 ≥ 0

}
is n-dimensional. Let K ⊂ Rn be a G-invariant convex body containing the origin. If C is a facial cone of
D or if C = D then PCK = K ∩ C and C has the norming property for K: for all y ∈ C,

sup
x∈K∩C

〈x, y〉 = sup
x∈K
〈x, y〉.

In order to prove Proposition 6 we first establish some lemmata. The following basic fact gives a sufficient
condition for ensuring the norming property of general cones.

Lemma 7. Let C be a closed convex cone and K be a convex set. Let PC denote the projection onto C. If
PCK ⊂ K (or equivalently PCK = K ∩ C) then for all y ∈ C,

sup
x∈K
〈x, y〉 = sup

x∈K∩C
〈x, y〉.
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Proof. Recall that PCx is the unique closest point to x in C. Classically using convexity, the closest point
property gives for y in C and t ∈ (0, 1),

|x− PCx|2 ≤
∣∣x− ((1− t)PCx+ ty

)∣∣2.
Expanding and letting t to zero gives the characteristic property 〈x−PCx, y−PCx〉 ≤ 0. Since C is a cone,
this has to be satisfied when y is replaced by ty for any t > 0. This implies that 〈x− PCx, y〉 ≤ 0 or

〈x, y〉 ≤ 〈PCx, y〉.

Hence if x ∈ K, our hypothesis ensures that PCx ∈ K. Hence for all y ∈ C, we have found a point in C
with a bigger scalar product with y than x.

We note in the next lemma that the property PCK ⊂ K can be guaranteed by the stability of K under
orthogonal projections onto the vector spaces appearing in the facial structure of C.

Lemma 8. Let C be a convex cone of dimension d, in Rn, with 2 ≤ d ≤ n, and K be a convex set containing
the origin. Let E be the family of vector spaces spanned by all the faces of C (of dimension 1 to d − 1). If
for all E ∈ E, we have PEK = K ∩ E then PCK = K ∩ C.

Proof. Let x ∈ K. If x ∈ C we have nothing to prove. So assume x /∈ C. Hence PCx ∈ ∂C. If PCx = 0
we are done. If PCx 6= 0, let F be the k-face of C containing PCx and of minimal dimension k ≥ 1. Let
E := span(F ). By minimality of F , PCx belongs to the relative interior of F (with respect to E). Hence the
closest point property of PCx implies actually that x − PCx is orthogonal to all the directions in E. This
means that PCx = PEx. Since we have assumed that PEK ⊂ K, we conclude that PCx ∈ K.

The next statement allows to verify the hypotheses of the latter lemma from properties of the isometry
group of a convex body. Given a group G acting on Rn, recall that Fix(G) = {x ∈ Rn; ∀g ∈ G, gx = x}.

Lemma 9. Let E be a subspace of Rn. Let G be a finite subgroup of the orthogonal group O(Rn) such that

Fix
({
g ∈ G; g|E = IdE

})
= E.

Then any G-invariant convex set K ⊂ Rn satisfies PEK = K ∩ E.

Proof. Start from x ∈ K. Our goal is to show that PEx is in K. Let G′ be the subgroup of G composed of
the isometries which leave E pointwise invariant. Let h := 1

card(G′)

∑
g∈G′ g. Since x ∈ K and K is invariant

by G, gx ∈ K hence by convexity

hx =
1

card(G′)

∑
g∈G′

gx ∈ K.

We are done if h = PE . This is what we check next.
By definition it is obvious that h|E = IdE . Also any isometry g ∈ G′ satisfies g|E = IdE hence g(E⊥) ⊂

E⊥ and consequently h(E⊥) ⊂ E⊥. In order to prove that h = PE it suffices to show that Im(h) ⊂ E. Let
y ∈ Im(h) and u such that y = h(u). Then by the group property, for any g0 ∈ G′

g0y = g0h(u) =
1

card(G′)

∑
g∈G′

g0g(u) =
1

card(G′)

∑
g′∈G′

g′(u) = h(u) = y.

Hence y ∈ Fix(G′). Our hypothesis yields y ∈ E as required.
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Proof of Proposition 6. In view of Lemmata 7, 8 and 9, it is enough to show that for all facial cones C of D
(of any dimension 1 ≤ d ≤ n− 1), the space E := span(C) satisfies that

Fix
({
g ∈ G; g|E = IdE

})
⊂ E.

Since C is a d-dimensional face of D, it is the intersection of D with n − d hyperplanes taken among the
family

({
x ∈ Rn; 〈x, vi〉 = 0

})m
i=1

. It follows that there exists a subset IE of {1, . . . ,m} of cardinality n− d
such that

E =
⋂
i∈IE

{
x ∈ Rn; 〈x, vi〉 = 0

}
.

Consequently, for all i ∈ IE , Sv⊥i leaves E pointwise invariant. Hence

Fix
({
g ∈ G; g|E = IdE

})
⊂ Fix

({
Sv⊥i ; i ∈ IE

})
=
⋂
i∈IE

v⊥i = E,

as required.
Remark 4. In the results of this section, the finiteness assumption on the groups G could be replaced by
compactness. We would average according to the Haar probability measure instead of the counting measure.

4 Regular polytopes

Corollary 5 about regular polygons suggests the following question: if K has the same symmetries as a
regular convex polytope, does it have a bigger volume product? The aim of this section is to show that it is
indeed the case:

Theorem 10. Let P be a regular polytope in Rn centered at the origin and let O(P ) be its isometry group.
Let K be an O(P )-invariant convex body in Rn. Then

P(K) = |K||K◦| ≥ |P ||P ◦| = P(P ),

with equality if and only if K is a dilate of P or a dilate of P ◦.

Let us first recall what is a regular polytope (see [3], [4] and [9]). To do this, we first need the definition
of a flag. A flag of a polytope P in Rn is an n-tuple F = (F0, F1, . . . , Fn−1), where F0 is a vertex of P , F1 is
an edge of P containing F0, and for all k ∈ {1, . . . , n− 1} Fk is a k-dimensional face of P containing Fk−1.
A polytope P in Rn of dimension n is regular if for every two flags F and F ′ of P there exists an element
g ∈ O(P ) such that g(F) = F ′.

From this definition, one may deduce a few useful facts: for every 0 ≤ k ≤ n− 1, the k-faces of a regular
polytope are regular and isometric. Since the center of gravity of P is fixed by O(P ), every vertices of P are
on the same sphere centered at the center of gravity. Notice that any linear isometry g of O(Rn) is uniquely
determined by its image on a flag not containing the origin. Moreover, for any two adjacent facets F and
F ′ of P , i.e. such that F ∩ F ′ is a (n − 2)-face, consider the flags F = (F0, F1, . . . , Fn−3, F ∩ F ′, F ) and
F ′ = (F0, F1, . . . , Fn−3, F ∩ F ′, F ′), where (F0, F1, . . . , Fn−3) is a flag of F ∩ F ′. Then there is g ∈ O(P )
such that g(F) = F ′. Thus H := span(F ∩ F ′) is fixed by g, therefore g is the reflection σH with respect to
the hyperplane H and one has σH(F ) = F ′.

Let us discuss the interest of Theorem 10. Notice that the property of beeing a regular polytope is in fact
very restrictive. In dimension 2, there are infinitely many regular polygons, as explained in section 2, but
in all dimension n ≥ 3, the list is rather short: five regular polytopes in dimension 3, six regular polytopes
in dimension 4 and only three regular polytopes in dimension n ≥ 5 as was shown by the classification of
regular polytopes established by Coxeter [3]. Moreover, the case of the cube and cross-polytope, dual of
each other, follows from the reverse Santaló inequality for unconditional bodies of Saint Raymond [23], which
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actually have less symmetries. Thus the interest of Theorem 10 lies in the remaining cases: the simplex in all
dimensions n ≥ 3, the dodecahedron and the icosahedron (dual of each other) in dimension 3 and the 24-cell
conv(B4

1 ,
1
2B

4
∞), the 120-cell and 600-cell in 4 dimensions (the latter two being also dual of each other). We

shall treat these cases altogether without using the classification of regular polytopes.

The strategy will be to divide K according to the cones generated by the facets of P and to adapt Meyer’s
argument of [14] in this context. This will naturally lead to study the intersection of K and its polar with
the cones generated by all k-faces of P , for all k. The following lemma gathers the geometric conditions that
allow to estimate the volume product in a k-dimensional cone, in terms of the volume products in its facets
when the situation is symmetric enough. This the heart of the argument of [14].

Lemma 11. Let K be a convex body in Rn with 0 ∈ K. Let 1 ≤ k ≤ n − 1, C be a (k + 1)-dimensional
polyhedral convex cone in Rn and C1, . . . , Cm be the k-faces of C. For 1 ≤ i ≤ m, let vi ∈ span(C) be the
unit vector normal to Ci in such a way that 〈x, vi〉 ≥ 0, ∀x ∈ C. Let us assume that

1. The quantities |K ∩ Ci|k and |K◦ ∩ Ci|k do not depend on the value of i.

2. The vector w :=
∑m
i=1 vi lies in C.

3. For all y ∈ C, sup
x∈K
〈x, y〉 = sup

x∈K∩C
〈x, y〉.

Let x0 = |K◦∩C1|k
(k+1)|K◦∩C|k+1

w and y0 = |K∩C1|k
(k+1)|K∩C|k+1

w. Then y0 ∈ K◦ ∩ C and

|K ∩ C|k+1 |K◦ ∩ C|k+1 ≥ |K ∩ C1|k |K◦ ∩ C1|k
|w|2

(k + 1)2
, (1)

with equality in (1) if and only if K◦ ∩ C =
⋃m
i=1 conv(y0,K◦ ∩ Ci). Moreover any y ∈ K◦ ∩ C, satisfies

〈y, x0〉 ≤ 1 with equality if and only if K◦ ∩ C =
⋃m
i=1 conv(y,K◦ ∩ Ci).

Proof. For any x ∈ K ∩ C, we have

|K ∩ C|k+1 ≥
m∑
i=1

|conv(x,K ∩ Ci)|k+1 =
m∑
i=1

|K ∩ Ci|k〈x, vi〉
k + 1

=
|K ∩ C1|k
k + 1

〈x,w〉,

where w =
∑m
i=1 vi. This means that 〈x, y0〉 ≤ 1 for all x ∈ K ∩ C. Since y0 ∈ C it follows that

supz∈K〈z, y0〉 = supx∈K∩C〈x, y0〉 ≤ 1. This allows us to conclude that y0 ∈ K◦ ∩ C. Hence we may apply
the preceding dissection argument for K◦ and the point y0. This leads to

|K◦ ∩ C|k+1 ≥
m∑
i=1

|conv(y0,K◦ ∩ Ci)|k+1 =
m∑
i=1

|K◦ ∩ Ci|k〈y0, vi〉
k + 1

=
|K◦ ∩ C1|k
k + 1

〈y0, w〉,

Substituting the expression of y0 yields

|K ∩ C|k+1|K◦ ∩ C|k+1 ≥ |K ∩ C1|k|K◦ ∩ C1|k
|w|2

(k + 1)2
,

with equality if and only if K◦∩C =
⋃m
i=1 conv(y0,K◦∩Ci). Applying the above argument to any y ∈ K◦∩C

instead of y0, we get that 〈y, x0〉 ≤ 1 with equality if and only if K◦ ∩ C =
⋃m
i=1 conv(y,K◦ ∩ Ci).

Next we show how this applies to bodies with the symmetries of a regular polytope.
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Lemma 12. Let P ⊂ Rn be a regular polytope with barycenter at the origin and let K ⊂ Rn be an O(P )-
invariant convex body. Let 0 ≤ k ≤ n− 1, F be a k-face of P and C = pos(F ).

If k 6= 0, let C1, . . . , Cm be the k-faces of C. Let vi be the unit normal vector to span(Ci) (within span(C))
pointing in the direction of C. Then

|K ∩ C|k+1 |K◦ ∩ C|k+1 ≥ |K ∩ C1|k |K◦ ∩ C1|k
|
∑
i vi|2

(k + 1)2

and there is equality if and only if K ∩ C is homothetic to P ∩ C or P ◦ ∩ C.
If k = 0 then |K ∩ C|1 |K◦ ∩ C|1 = 1.

Proof. The proof being a bit long we shall divide it in three steps.

Step 1: the inequality. Notice first that since P is regular, for any 0 ≤ ` ≤ n − 1, any two `-faces
of P are isometric by an element of O(P ) and so are the cones D1 and D2 that they generate. Since K is
O(P )-invariant, K∩D1 and K∩D2 are isometric, in particular they have the same (`+1)-volume. Moreover
for every g ∈ O(Rn), if K = gK then by polarity K◦ = (gK)◦ = (g∗)−1K◦ = gK◦. Hence, K and K◦ have
the same isometry group. Therefore the same is true for K◦.

Applying Proposition 6 for G = O(P ) and for the cone generated by a facet of P , we deduce that for
any cone D generated by any face of P one has PD(K) = K ∩D and D has the norming property for K:
for all y ∈ D, sup

x∈K
〈x, y〉 = sup

x∈K∩D
〈x, y〉.

First, we treat the case k = 0: F is a vertex u of P and C = pos(F ) = R+u. Hence there is λ > 0 such
that K ∩ C = [0, λu]. We choose the normalization of P and we dilate K so that ‖u‖2 = λ = 1. In this
case, as in the planar case, the property PC(K) = K ∩ C is equivalent to [0, u] ⊂ K ⊂ {x; 〈x, u〉 ≤ 1}. And
as before, this property passes to the polar [0, u] ⊂ K◦ ⊂ {x; 〈x, u〉 ≤ 1}. Hence K◦ ∩ C = [0, u], taking
volumes, we get |K ∩ C| |K◦ ∩ C| = 1.

Now we assume that k ≥ 1. The proof of the inequality consists in applying the preceding lemma. We
shall verify the hypotheses 1, 2, 3. It follows from the beginning of the proof that the first and the third
hypotheses are satisfied.

To verify the second hypothesis, denote by F1, . . . , Fm the (k− 1)-faces of F which compose the relative
boundary of F and notice that Ci = pos(Fi). Observe that one can find gi ∈ O(P ) such that gi(F1) = Fi
and also gi(F ) = F . To see this, one simply builds two flags of P by extending the ”short flags” (F1, F )
and (Fi, F ). Since P is regular there exists gi ∈ O(P ) which maps one flag to the other. In particular
gi(F1) = Fi, gi(F ) = F and consequently gi(C1) = Ci, gi(C) = C. Since gi preserves orthogonality, it is
plain that vi = gi(v1). As gi(F ) = F , gi permutes the (k − 1)-faces {F1, . . . , Fm}. It also acts as a bijection
on the set of their normal vectors {v1, . . . , vm}. Since w =

∑
j vj , one concludes that gi(w) = w, hence

〈w, v1〉 = 〈gi(w), gi(v1)〉 = 〈w, vi〉.

Summing over i, we get

m〈w, v1〉 =
m∑
i=1

〈w, vi〉 = |w|2 ≥ 0.

Hence for all i ∈ {1, . . . ,m}, 〈w, vi〉 ≥ 0 and we may conclude that w ∈ C. In fact, one gets more: each of
the isometries g1, . . . gm leaves F globally invariant and fixes w. Moreover they can have only one common
fixed point in F , hence w is a vector which is normal to F and if we denote by d the distance between F
and the origin, then the center of gravity of F is dw/|w|.

All the hypotheses of Lemma 11 have been checked so its conclusion is available:

|K ∩ C|k+1 |K◦ ∩ C|k+1 ≥ |K ∩ C1|k |K◦ ∩ C1|k
|w|2

(k + 1)2
, (2)
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with equality if and only if K◦ ∩ C =
⋃m
i=1 conv(y0,K◦ ∩ Ci), where y0 = |K∩C1|k

(k+1)|K∩C|k+1
w.

Step 2: there is equality for K = P . We only need to check that P ◦ ∩ C =
⋃m
i=1 conv(y0, P ◦ ∩ Ci),

where y0 = |P∩C1|k
(k+1)|P∩C|k+1

w. Firstly, we express y0 in a more geometric way. We already saw that d w
|w| is the

center of the face F of P . Since C = pos(F ), we have P ∩C =
⋃m
i=1 conv( dw|w| , P ∩Ci), hence taking volumes

|P ∩ C|k+1 =
m∑
i=1

∣∣∣∣conv
(
dw

|w|
, P ∩ Ci

)∣∣∣∣
k+1

=
m∑
i=1

|P ∩ Ci|k
k + 1

〈dw
|w|

, vi〉

=
d

k + 1
|P ∩ C1|k|w|,

using that |P ∩ Ci|k = |P ∩ C1|k and w =
∑
i vi. Consequently,

y0 =
|P ∩ C1|k

(k + 1)|P ∩ C|k+1
w =

1
d

w

|w|
.

As we already mentioned, for y ∈ C, supx∈P 〈x, y〉 = supx∈P∩C〈x, y〉. Denote by u1, . . . , u` the vertices of F
(which are the non-zero vertices of P ∩ C = [0, 1] · F ). Then the latter equality implies that for y ∈ C,

y ∈ P ◦ ⇐⇒ ∀i ∈ {1, . . . , `}, 〈y, ui〉 ≤ 1. (3)

Observe that y0 ∈ P ◦ ∩ C and actually saturates the above inequalities. Indeed, given two vertices ui, uj of
F , there exists an isometry g ∈ O(P ) such that g(F ) = F and g(ui) = uj (to see this, extend the short flags
({ui}, F ) and ({uj}, F ) into maximal flags of P , which are isometric since P is regular). Clearly g(w) = w
(since the barycenter of F is preserved) and 〈w, uj〉 = 〈g(w), g(ui)〉 = 〈w, ui〉. Hence

〈1
d

w

|w|
, ui

〉
=
〈1
d

w

|w|
,

∑`
j=1 uj

`

〉
=
〈1
d

w

|w|
, d

w

|w|

〉
= 1,

where we have used that (
∑
j uj)/` is the barycenter of F , which is easy since it is invariant by all isometries

of F .
We are now ready to check that P ◦ ∩ C is a subset of

⋃m
i=1 conv(y0, P ◦ ∩ Ci) (the reverse inclusion is

obvious since y0 ∈ P ◦ ∩ C). Let y ∈ P ◦ ∩ C. Consider the half-line starting at y0 and passing through y

L := {y0 + λ(y − y0); λ ≥ 0}.

First, we remark that L is not included in C: since d w
|w| ∈ P , we have 〈y, d w

|w| 〉 ≤ 1 = 〈y0, d w
|w| 〉. Consequently

for λ ≥ 0, 〈y0 +λ(y−y0), d w
|w| 〉 = 1+λ〈y−y0, d w

|w| 〉 ≤ 1. Recall that dw/|w| is the center of the face F and is
orthogonal to the direction of this face. If L ⊂ C the latter inequality implies that L ⊂ 1

dP ∩C = [0, 1/d] ·F .
This is impossible as this is a bounded set. Hence the half-line L has to exit from C at some point z of the
boundary of C, which is ∪mi=1Ci hence z ∈ Ci for some i and since z ∈ L, z = y0 + λ(y − y0) for some λ ≥ 0
and λ > 0 since z 6= y0 because y0 is in the interior of C. It follows that 〈z, uj〉 = 〈(1− λ)y0 + λy, uj〉 ≤ 1,
for any j. Hence z ∈ P ◦ ∩ Ci. Therefore

y =
1
λ
z +

(
1− 1

λ

)
y0 ∈ conv(y0, P ◦ ∩ Ci).

Hence we have established that (2) is an equality when K = P .

Step 3: characterization of the equality case. Now let us prove that if K satisfies equality in (2)
then K ∩ C is a dilate of P ∩ C or P ◦ ∩ C. We choose the same normalization as before: the vertices
u1, · · · , u` of F are unit vectors and for all i, [0, ui] ⊂ K ⊂ {x; 〈x, ui〉 ≤ 1}. This implies that

P ∩ C = conv(0, F ) ⊂ K ∩ C ⊂ {x; 〈x, ui〉 ≤ 1,∀1 ≤ i ≤ `} = P ◦ ∩ C
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and the same for K◦ ∩ C. To avoid confusion let us denote by y0(P ) = |P∩C1|k
(k+1)|P∩C|k+1

w = 1
d

w
|w| the extreme

point of P ◦ in C such that P ◦ ∩ C =
⋃m
i=1 conv(y0, P ◦ ∩ Ci).

We already saw from the equality case in Lemma 11 that

K◦ ∩ C =
m⋃
i=1

conv(y0,K◦ ∩ Ci), where y0 =
|K ∩ C1|k

(k + 1)|K ∩ C|k+1
w.

Moreover any y ∈ K◦ ∩C, satisfies 〈y, x0〉 ≤ 1 with equality if and only if K◦ ∩C =
⋃m
i=1 conv(y,K◦ ∩Ci).

Since our hypotheses are symmetric between K and K◦, we can also apply Lemma 11 to K◦ and since there
is equality we deduce that

K ∩ C =
m⋃
i=1

conv(x0,K ∩ Ci) where x0 =
|K◦ ∩ C1|k

(k + 1)|K◦ ∩ C|k+1
w.

Moreover any x ∈ K ∩ C, satisfies 〈x, y0〉 ≤ 1 with equality if and only if K ∩ C =
⋃m
i=1 conv(x,K ∩ Ci).

We distinguish two cases:
1. If y0 is the unique point in K◦∩C such that K◦∩C =

⋃m
i=1 conv(y0,K◦∩Ci), i.e. such that 〈x0, y0〉 = 1.

Let us prove that K◦ ∩ C = P ◦ ∩ C. Since K◦ ∩ C ⊂ P ◦ ∩ C, we only need to prove that the vertices of
P ◦ ∩ C are in K◦ ∩ C.

Let u ∈ {u1, . . . , u`}. Since K ∩ C = ∪mi=1conv(x0,K ∩ Ci) and u ∈ ∂K ∩ Cj for some j, we deduce that
the point x := x0+u

2 is in ∂K. Since C satisfies the norming property for K◦, it follows that there exists
y ∈ K◦ ∩ C such that 〈x, y〉 = 1. Hence〈x0 + u

2
, y
〉

=
〈x0, y〉+ 〈u, y〉

2
= 1.

Since x0, u ∈ K and y ∈ K◦, one deduces that 〈x0, y〉 = 1 and 〈u, y〉 = 1. But y0 is the unique point in
K◦ ∩C such that 〈x0, y0〉 = 1 hence y0 = y, which implies that 〈u, y0〉 = 1. Since u was an arbitrary vertex
of F , we deduce that 〈ui, y0〉 = 1, for every i ∈ {1, . . . , `}. Therefore y0 = y0(P ). Hence the vertex y0(P )
of P ◦ ∩ C is in K◦ ∩ C. Next, by Proposition 6 we know that for any face D of C (of any dimension),
PD(K◦) ⊂ K◦, hence PD(y0(P )) ∈ K◦ ∩ C.

To reach our goal, it is enough to verify that all the vertices of P ◦ ∩ C are the projections of y0(P )
on all the faces (of any dimension) of C. We prove this inductively. Let C1 be a facet of C and let
y1(P ) be the unique vertex of P ◦ ∩ C1 in the relative interior of C1. Let I ⊂ {1, . . . , `} such that the
set of vertices of F1 is {ui, i ∈ I}. For i ∈ I, notice that ui ∈ C1, hence 〈v1, ui〉 = 0. We know that
P ◦ ∩C1 = {y ∈ C1; 〈y, ui〉 ≤ 1,∀ i ∈ I} and y1(P ) is the unique point of C1 (and actually of span(C1)) such
that 〈y1(P ), ui〉 = 1, ∀ i ∈ I. Consider the projection z := Pspan(C1)(y0(P )) = y0(P ) − 〈y0(P ), v1〉v1. Since
〈y0(P ), ui〉 = 1 and 〈v1, ui〉 = 0, for all i ∈ I, it follows that 〈z, ui〉 = 1, ∀ i ∈ I. Hence z = y1(P ) and it
belongs to C1. Therefore y1(P ) = Pspan(C1)(y0(P )) = PC1(y0(P )). Iterating this procedure, we obtain that
all the vertices of P ◦ ∩ C are the projections of y0(P ) on the faces of C. Combining the above arguments,
we may conclude that K◦ ∩ C = P ◦ ∩ C.

2. If there is y1 6= y0 in K◦ ∩ C such that 〈x0, y1〉 = 1. Let us prove that K◦ ∩ C = P ∩ C. Note
that H := {y; 〈x0, y〉 = 1} is a supporting hyperplane of K◦ ∩ C and that y0, y1 are contact points. Using
isometries of P (hence of K◦) which leave C globally invariant and permute its facets, we obtain new contact
points y2, . . . ym, as the images of y1. It is readily checked that conv(y1, . . . , ym) is a convex body in H which
contains y0 in its interior. So the boundary of K◦∩C is flat in a neighborhood of y0. However the boundary
of K◦ ∩ C is also star-shaped at y0 since K◦ ∩ C = ∪iconv(y0,K◦ ∩ Ci). Combining these two facts, we
deduce that K◦ ∩C = C ∩{y; 〈y, x0〉 ≤ 1}. Since, by our normalization, u1, . . . , um ∈ ∂K◦ ∩C we conclude
that K◦ ∩ C = P ∩ C.

The proof is therefore complete.
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Notice that the inequality of the preceding lemma may be rewritten as

|K ∩ C|k+1 |K◦ ∩ C|k+1

|K ∩ C1|k |K◦ ∩ C1|k
≥ |P ∩ C|k+1 |P ◦ ∩ C|k+1

|P ∩ C1|k |P ◦ ∩ C1|k
· (4)

The main theorem of this section follows by repeated applications of the previous result:

Proof of Theorem 10: First we divide K and K◦ into the cones generated by the facets of P . Let F (n−1) be
one of these facets and let C(n) be the n-dimensional cone generated by F (n−1). Let N be the number of
facets of P . There exist g1, . . . , gN ∈ O(P ) such that the facets of P are g1F (n−1), . . . , gNF

(n−1). One has
thus Rn =

⋃N
i=1 giC

(n) and since K = giK

K =
N⋃
i=1

K ∩ giC(n) =
N⋃
i=1

gi(K ∩ C(n)).

Since the union is essentially disjoint, we have |K| = N |K ∩ C(n)|. Recall that K and K◦ have the same
isometry group. Therefore we may apply the same for K◦, thus |K◦| = N |K◦ ∩ C(n)|. Finally we get

|K|n|K◦|n = N2|K ∩ C(n)|n|K◦ ∩ C(n)|n.

Note that in particular |P |n|P ◦|n = N2|P ∩C(n)|n|P ◦ ∩C(n)|n. Let
(
F (0), . . . , F (n−1)

)
be a maximal flag of

P and consider for 1 ≤ j ≤ n the j-dimensional cone C(j) = pos(F (j−1)). Denote by (v(j)
i ) the collection of

unit vectors which are orthogonal to the facets of C(j) and pointing inwards this cone. Since C(k−1) is one
of the facets of C(k), Lemma 12 yields for 2 ≤ k ≤ n

|K ∩ C(k)|k |K◦ ∩ C(k)|k
|K ∩ C(k−1)|k−1 |K◦ ∩ C(k−1)|k−1

≥ |P ∩ C(k)|k |P ◦ ∩ C(k)|k
|P ∩ C(k−1)|k−1 |P ◦ ∩ C(k−1)|k−1

=

∣∣∑
i v

(k)
i

∣∣2
k2

,

and for k = 1 simply |K ∩ C(1)|1 |K◦ ∩ C(1)|1 = |P ∩ C(1)|1 |P ◦ ∩ C(1)|1 = 1. Taking the product of these
inequalities one gets that

|K|n|K◦|n ≥ |P |n|P ◦|n = N2
n∏
k=2

∣∣∑
i v

(k)
i

∣∣2
k2

=

(
N

n!

n∏
k=2

∣∣∑
i

v
(k)
i

∣∣)2

. (5)

The barycenters of P ◦ and K◦ are at this origin, because of their invariance by O(P ). Hence P(K) =
|K|n|K◦|n ≥ |P |n|P ◦|n = P(P ). This proves the inequality.

If P(K) = P(P ) then there is equality in each of the preceding inequalities hence in particular in the
first one, so from the equality case in Lemma 12, K ∩ C(n) is either a dilate of P ∩ C(n) or of P ◦ ∩ C(n).
Since K =

⋃N
i=1 gi(K ∩ C(n)), it follows that K is either a dilate of P or of P ◦.

5 Products of regular polytopes

Given isometries g` ∈ O(Rn`), ` = 1, . . . , k, we consider the isometry g1×· · ·× gk defined on Rn1 ×· · ·×Rnk
by

(g1 × · · · × gk)(x1, . . . , xk) =
(
g1(x1), . . . , gk(xk)

)
.

For subgroups G` ⊂ O(Rn`), ` = 1, . . . , k, we define their direct product as a subset of O(Rn), where
n =

∑
` n`:

G1 × · · · ×Gk =
{
g1 × · · · × gk; ∀i, gi ∈ Gi

}
.

Our improved sharp lower bound on the volume products under symmetry assumptions is as follows:
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Theorem 13. Let k ≥ 1 be an integer. For 1 ≤ ` ≤ k, let P` be a regular polytope in Rn` with barycenter at
the origin. Let n =

∑
` n` and K ⊂ Rn = Rn1×· · ·×Rnk be a convex body invariant by O(P1)×· · ·×O(Pk).

Then

P(K) ≥ P(P1 × · · · × Pk) =
1
n!

k∏
`=1

n`!P(P`).

Taking k = n and P1 = · · · = Pn = [−1, 1], we recover the result of Saint Raymond [23] for unconditional
sets in Rn. The proof of this result will require most of the material of the previous sections. We start with
a classical fact on the volume products of product-sets, which establishes the equality in the statement of
the theorem.

Lemma 14. For ` = 1, . . . , k, let K` ⊂ Rn` be a convex body containing the origin in its interior. Let
n =

∑
` n`. Then

n! |K1 × · · · ×Kk| |(K1 × · · · ×Kk)◦| =
k∏
`=1

(n`! |K`| |K◦` |) .

Proof. Recall that the gauge function for K◦` is defined by ‖x‖K◦` = supy∈K`〈x, y〉. With this notation

(K1 × · · · ×Kk)◦ = {(x1, . . . , xk) ∈ Rn; ∀y1 ∈ K1, . . . ,∀yk ∈ Kk,
∑
`

〈x`, y`〉 ≤ 1}

= {(x1, . . . , xk) ∈ Rn;
∑
`

‖x`‖K◦` ≤ 1}.

Hence ‖(x1, . . . , xk)‖(K1×···×Kk)◦ =
∑
` ‖x`‖K◦` . This means that (K1 × · · · × Kk)◦ is actually the convex

hull of the sets {0Rn1+···+n`−1 }×K◦` ×{0Rn`+1+···+nk } which are just the copies of K◦` in the `-th factor of the
product space. We conclude using the following consequence of level-sets integration: if K ⊂ Rd is convex
and contains the origin in its interior, then d!|K| =

∫
Rd e

−‖x‖Kdx. This gives

n!|(K1 × · · · ×Kk)◦| =
∫

Rn1×···×Rnk
e−

Pk
`=1 ‖x`‖(K`)◦dx1 . . . dxk

=
k∏
`=1

∫
Rn`

e−‖x`‖(K`)◦dx` =
k∏
`=1

n`! |K◦` |

and we conclude by using that |K1 × · · · ×Kk| =
∏k
`=1 |Ki|.

Proof of Theorem 13: We first divide Rn into cones. For each ` ∈ {1, . . . , k}, let N` be the number of facets
of P`. Let also

(
F 0
` , . . . , F

n`−1
`

)
be a maximal flag of P`. We set C0

` = {0Rn` } and for i ∈ {1, . . . , n`},
Ci+1
` = pos(F i` ). With this definition

(
C0
` , C

1
` , . . . , C

n`
`

)
can be viewed as a maximal flag of the cone Cn`` .

Note that Ci` is of dimension i.

As we have already seen, Rn` can be essentially paved by the cones generated by the facets of P`, which
are all isometric. In other words, there exists isometries g`,1, . . . , g`,N` ∈ O(P`) such that

Rn` = ∪N`j=1g`,j(C
n`
` ),

where the overlaps have no volume. Taking cartesian products, we obtain that

Rn =

 N1⋃
j1=1

g1,j1(Cn1
1 )

× · · · ×
 Nk⋃
jk=1

gk,jk(Cnkk )


=

⋃
1≤j1≤N1,...,1≤jk≤Nk

(g1,j1 × · · · × gk,jk)
(
Cn1

1 × · · · × C
nk
k

)
.
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Since K and K◦ are invariant by each g1,j1 × · · · × gk,jk ∈ O(P1)× · · · × O(Pk), taking volumes gives

|K| |K◦| = (N1 · · ·Nk)2 |K ∩ (Cn1
1 × · · · × C

nk
k )| |K◦ ∩ (Cn1

1 × · · · × C
nk
k )|. (6)

Next, we follow Meyer’s approach to estimate the volume product “in this cone” in terms of the volume
product in its facets and so on. This will lead us to consider all the faces of Cn1

1 ×· · ·×C
nk
k of any dimension.

It is easy to see that they are all of the form C(1)× · · · × C(k) where C(`) is a face of Cn`` (meaning either
{0} or the positive hull of a face of P`). In particular, since the group of isometries of P` is transitive on the
faces of P` of a given dimension, all the cones that will appear in our proof will be isometric, by an element
of O(P1)× · · · × O(Pk), to a cone of the form Cd11 × · · · ×C

dk
k , with 0 ≤ d` ≤ n`. Note that d1 + · · ·+ dk is

the dimension of this cone. Now there may be many different cones of a given dimension d, as many as the
choices of (d`) such that d1 + · · ·+ dk = d.

Lemma 15. Let K ⊂ Rn be a convex body, which is assumed to be O(P1)×· · ·×O(Pk)-invariant. For each
` ∈ {1, . . . , k}, let D` be {0Rn`} or the positive hull of a face of P`. Let D = D1 × · · · ×Dk and assume that
it is of dimension d ≥ 1. If dim(D`) ≥ 1, let D`,1, . . . , D`,j` be its facets and let v`,1, . . . , v`,j` be the unit
inner normals to these facets. We also set w(D`) := v`,1 + . . .+v`,j` and define the (d−1)-dimensional cone

D̃` := D1 × · · · ×D`−1 ×D`,1 ×D`+1 × · · · ×Dk.

With these notations the following inequality holds

d2 |K ∩D| |K◦ ∩D| ≥
∑

`=1,...,k, dim(D`)>0

|w(D`)|2|K ∩ D̃`| |K◦ ∩ D̃`|.

We could set w(D`) = 0 when dim(D`) = 0 and this would allow to remove the restriction in the sum.

Proof. The facets of the cone D = D1 × · · · ×Dk are the cones

D1 × · · · ×D`−1 ×D`,j ×D`+1 × · · · ×Dk,

for all the choices of ` such that dim(D`) ≥ 1 and of j ∈ {1, . . . , j`}. The unit normal to this facet of D
pointing inside D is simply v`,j viewed as a vector in Rn. This means that from now on it is identified with
the vector (

0Rn1 , . . . , 0Rn`−1 , v`,j , 0Rn`+1 , . . . , 0Rnk
)
.

In particular for different values of ` the normal vectors are orthogonal. The usual volume estimate yields
for all x ∈ K ∩D that

|K ∩D| ≥
∑

`, dim(D`)>0

j∑̀
j=1

∣∣conv
(
x,K ∩ (D1 × · · · ×D`−1 ×D`,j ×D`+1 × · · · ×Dk)

)∣∣
=

∑
`, dim(D`)>0

j∑̀
j=1

〈x, v`,j〉
d

∣∣K ∩ (D1 × · · · ×D`−1 ×D`,j ×D`+1 × · · · ×Dk)
∣∣.

Now for all (`, j) in the above sum, there exists g ∈ O(P`) such that g(D`,j) = D`,1 as we explained in the
section about regular polytopes. Hence

i`[g](D1 × · · · ×D`−1 ×D`,j ×D`+1 × · · · ×Dk) = D1 × · · · ×D`−1 ×D`,1 ×D`+1 × · · · ×Dk = D̃`,

and since K is invariant by i`[g] we get that
∣∣K ∩ (D1 × · · · ×D`−1 ×D`,j ×D`+1 × · · · ×Dk)

∣∣ = |K ∩ D̃`|.
Hence

|K ∩D| ≥
∑

`, dim(D`)>0

j∑̀
j=1

〈x, v`,j〉
d

∣∣K ∩ D̃`

∣∣ =
∑

`, dim(D`)>0

∣∣K ∩ D̃`

∣∣
d

〈x,w(D`)〉.

15



So the vector

y :=
∑

`, dim(D`)>0

∣∣K ∩ D̃`

∣∣
d |K ∩D|

w(D`)

satisfies that supx∈K∩D〈x, y〉 ≤ 1. We have seen in the previous section that w(D`) ∈ D` (again we identify
Rn` with {0Rn1+···+n`−1 } × Rn` × {0Rn`+1+···+nk }. Consequently y ∈ D = D1 × · · · ×Dk and Proposition 6
implies that y ∈ K◦. Since y ∈ K◦ ∩D, we may reproduce the above volumic argument and get

|K◦ ∩D| ≥
∑

m, dim(Dm)>0

∣∣K◦ ∩ D̃m

∣∣
d

〈y, w(Dm)〉

=
∑

m, dim(Dm)>0

∑
`, dim(D`)>0

∣∣K◦ ∩ D̃m

∣∣ |K ∩ D̃`|
d2|K ∩D|

〈w(Dm), w(D`)〉

Eventually, if ` 6= m, w(D`) and w(Dm) are orthogonal. The proof is therefore complete.

Continuation of the proof of Theorem 13. We start with recalling Equation (6)

|K| |K◦| = (N1 · · ·Nk)2 |K ∩ (Cn1
1 × · · · × C

nk
k )| |K◦ ∩ (Cn1

1 × · · · × C
nk
k )|,

where C0
` = {0Rn`} and for j ≥ 1, Cj` = pos(F j−1

` ) and (F 0
` , . . . , F

n`−1
` ) is a maximal facial flag of P`. Since

the origin is the only point that is fixed by the whole group O(P1) × · · · × O(Pk), which leaves K and K◦

globally invariant, it follows that 0 is the barycenter of K◦. Hence P(K) = |K| |K◦| and our task is to show
that |K| |K◦| ≥ |P1 × · · · × Pk| |(P1 × · · · × Pk)◦|. In view of Lemma 14 and Formula (5), this amounts to

n! |K| |K◦| ≥
k∏
`=1

N2
`

n`!

n∏̀
j`=2

∣∣w(Cj`` )
∣∣2.

Note that |w(C1
` )| = 1 since a half-line has only one boundary point and one inner normal. The latter is

equivalent to

n! |K ∩ (Cn1
1 × · · · × C

nk
k )| |K◦ ∩ (Cn1

1 × · · · × C
nk
k )| ≥

k∏
`=1

n∏̀
j`=1

∣∣w(Cj`` )
∣∣2

j`
.

We prove this inequality by repeated applications of Lemma 15. Let us introduce more compact notations.
Given a cone D of dimension d we set [D] := (d!)2|K∩D| |K◦∩D| and λ(D) := |w(D)|2/d. If D is reduced to
the origin we take by convention λ(D) = 1. Our goal is to show by induction on d, where 1 ≤ d = d1+· · ·+dk,
with di ≤ ni, that

[Cd11 × · · · × C
dk
k ] ≥ (d1 + · · ·+ dk)!

k∏
`=1

d∏̀
j`=1

λ(Cj`` ). (7)

The starting point is that if d = d1 + · · · + dk = 1, then Cd11 × · · · × C
dk
k is a half-line with the “norming”

property, hence [Cd11 × · · · × Cdkk ] = 1 by the usual argument. The induction argument is provided by
Lemma 15 which implies that

[Cd11 × · · · × C
dk
k ] ≥

k∑
`=1

d`λ(Cd`` ) [Cd11 × · · · × C
d`−1
`−1 × C

d`−1
` × Cd`+1

`+1 × · · · × C
dk
k ], (8)
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provided d = d1 + · · ·+ dk ≥ 1 . If we know the required property for product cones of dimension d− 1 ≥ 1,
then we know the following lower bound for each term of the right-hand side of the above inequality:

[Cd11 × · · · × C
d`−1
`−1 × C

d`−1
` × Cd`+1

`+1 × · · · × C
dk
k ]

≥ (d1 + · · ·+ dk − 1)!
∏
i 6=`

 di∏
ji=1

λ(Cjii )

× d`−1∏
j`=1

λ(Cj`` )

= (d1 + · · ·+ dk − 1)!

∏k
i=1

(∏di
ji=1 λ(Cjii )

)
λ(Cd`` )

.

Plugging these inequalities in (8) gives

[Cd11 × · · · × C
dk
k ] ≥

k∑
`=1

d`(d1 + · · ·+ dk − 1)!
k∏
i=1

di∏
ji=1

λ(Cjii ) = (d1 + · · ·+ d`)!
k∏
i=1

di∏
ji=1

λ(Cjii ).

After n− 1 iteration, one reaches (7). Alternatively we could have checked that the inequality provided by
Lemma 15 is always an equality when K = P1×· · ·×Pk and check that after n−1 iterations it gives a lower
bound on the volume product of K by a quantity that does not depend on K anymore.
Remark 5. The inequality provided by Theorem 13 is an equality when K = P1×· · ·×Pk but there are many
more equality cases. We illustrate this in the case when k = 2. It is convenient to introduce for K ⊂ Rn1 and
M ⊂ Rn2 , the set K �M := conv(K × {0Rn2}, {0Rn1} ×M). Note that when K and M contain the origin,
(K ×M)◦ = K◦ �M◦. Using this remark and noting that P(Pi) = P(P ◦i ) one readily checks that the sets
P1 × P2, P ◦1 × P2, P1 × P ◦2 , P ◦1 × P ◦2 , P1 � P2, P ◦1 � P2, P1 � P ◦2 and P ◦1 � P ◦2 are all O(P1)×O(P2)-invariant
and have minimal volume product in this invariance class.

For k ≥ 3, one has to deal moreover with parentheses since for example (P1×P2)�P3 6= P1× (P2 �P3), as
can be seen by comparing the vertices of each set. Hence one can produce minimizers by arbitrary parentheses
combinations of cartesian products × and cartesian convex hulls � of the sets Pi and their polars. In the
case of unconditional bodies, (P` = [−1, 1] for all `), Meyer [14] and independently with another method
Reisner [22] were able to show that all unconditional minimal volume product bodies are of this form (they
are known as Hanner polytopes). It should be possible, but tedious indeed, to extend Meyer’s argument to
general P`’s in order to characterize equality cases in Theorem 13.

6 General symmetries

The following result confirms Mahler’s conjecture for convex bodies with many hyperplane symmetries.

Theorem 16. Let K ⊂ Rn be a convex body. Assume that there exists m (non necessarily orthogonal)
symmetries S1, . . . , Sm with respect to affine hyperplanes H1, . . . ,Hm such that for all i = 1, . . . ,m, Si(K) =
K and card

(⋂m
i=1Hi

)
= 1. Then

P(K) ≥ P(∆n),

with equality if and only if K is a simplex.

This theorem will be deduced from our previous results using the following structural statement, which
relies on Coxeter’s classification of finite reflection groups [3] (see also [4] and [9]).

Proposition 17. Let K ⊂ Rn be a compact set. Let R(K) be the subgroup of O(Rn) generated by the
symmetries with respect to vector hyperplanes which leave K globally invariant. Assume that Fix(R(K)) =
{0}. Then there exists an orthogonal decomposition Rn = E1

⊕
· · ·
⊕
Ek and convex sets P` ⊂ E`, ` =

1, . . . , k such that P` is a regular polygon if dim(E`) = 2 and a regular simplex of dimension dim(E`)
otherwise, and

O(P1)× · · · × O(Pk) ⊂ R(K).
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Remark 6. In the previous statement, E` may be of dimension 1 and therefore identified to R. In this case
P` = ∆1 = [−1, 1] and O([−1, 1]) = {IdR,−IdR}. Note that the direct product of n copies of O([−1, 1])
corresponds to the reflection group generated by n hyperplane symmetries with respect to the coordinate
hyperplanes in an orthonormal basis. By definition K ⊂ Rn is unconditional if and only if, in an appropriate
orthonormal basis, it is invariant by (x1, . . . , xn) 7→ (±x1, . . . ,±xn). This is clearly equivalent to being
invariant by the direct product O([−1, 1]) × · · · × O([−1, 1]) (in the orthogonal decomposition induced by
the basis).

Proof. The first step of the proof is very classical. It consists in writing R(K) as a direct product of
irreducible reflection groups. Recall that a reflection group acting on Rn is reducible if there exists a vector
subspace E ⊂ Rn with {0} 6= E 6= Rn such that E is globally invariant for all the elements of R(K).
Consequently E⊥ is also globally invariant. If a reflection SH with respect to a hyperplane H = {h}⊥ leaves
E globally invariant then either h ∈ E or h ∈ E⊥ (indeed for all v ∈ E, 2〈v, h〉h = v − SHv ∈ E). Hence, in
the decomposition Rn = E

⊕
E⊥, either SH = Sh⊥E × IdE⊥ or SH = IdE×Sh⊥E⊥ where A⊥E stands for the

orthogonal of a set A in E. It is then easy to see that the R(K) being generated by reflections becomes a direct
product of a subgroup of O(E) generated by reflections and a subgroup of O(E⊥) generated by reflections.
Repeating this procedure whenever possible leads to an orthogonal decomposition Rn =

⊕m
i=1Ei in which

R(K) = R1×· · ·×Rm where for all i, Ri is an irreducible reflection group on Ei ∼ Rdim(Ei). In order to prove
the claim it is sufficient to show that every Ri contains a subgroup of the form O(P1)× · · · × O(Pk) where
each Pk is either a regular simplex or a regular polygon. If Ri is infinite, one can show that Ri = O(Ei)
(this is postponed to the next lemma) hence it contains the symmetries with respect to the hyperplanes
corresponding to an orthonormal basis, i.e. O([−1, 1]) × · · · × O([−1, 1]) ⊂ Ri and we are done with this
factor. If Ri is finite we use the complete description of finite irreducible reflection groups, due to Coxeter
[3]. For each such group we show that it contains a direct product of isometry groups of regular polygons or
simplices. We proceed as follows: we consider first the groups which may be viewed as isometry groups of
regular polytopes. The remaining cases are isometry groups of semi-regular polytopes. In each category, we
consider first the cases which are specific to small dimensions and study next the families of groups existing
in any dimension. The finite irreducible reflection groups corresponding to regular polytopes are:

• The diedral groups I2(m), m ≥ 2 may be viewed as the isometry groups of the regular polytopes Cm.
They are of the form expected in the Proposition.

• The group H3 is the group of isometries of the dodecahedron and of its polar the icosahedron. Let
ϕ = (1 +

√
5)/2. Then an icosahedron can be built as the convex hull of the set of points obtained

from (0, 1, ϕ) ∈ R3 by permutations of the coordinates and arbitrary changes of signs. Therefore the
icosahedron is unconditional for the canonical basis. Hence its isometry group contains O([−1, 1]) ×
O([−1, 1])×O([−1, 1]) and we are done with this case.

• The group F4 is the isometry group of the set conv(B4
∞, 2B

4
1) ⊂ R4, usually called the 24-cell. This set

is clearly unconditional for the canonical basis. Hence F4 contains a subgroup of the expected shape.

• The group H4 is the isometry group of the 120-cell and its polar the 600-cell. These two subsets of R4

turn out to be unconditional as well. Indeed one can build a 600-cell by taking the convex hull of the
24-cell conv(B4

∞, 2B
4
1) and all the points obtained from (1, ϕ, 1/ϕ, 0) by arbitrary changes of signs and

even permutations. Hence H4 contains the direct product of four copies of O([−1, 1]).

• The group An way be viewed as the isometry group of a regular simplex in Rn. It is of the form
predicted in the proposition.

• The group Bn also called Cn corresponds to the isometry group of the n-dimensional cube Bn∞ =
[−1, 1]n and its dual Bn1 . The cube being unconditional Bn contains a direct product of n copies of
O([−1, 1]).

The remaining cases only correspond to isometry groups of semi-regular polytopes.
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• We deal with the group E6 in a different way: namely by considering its roots system. The roots
are basically orthogonal vectors to the hyperplanes corresponding to the reflections in the group. In
particular, a reflection group splits as a direct product if and only if its roots can be partitioned into
two sets which are mutually orthogonal. Along the same ideas the existence of an orthogonal basis
formed by roots ensures that the group contains a copy of O([−1, 1])× · · · ×O([−1, 1]). The group E6

is a reflection group acting on R6. Nevertheless it is convenient to use a representation of its roots in
a subspace of dimension 6 in R9. Among the list of roots, let us just focus on the following ones:

v1,1 = (−1, 1, 0, 0, 0, 0, 0, 0, 0), v1,2 = (0, 1,−1, 0, 0, 0, 0, 0, 0)
v2,1 = (0, 0, 0,−1, 1, 0, 0, 0, 0), v2,2 = (0, 0, 0, 0, 1,−1, 0, 0, 0)
v3,1 = (0, 0, 0, 0, 0, 0,−1, 1, 0), v2,2 = (0, 0, 0, 0, 0, 0, 0, 1,−1).

Note that the three planes span(vi,1, vi,2), i ∈ {1, 2, 3} are mutually orthogonal. More over for each
i, cos( ̂(vi,1, vi,2)) = 1

2 . So the angle between these vectors is π/3 and so is the angle between their
orthogonal hyperplanes. Hence the reflections corresponding to these two roots generate a copy of
the I2(3) the group of isometries of the equilateral triangle. As a consequence E6 contains O(∆2) ×
O(∆2)×O(∆2).

• The system of roots of the group E7 acting on R7 is better presented in {x ∈ R8;
∑
i xi = 0}.

It consists of all the permutations of the vector (1,−1, 0, 0, 0, 0, 0, 0) and all the permutations of
1
2 (1, 1, 1, 1,−1,−1,−1,−1). We just observe that among these vectors, the following seven vectors
are orthogonal:

(1,−1, 0, 0, 0, 0, 0, 0), (0, 0, 1,−1, 0, 0, 0, 0), (0, 0, 0, 0, 1,−1, 0, 0), (0, 0, 0, 0, 0, 0, 1,−1)
1
2

(1, 1, 1, 1,−1,−1,−1,−1),
1
2

(1, 1,−1,−1, 1, 1,−1,−1),
1
2

(1, 1,−1,−1,−1,−1, 1, 1).

Hence E7 contains a product of 7 copies of O([−1, 1]).

• The root system of the group E8 contains in particular all the vectors obtained from (1, 1, 0, 0, 0, 0, 0, 0) ∈
R8 by changes of signs and permutations. Hence it contains 8 orthogonal vectors:

e1 + e2, e1 − e2, e3 + e4, e3 − e4, e5 + e6, e5 − e6, e7 + e8, e7 − e8

where (ei)8i=1 is the canonical basis of R8. So E8 contains the direct product of 8 copies of O([−1, 1]).

• The group Dn exists in any dimension but provides a new object only for n ≥ 5. It is the isometry
group of the “demihypercube”

DHn := conv
{
x ∈ {−1, 1}n;

n∏
i=1

xi = 1
}
.

So the demihypercube is the convex hull of the vertices of the cube which have an even number of
negative coordinates. If n ≥ 5 it has two kinds of facets (some are regular simplices, some are lower
dimensional demihypercubes). Its isometry group Dn is of cardinality 2n−1n!. It can be described as
follows: for any permutation σ of {1, . . . , n} and any A ⊂ {1, . . . , n} of even cardinality, the map

(xi)ni=1 7→
(

(−1)1A(i)xσ(i)

)
belongs to Dn and all isometries are of this type. It is not hard to see that the hyperplanes of symmetry
of the demihypercube are the hyperplanes {ei + ej}⊥ and {ei − ej}⊥ for all choices 1 ≤ i < j ≤ n.
They correspond to the maps

(x1, . . . , xi, . . . , xj , . . . , xn) 7→ (x1, . . . ,−xj , . . . ,−xi, . . . , xn)
(x1, . . . , xi, . . . , xj , . . . , xn) 7→ (x1, . . . , xj , . . . , xi, . . . , xn).
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If n = 2k is even, DHn is unconditional with respect to the orthogonal basis formed by the n vectors
e2j−1 + e2j , e2j−1 − e2j , j = 1, . . . , k, and we are done with D2k.

Eventually, assume that n ≥ 5 is odd and set n = 2k + 3. Note that

DH3 = conv{(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1)}

is a regular tetrahedron (isometric to ∆3). The reflections of hyperplanes orthogonal to the vectors
e1± e2, e2± e3, e3± e1 generate a group which acts as O(∆3) on the first factor of R3×R2k = Rn and
as the identity on the second factor. Next we note that the vectors e3+2j−1 + e3+2j , e3+2j−1 − e3+2j

for j = 1, . . . , k form an orthogonal basis of {0R3} × R2k. Since the symmetries with respect to the
orthogonal to these vectors are in Dn we may conclude that

O(∆3)×O([−1, 1])× · · · × O([−1, 1])︸ ︷︷ ︸
2k

⊂ Dn.

All the cases have been treated, hence the claim is proved.

The case of irreducible infinite reflection subgroups of R(K) was not treated. Since K is closed, the limit
of a converging sequence of hyperplane symmetries in R(K) is still in R(K). We take advantage of this
topological assumption in the next statement, which is certainly classical.

Lemma 18. Let R be an irreducible reflection group acting on Rn. We assume that R is infinite and that
the set of reflections in R is closed. Then R = O(Rn).

Proof. Assume n ≥ 2. We define A := {h ∈ Sn−1; Sh⊥ ∈ R}. Our goal is to show that A = Sn−1 which
would imply that all reflections are in R, hence R = O(Rn). Our topological hypothesis implies that A is
closed.

The set of fixed points Fix(R) is invariant under the action of R, it is also included in a hyperplane since
A is not empty. By irreducibility and since the group is generated by its reflections, it follows that

{0} = Fix(R) =
⋂
h∈A

h⊥.

Hence the vectors {h; h ∈ A} span Rn.
Next for all R ∈ R and h ∈ A, S(Rh)⊥ = R−1Sh⊥R belongs to R. Hence R(A) ⊂ A and the restriction

of R to A is a permutation. Since A spans Rn, it follows that the map R ∈ R 7→ R|A is injective into the set
of permutations of A. As R is infinite, so is A.

Since A is compact and infinite, there exists a sequence (vn)n in A converging to v ∈ A and such that
vn 6= v for all n ≥ 0. Passing to a subsequence we can also assume that the sequence of unit vectors
(vn− v)/|vn− v| converges to a vector w ∈ Sn−1. Note that w is orthogonal to v. Next we use the following
observation: if u1, u2 ∈ A then Su⊥2 ◦ Su⊥1 ∈ R is the rotation of angle 2α := 2(û1, u2) in the plane spanned
by u1, u2 and the identity on the orthogonal. Hence the iterated images of u1 by this rotation are in A.
Consequently, any point from Sn−1 ∩ span(u1, u2) is at most at (geodesic) distance α from A. Let us apply
this to v and vn as n tends to infinity. Since their angle tends to zero and since their span tends to span(v, w),
the closedness of A yields that Sn−1 ∩ span(v, w) ⊂ A. Hence A contains a one-dimensional sphere isometric
to S1. So we are done if n = 2. If n > 2 we show inductively that for all k ∈ {2, . . . , n− 1}, A contains an
isometric copy of Sk. The case k = n − 1 is exactly our goal. Here is how we pass from k ∈ {1, . . . , n − 2}
to k + 1: Assume that there is a k + 1-dimensional vector space E ⊂ Rn such that S := E ∩ Sn−1 ⊂ A.
Since A spans the whole space and cannot be split into two orthogonal parts, there exists z ∈ Sn−1 with
z 6∈ E ∪ E⊥. Let v ∈ S and choose w ∈ S orthogonal to v and such that z is not orthogonal to span(v, w)
(this is possible, otherwise z would be orthogonal to E). Consider v(θ) = cos(θ)v+ sin(θ)w and the function

f(θ) = 〈v(θ), z〉 =
√
〈v, z〉2 + 〈w, z〉2 cos(θ − ϕ),
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where ϕ = ϕ(v, w, z) is obviously defined. Since z is not orthogonal to span(v, w), 〈v, z〉2 + 〈w, z〉2 6= 0. It is
easily checked that {θ ∈ R; f(θ) ∈ cos(Qπ)} is countable. Consequently

Θ := {θ ∈ R; (v̂(θ), z) 6∈ πQ}

is dense. In particular 0 is in its closure. As we already observed, the iterated images of v(θ) by the rotation
of angle α := 2(v̂(θ), z) in the plane span(v(θ), z), are all in A. If θ ∈ Θ, the angle is an not a rational
multiple of π and the set of angles of the iterated rotations is dense in [0, 2π[. So the orbit of v(θ) by the
rotation and its iterates is dense in the one-dimensional sphere Sn−1 ∩ span(v(θ), z). Since A is closed, it
follows that Sn−1∩span(v(θ), z) ⊂ A. As it is possible to find a sequence in Θ converging to 0, the closedness
of A yields

Sn−1 ∩ span(v, z) ⊂ A.
This was proved for an arbitrary v ∈ E ∩ Sn−1, hence we deduce that Sn−1 ∩ span(E, z) ⊂ A, and we have
found an isometric copy of Sk+1 in A. This completes the induction proof.

The following fact will be needed in order to estimate the volume product of a product of simplices.

Lemma 19. Consider integers n1, . . . , nk ≥ 1 and set n = n1 + · · ·+ nk. Then

k∏
`=1

P(∆n`)n`! ≥ P(∆n)n!,

with equality if and only if k = 1.

Proof. Let k ≥ 2. Since P(∆m) = (m + 1)m+1/(m!)2, our task is to show that the function ϕ(m) =
(m + 1)m+1/m! defined for m ∈ N verifies ϕ(n1 + · · · + nk) <

∏k
`=1 ϕ(n`). By induction on k, it is enough

to show that for all integers p, q ≥ 1 we have ϕ(p+ q) < ϕ(p)ϕ(q). Since ϕ(0) = 1, this may be written as

logϕ(p+ q)− logϕ(q)
p

<
logϕ(p)− logϕ(0)

p
.

From a classical convexity’s argument on R, it is enough to prove that the extension of ϕ on R+ defined by
ϕ(p) = (p+1)p+1/Γ(p+1), for p ∈ R+, is strictly log-concave on R+. To see this, note that, with the change
of variable t = pu, we get

Γ(p)
pp

=
1
pp

∫ +∞

0

tpe−t
dt

t
=
∫ +∞

0

(
ue−u

)p du
u

= ‖f‖pLp(ν),

where f(u) = ue−u and dν = 1(0,+∞)du/u. From Hölder’s inequality we deduce that p 7→ Γ(p)/pp is strictly
log-convex and therefore that ϕ is strictly log-concave.

Proof of Theorem 16. The barycenter bK of K is stable by all the symmetries of K. Hence ∩iHi = {bK}. By
translation invariance of the quantities of interest, we may assume that bK = 0. In this case the symmetries Si
are linear maps. Let us show that without loss of generality, we may assume that they are also orthogonal.
This is due to the fact that compact subgroups of the linear group are conjugated to subgroups of the
orthogonal group. More precisely, let

G = {g ∈ L(Rn); g(K) = K}.

It is clearly a group (0 = bK ∈ Int(K) since K has non-empty interior, so any g ∈ G is surjective). It is also
closed as K is. Eventually it is bounded since the inclusion g(K −K) ⊂ K −K means that it is included in
the unit ball of the set of linear endomorphism of the normed space (Rn, ‖ · ‖K−K). It follows that G is a
compact group. One may thus consider the scalar product on Rn

((x, y)) :=
∫
G

〈gx, gy〉 dµ(g),
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where µ is the bi-invariant Haar probability measure on G. It may be represented as ((x, y)) = 〈Ax, y〉 for
some symmetric positive matrix A ∈ S+(Rn). For all g ∈ G, ((gx, gy)) = ((x, y)), meaning that G is a
subgroup of the orthogonal group for this new Euclidean structure. The latter isometry condition translates
as A = tgAg for all g ∈ G. This implies that A1/2gA−1/2 ∈ O(Rn). Define K̃ = A1/2(K). Then for all
g ∈ G, A1/2gA−1/2K̃ = K̃. Since the volume product is affine invariant, P(K) = P(K̃) and K̃ is invariant
by the orthogonal symmetries A1/2SiA

−1/2 with respect to the hyperplanes A1/2Hi.
From now on, we assume as we may, that the hyperplane symmetries S1, . . . , Sm belong to O(Rn). Let

R(K) be the subgroup ofO(Rn) generated by all the hyperplane symmetries which leave K globally invariant.
By hypothesis Fix(R(K)) ⊂

⋂
iHi = {0}. Hence by Proposition 17, there exists an orthogonal decomposition

Rn =
⊕k

`=1E` and polytopes P` ∈ E` such that P` is a regular polygon Cm` if n` := dim(E`) = 2 and P` is
a regular simplex otherwise, such that

O(P1)× · · · × O(Pk) ⊂ R(K).

By Theorem 13 and Lemma 14,

P(K) ≥ P(P1 × · · · × Pk) =
∏k
`=1 n`!P(P`)

n!
.

If n` = dim(E`) = 2, then by Remark 2, P(P`) = P(Cm`) ≥ P(C3) = P(∆n`). Combining this observation
with Lemma 19 yields the claim:

P(K) ≥
∏k
`=1 n`!P(∆n`)

n!
≥ P(∆n).

Eventually we analyse the equality case. Assume that P (K) = P (∆n); necessarily the previous inequalities
are equalities. Whenever n` = 2, one gets P(Cm`) = P(C3) which forces P` to be a simplex as well. Next
the equality condition in Lemma 19 yields k = 1. This means that K is O(∆n)-invariant and the equality
condition of Theorem 10 allows to conclude that K is a simplex.

7 Functional forms and bodies of revolution

Let k, n1, . . . , nk ≥ 1 be integers, let n = n1 + · · · + nk, let L be an unconditional convex body in Rk and
K1 ⊂ Rn1 , . . . ,Kk ⊂ Rnk be centrally symmetric convex bodies. Then the L-sum of K1, . . . ,Kk is defined
as the convex body in Rn⊕

L

Ki :=
{
x = (x1, . . . , xk) ∈ Rn1 × · · · × Rnk ;

(
‖x1‖K1 , . . . , ‖xk‖Kk

)
∈ L

}
.

In [23], Saint Raymond proved that

P
(⊕

L

Ki

)
=
∫
L∩Rn+

k∏
i=1

xni−1
i dx

∫
L◦∩Rn+

k∏
i=1

xni−1
i dx

k∏
i=1

niP(Ki) ≥ P
(⊕
Bk∞

Ki

)
=
∏k
i=1 ni!P(Ki)

n!
.

This result is more general than Mahler’s inequality for unconditional bodies (which correspond to Ki =
[−1, 1]). In fact, using the above integral expression of P(

⊕
LKi), it can be deduced from the lower bound

of the volume product of unconditional bodies, applied to
⊕

LB
ni
∞ :

P
(⊕

L

Ki

)
= P

(⊕
L

Bni∞

)
×

k∏
i=1

P(Ki)
P(Bni∞)

≥ 4n

n!
×

k∏
i=1

P(Ki)
P(Bni∞)

=
∏k
i=1 ni!P(Ki)

n!
.

The above result relates to ours, since
⊕

LKi is O(Ki) × · · · × O(Kk)-invariant, but of a very specific
form. Indeed, the L-sum of the convex bodies K1, . . . ,Kk may be seen as a body of revolution in the
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following generalized sense: for x = (x1, . . . , xk−1) ∈ Rk−1 such that (x1, . . . , xk−1, 0) ∈ L, we define
f(x) = |{t ∈ R+; (x1, . . . , xk−1, t) ∈ L}|. The function f is unconditional, concave on its support and⊕

L

Ki = {x = (x1, . . . , xk) ∈ Rn1 × · · · × Rnk ; ‖xk‖Kk ≤ f(‖x1‖K1 , . . . , ‖xk−1‖Kk−1)}.

Hence Saint Raymond’s generalization also implies a Mahler-type inequality for bodies of revolution built
from unconditional functions. Let us see how to generalize this to functions with more general symmetries.
Equivalently, as in [16, 5, 6, 7], this will also give some functional forms of Mahler’s conjecture for concave
functions having enough symmetries. First let us present the duality that we shall use for concave functions.

Let n,m ≥ 1 be integers. For any convex body L ⊂ Rm with the origin in its interior its gauge function
is defined by ‖x‖L = inf{t > 0;x ∈ tL}. To any non-negative concave function f defined on a closed convex
set S ⊂ Rn, we associate L(f) = {(x, y) ∈ S×Rm; ‖y‖L ≤ f(x)}, the convex body of revolution constructed
from f with basis L. By Fubini’s theorem, |L(f)| = |L|

∫
S
fm and the polar body of L(f) is

L(f)◦ = {(x′, y′); 〈x, x′〉+ 〈y, y′〉 ≤ 1, ∀(x, y) ∈ L(f)}
= {(x′, y′); f(x)‖y′‖L◦ ≤ 1− 〈x, x′〉, ∀x ∈ S}
= {(x′, y′) ∈ S◦ × Rm; ‖y′‖L◦ ≤ f∗(x′)}
= L◦(f∗),

where f∗ : S◦ → R+ is the concave function defined by f∗(x′) = inff(x)>0
1−〈x,x′〉
f(x) . Hence one has the

equality:

|L(f)||L(f)◦| = |L||L◦|
∫
fm
∫

(f∗)m.

Using the case L = Bm∞, one deduces the following proposition.

Proposition 20. Let n ≥ 1 and m ≥ 0 be integers, let L ⊂ Rm be a convex body with Santaló point at
the origin, let S be a closed convex set in Rn, let f : S → R+ be a concave function, let O(f) = {T ∈
O(Rn); f(Tx) = f(x), ∀x ∈ S} and assume that Fix(O(f)) = {0}. Let L(f) = {(x, y) ∈ S × Rm; ‖y‖L ≤
f(x)} be the convex body of revolution built from f with basis L. Then

P(L(f)) =
P(L)
P(Bm∞)

P(Bm∞(f)).

Moreover Bm∞(f) is O(f)×O(Bm∞)-invariant.

Hence if f is G-invariant for some subgroup G of O(Rn) with Fix(G) = {0} and if one has a lower bound
on the volume product of the G×O(Bm∞)-invariant convex bodies then one gets a lower bound on the volume
product of L(f). From Theorem 13, we may already apply this argument for G = O(P1)× · · · × O(Pk), for
some regular polytopes P1 ⊂ Rn1 , . . . , Pk ⊂ Rnk , with n1 + · · · + nk = n. But we may also use the same
argument to prove a bit more.

Actually let K be a convex body in Rn+m = Rn × Rm which is G × O(Rm)-invariant, where G is any
subgroup of O(Rn), with Fix(G) = {0}. Let S be the projection of K on Rn. For every x ∈ S, the section
Kx := {y ∈ Rm; (x, y) ∈ K} is O(Rm)-invariant hence it is a Euclidean ball centered at the origin of radius
f(x), where f : S → R+ is defined by f(x) = (|Kx|/|Bm2 |)

1/m. By Brunn’s theorem, f is concave. Moreover

K = {(x, y) ∈ S × Rm; |y| ≤ f(x)} = Bm2 (f)

and since K is G×O(Rm)-invariant, it follows that f is G-invariant. Applying Proposition 20 we get that

P(K) = P(Bm2 (f)) =
P(Bm2 )
P(Bm∞)

P(Bm∞(f)),
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where Bm∞(f) is G×O(Bm∞)-invariant. Therefore we reduced the problem of bounding from below the volume
product of a G×O(Rm)-invariant convex body to the same question for a G×O(Bm∞)-invariant convex body.
By induction, we deduce that Theorem 13 extends to the following.

Theorem 21. Let k ≥ 1 be an integer. For 1 ≤ ` ≤ k, let P` in Rn` be a regular polytope or a Euclidean
ball with barycenter at the origin. Let n =

∑
` n` and K ⊂ Rn = Rn1 × · · · ×Rnk be a convex body invariant

by O(P1)× · · · × O(Pk). Then

P(K) ≥ P(P1 × · · · × Pk) =
1
n!

k∏
`=1

n`!P(P`).

Combining Theorem 21 with Proposition 20 yields the following functional form.

Corollary 22. Let n ≥ 1 and m ≥ 0 be integers, let S be a closed convex set in Rn, f : S → R+

be a concave function and let L ⊂ Rm be a convex body with Santaló point at the origin. Let L(f) =
{(x, y) ∈ S ×Rm; ‖y‖L ≤ f(x)} be the convex body of revolution built from f with basis L. If O(f) contains
O(P1)×· · ·×O(Pk) for some regular polytopes or Euclidean balls P1 ⊂ Rn1 , . . . , Pk ⊂ Rnk , with n1+· · ·+nk =
n then

P(L(f)) ≥ P(L× P1 × · · · × Pk) and
∫
fm
∫

(f∗)m ≥ P(P1 × · · · × Pk)(
n+m
n

) .

Notice that in Corollary 22, there is equality for example if f is the indicatrix of a cube or more generally
the indicatrix of a Hanner polytope (see the end of section 5 above).

8 Final remarks

It is natural to ask for a version of Theorem 16 which would confirm the Mahler conjecture for origin
symmetric convex sets having many hyperplane symmetries. We state it below and explain, in the course of
the proof, that it is just a reformulation of Saint Raymond’s result for unconditional sets.

Theorem 23. Let K ⊂ Rn be a convex body. Assume that there exist m ≥ 1, and vector hyperplanes
H1, . . . ,Hm such that for all i ≤ m, SHiK = K and −IdRn belongs to the group generated by these reflections.
Then

P(K) ≥ P(Bn∞).

Proof. We simply reproduce the scheme of the proof of Proposition 17 and use the additional assumption
that −IdRn ∈ R(K) (the group generated by the reflections which leave K globally invariant). We write
R(K) as a direct product of irreducible reflection groups Ri acting on Rni . Since −IdRn ∈ R(K), it follows
that for all i, −IdRni ∈ Ri. Next we go through the list of possibilities for Ri and check that since −Id is
in it, the group contains a product of ni copies of O([−1, 1]). The conclusion will be that R(K) contains
a product of n-copies of O([−1, 1]). This means that K is unconditional. So we will conclude by Saint
Raymond’s theorem, which is a particular case of Theorem 13.

We list below only the cases of irreducible reflection groups for which we have not already proved that
they contain reflections with respect to the coordinates hyperplanes in some orthogonal basis. We check that
either they contain such unconditional symmetries or they do not contain −Id:

• We have seen in Remark 2 that when a regular polygon Cm is origin symmetric if and only if m is even,
in which case it is unconditional. So we are done with this case.

• The regular simplex ∆n is origin symmetric if and only if n = 1. So the only possibility for such a
factor is to be O([−1, 1]).

• The group E6 is the group of isometries of a so-called Gosset polytope, with 27 vertices. Hence
−IdR6 6∈ E6.
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• From the definition, the demihypercube DHn is origin symmetric if and only if n is even. In this case
we have checked that it is unconditional.

As a final comment to this proof, let us point out that it is presumably possible to show that a reflection
group containing minus the identity contains unconditional symmetries without using the classification, but
simpler tools as the substitution rule for shortest representations and their product.

The method used in this paper is in a sense rather undirect. The natural approach would be, starting
with a convex set K ⊂ Rn such that its reflection group fixes only the origin, to divide Rn into images of
the fundamental domain C of the group R(K). Note that C is a polyhedral cone, bounded by hyperplanes
of symmetry for K. The main difficulty of this approach is that it would lead to follow Meyer’s volumic
method in rather irregular cones. The argument seems to break in several places. For instance, the lower
bound of |K ∩ C| |K◦ ∩ C| involves mixed terms of the form |K ∩ Ci| |K◦ ∩ Cj | where Ci are the facets of
C. These terms are not suited to induction when i 6= j. The additional structure of products of regular
polytopes allowed to get rid of these terms.

Nevertheless it would be very interesting to find the exact minimum in Theorem 16 for a given set of
hyperplane symmetries with only one common fixed point. These symmetries generate a subgroup of the
linear group which is conjugated to a compact reflection group so that the question amounts to extend
Theorem 21 to more general groups, i.e. to find the exact minimum of the volume product of the convex
bodies which are invariant by a compact reflection group G with Fix(G) = {0}. As seen above, such a
reflection group may be decomposed as a direct product of irreducible compact reflection groups, which are
by Coxeter’s classification, of the form G = O(P1) × · · · × O(Pk), with P1 ⊂ Rn1 , . . . , Pk ⊂ Rnk being
semi-regular polytopes, regular polytopes or Euclidean balls and n1 + · · ·+ nk = n. So far, we have studied
the case where the Pi’s are regular polytopes or Euclidean balls and we have proved that in this case the
minimum is reached for P1 × · · · × Pk. Notice that for the isometry group of semi-regular polytopes the
question will be more delicate.

For example, if we consider the case where the Pi’s may be regular polytopes or Euclidean balls or
demihypercubes DHn

i in even dimension ni then let us show that the minimum will not be reached for
P1 × · · · × Pk but for P ′1 × · · · × P ′k, where P ′i = Pi, if Pi is a regular polytope or a Euclidean ball but
P ′i = Bni∞ , if Pi is a demihypercube. For notational simplicity, we prove this for k = 1 and P1 = DHn

for n = 2m > 4 (the general case is proved in the same manner). As already pointed out, DH2m is
unconditional. Hence an O(DH2m)-invariant convex body K ⊂ R2m is also unconditional and thus verifies
P(K) ≥ P(B2m

∞ ). The latter is an equality when K = B2m
∞ , which is O(DH2m)-invariant. Moreover, the

fact that the minimum is not reached for the demihypercube comes from the calculation

P(DHn) =
(n− 1)4n

(n− 2)n!

(
1− 2n−1

n!

)
>

4n

n!
= P(Bn∞),

for n ≥ 5 (there is equality for n = 4, as DH4 is isometric to 2B4
1). Let us sketch this calculation. Recall

that DHn = conv
{
x ∈ {−1, 1}n;

∏n
i=1 xi = 1

}
. The demihypercube is obtained from the cube by cutting

off 2n−1 simplices whose vertices are a vertex x ∈ {−1; 1}n of the cube such that
∏
xi = −1 and its n

neighbours. They have a right angle at x and the length of the edges through this vertex are 2. Thus

|DHn| = 2n − 2n−1 × 2n

n!
= 2n

(
1− 2n−1

n!

)
.

The equation of the preceding cutting hyperplane is {z; 〈z, x〉 = n − 2} since the scalar product of x with
any of its neighbour is n− 2. Hence DHn = Bn∞

⋂
{z; 〈z, x〉 ≤ n− 2, ∀x ∈ {−1; 1}n,

∏
xi = −1}. Thus

DH◦n = conv

({
e1, · · · , en,−e1, · · · ,−en

}⋃{ x

n− 2
; x ∈ {−1; 1}n,

∏
i

xi = −1
})

.
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It follows that DH◦n is obtained from Bn1 by gluing 2n−1 simplices on half of its facets. Each of these simplices
have the corresponding facet as a facet and x

n−2 as opposite vertex. The distance between this vertex and

the opposite facet is d = ‖x‖2
n−2 −

1√
n

= 2√
n(n−2)

. Hence the volume of this simplex is 2
(n−2)n! . Therefore we

get

|DH◦n| =
2n

n!
+ 2n−1 2

(n− 2)n!
=

2n

n!
× n− 1
n− 2

.

This completes the calculation of the volume product of the demihypercube.
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