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AN APPLICATION OF SHADOW SYSTEMS TO
MAHLER’S CONJECTURE.

MATTHIEU FRADELIZI, MATHIEU MEYER AND ARTEM ZVAVITCH

Abstract. We elaborate on the use of shadow systems to prove
a particular case of the conjectured lower bound of the volume
product P(K) = minz∈int(K) |K|||Kz|, where K ⊂ Rn is a convex
body and Kz = {y ∈ Rn : (y − z) · (x − z) 6 1 for all x ∈ K}
is the polar body of K with respect to the center of polarity z.
In particular, we show that if K ⊂ R3 is the convex hull of two
2-dimensional convex bodies, then P(K) > P(∆3), where ∆3 is
a 3-dimensional simplex, thus confirming the 3-dimensional case
of Mahler conjecture, for this class of bodies. A similar result is
provided for the symmetric case, where we prove that if K ⊂ R3 is
symmetric and the convex hull of two 2-dimensional convex bodies,
then P(K) > P(B3

∞), where B3
∞ is the unit cube.

1. Introduction and Preliminaries

As usual, we denote by x·y the inner product of two vectors x, y ∈ Rn

and by |x| the length of vector x ∈ Rn. For two non-empty subsets
K,L ⊂ Rn we define their Hausdorff distance dH(K,L) by

dH(K,L) = max{ sup
x∈K

inf
y∈L
|x− y|, sup

y∈L
inf
x∈K
|x− y| }.

A convex body is a compact convex subset of Rn with non empty interior
and Kn is the set of all convex bodies in Rn endowed with the Hausdorff
metric. We say that a set K is symmetric if it is centrally symmetric
with center at the origin, i.e. K = −K.

We write |A| for the k-dimensional Lebesgue measure (volume) of
a measurable set A ⊂ Rn, where k = 1, . . . , n is the dimension of the
minimal flat containing A. We denote by conv(A) the closed convex
hull of a set A ⊂ Rn, and conv(A,B,C, . . . ) the closed convex hull of
A∪B ∪C, . . . . For a, b ∈ Rn, we denote [a, b] the segment joining a to
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b: [a, b] = {(1 − t)a + tb : t ∈ [0, 1]}. If K ∈ Kn, we denote by E(K)
the set of its extreme points. By Caratheodory’s theorem, one has
K = conv

(
E(K)). We recommend [Gr] and [Sc] as a general references

for convex bodies and polytopes and their properties.
By int(K) we denote the interior of K. If K is a convex body in Rn

and z ∈ int(K) the polar body Kz of K with the center of polarity z is
defined by

Kz = {y ∈ Rn : (y − z) · (x− z) 6 1 for all x ∈ K}.
If the center of polarity is taken to be the origin, we denote by K◦ the
polar body of K, thus Kz = (K − z)◦ + z. The bipolar theorem says
that (Kz)z = K, for z ∈ int(K) (see [Gr], p. 47).

A well known result of Santaló [S] (see also [Sc], p. 419) states that
in every convex body K in Rn, there exists a unique point s(K), called
the Santaló point of K, such that

|Ks(K)| = min
z∈int(K)

|Kz|.

The volume product of K is defined by

P(K) = inf{|K||Kz| : z ∈ int(K)} = |K| |Ks(K)|.
The volume product is affinely invariant, that is, P(A(K)) = P(K)

for every affine isomorphism A : Rn → Rn. Observe that if we denote
L = Ks(K) then

P(Ks(K)) = |L||Ls(L)| 6 |L||Ls(K)| = |Ks(K)||K| = P(K).

The set of all convex bodies in Rn is compact with respect to the
Banach-Mazur distance and K 7→ P(K) is continuous (see Lemma 3,
below), so that it is natural to ask for a maximal and minimal values
of P(K). The Blaschke-Santaló inequality states that

P(K) 6 P(Bn
2 ),

where Bn
2 is the Euclidean unit ball. The equality in the above inequal-

ity is possible only for ellipsoids ([S], [P], see [MP] or also [MR2] for a
simple proof of both the inequality and the case of equality).

The main focus of this paper is the conjecture about minimality of
P(K), often called Mahler’s conjecture [Ma1, Ma2], which states that,
for every convex body K in Rn,

(1) P(K) > P(∆n) =
(n+ 1)n+1

(n!)2
,

where ∆n is an n-dimensional simplex. It is also conjectured that
equality in (1) is attained only if K is a simplex.
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We shall also pay a special attention to the symmetric case of Mahler
conjecture which states that for every convex symmetric body K ⊂ Rn:

(2) P(K) > P(Bn
1 ) = P(Bn

∞) =
4n

n!
,

where Bn
1 and Bn

∞ are cross-polytope and its dual - cube, respectively.
The inequalities (1) and (2) for n = 2 were proved by Mahler

[Ma1] with the case of equality proved by Meyer [M2] in the general
case and by Reisner [R1] in the symmetric case. Other cases, like
e.g. the bodies of revolution, were treated in [MR1]. Several special
cases of the (mostly) symmetric case of the conjecture can be found in
[SR, R1, GMR, M1, R2, NPRZ, KR, FGMR, RSW, GM]. Not many
special cases in which (1) is true seem to be known, one such is the
case of convex bodies having hyperplane symmetries which fix only one
common point [BF]; another one is the n dimensional polytopes with
at most n + 3 vertices (or facets) proved in [MR2]. The proof of this
last result is based on the method of shadow systems. We shall here
elaborate on this method, applying it alternatively to a body and its
polar.

Observe that an isomorphic version of reverse Santaló inequality was
proved by Bourgain and Milman [BM], see also [Pi], p.100:

P(K) > cnP(Bn
2 ),

where c is a positive constant; Kuperberg [Ku] gave a new proof of this
result with a better constant (see also [N], [GPV] for different proofs
of the inequality).

It is conjectured that in the centrally symmetric case, the convex
bodies which are minimal for the volume product are the unit balls of
Lima spaces, i.e. the finite dimensional normed spaces with the 3− 2
intersection property: every three translates of the unit ball which
intersect 2 by 2, actually intersect. As normed spaces, Lima spaces
are characterized by the fact that they can be decomposed into `∞
or `1 sums of normed spaces of smaller dimension satisfying the same
decomposition property [HL]. In the special cases of convex bodies
symmetric with respect to n independent hyperplanes, it was proved
in [M1, R2], that the unit ball of Lima spaces are the minimizers of
P(K). The unit ball of Lima spaces have the special property (which
does not characterize them): any facet of their unit ball contains half of
the extreme points so that they are the convex hull of any of two of their
opposite facets (see [HL]). The purpose of this paper was originally to
try to prove that unit balls of finite dimensional spaces which have this
last property satisfy Mahler conjecture. We proved it in dimension 3.
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Then we realized that our method of proof can be used for a much
more general result: if a convex body in R3 is the convex hull of two of
its hyperplane sections, then it satisfies Mahler’s conjecture (Theorem
1).

Thus the main goal of this paper is to prove the following special
cases of inequalities (1) and (2):

Theorem 1. Consider two different planes H1 and H2 in R3 and a
convex body K in R3 such that

K = conv(K ∩H1, K ∩H2).

Then

P(K) > P(∆3) =
64

9
.

If, moreover, K is centrally symmetric then

P(K) > P(B3
∞) =

32

3
.

Remark 1. Notice that if K = conv(K ∩ H1, K ∩ H2) is centrally
symmetric then

- either H1 is parallel to H2, the central symmetry maps H1 onto H2

and K ∩H1 onto K ∩H2.
- or H1 and H2 intersect and K ∩ H1 and K ∩ H2 are centrally

symmetric.

From Theorem 1 and the first case of Remark 1 we deduce the fol-
lowing corollary.

Corollary 1. Let K be a centrally symmetric convex body in R3 whose
extreme points lie into two parallel planes. Then

P(L) > P(B3
∞) =

32

3
.

We would like to note that most of the tools presented in Section 2
are stated and proved in dimension n > 2. Still, unfortunately, the
proof of Theorem 1, in Section 3, requires to use the special geometrical
structure of 3-dimensional polytopes as well as the assumption that the
Mahler conjecture is true in Rn−1, thus restricting to the case n = 3.

2. The tools

As the main tool in the proof of Theorem 1, we will use shadow
systems of convex sets: a shadow system of convex sets along a direction
θ ∈ Sn−1 is a family of convex sets Lt ∈ Rn which are defined by

Lt = conv{x+ α(x)tθ : x ∈ B},
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where B ⊂ Rn is a bounded set, called the basis of the shadow system,
α : B → R is a bounded function, called the speed of the shadow system
and t belongs to an open interval in R. We say that a shadow system is
non-degenerate, if all the convex sets Lt have non-empty interior. The
shadow systems were introduced by Rogers and Shephard [RS]. Campi
and Gronchi [CG] proved that if Lt is a symmetric shadow system then
t 7→ |L◦t |−1 is a convex function of t. In [MR2], Reisner and the second
author generalized this result to the non-symmetric case and studied
the equality case. The following proposition is the key tool in the proof
of Theorem 1:

Proposition 1 ([MR2]). Let Lt, t ∈ [−a, a], be a non-degenerate

shadow system in Rn, with direction θ ∈ Sn−1, then t 7→ |Ls(Lt)
t |−1

is a convex function on [−a, a].
If, moreover, t 7→ |Lt| is affine on [−a, a] and t 7→ P(Lt) is constant
on [−a, a], then there exists w ∈ Rn and α ∈ R, such that for every
t ∈ [−a, a], one has Lt = At(L0), where At : Rn → Rn is the affine
map defined by

At(x) = x+ t(w · x+ α)θ.

The following corollary is a variation of the above proposition that we
shall need.

Corollary 2. Let Lt, t ∈ [−a, a], be a non-degenerate shadow system
in Rn such that t 7→ |Lt| is affine on [−a, a]. Then
1) t 7→ P(Lt) is quasi-concave on [−a, a], i.e. for every interval [c, d] ⊂
[−a, a] one has min[c,d]P(Lt) = min{P(Lc),P(Ld)};
2) if for some t0 ∈ (−c, c) ⊂ [−a, a], one has P(Lt0) = mint∈[−c,c]P(Lt),
then either P(Lt) = P(Lt0) for every t ∈ [t0, c], or P(Lt) = P(Lt0) for
every t ∈ [−c, t0].

Proof of Corollary 2.
1) The volume product of Lt is the quotient of the affine positive func-
tion f(t) := |Lt| by the convex (from Proposition 1) positive function

g(t) := |Ls(Lt)
t |−1. Such a quotient is quasi-concave because for every

interval [c, d] ⊂ [a, b] and any λ ∈ [0, 1] one has

f((1− λ)c+ λd)

g((1− λ)c+ λd)
>

(1− λ)f(c) + λf(d)

(1− λ)g(c) + λg(d)
> min

(
f(c)

g(c)
,
f(d)

g(d)

)
.

2) Notice first that if h is a quasi-concave function on some interval
[c, d] and min[c,d] h = h(t0), for some t0 ∈ (c, d), then h is constant
on either [c, t0] or on [t0, d]. Indeed if h was not constant on any of
these intervals, there would exist u ∈ [c, t0) and v ∈ (t0, d] such that
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h(u) > h(t0) and h(v) > h(t0). But since t0 ∈ (u, v) this contradicts
the fact that min[u,v] h = min

{
h(u), h(v)

}
. It follows that h is constant

on at least one of these intervals. �
We need now to define a particular form of shadow system:

Definition. Consider K ∈ Kn, x ∈ E(K) and θ ∈ Sn−1. Let Rx(K) =
conv(E(K) \ {x}). Define xt = x + tθ and Kt = conv(Rx(K), xt).
Then t 7→ Kt is called the shadow movement of K based on x with
direction θ. Such a shadow movement is actually a shadow system,
with B = E(K) and speed α : E(K)→ R defined by α(y) = 0 if y 6= x
and α(x) = 1. Observe that one has of course K0 = K. We say that a
shadow movement (Kt) is volume affine on [−c, c] if t 7→ |Kt| is affine
on [−c, c].

We shall need the following easy lemma (see, for example, Lemma 11
in [MR2]), where we use the fact that inequalities (1) and (2) hold in
dimension 2, by the original Mahler’s result.

Lemma 1. Let H be a hyperplane in Rn, B be a convex body in H,
x 6∈ H.
1) Let C be the cone with apex x and basis B, i.e. C = conv(B, {x}).

Then one has P(C) > (n+1)n+1

nn+2 P(B). In particular, if n = 3, then
P(C) > P(∆3).
2) If B is symmetric, let D = conv(B, {x}, {−x}) be a double-cone with
basis B. Then one has P(D) > 4

n
P(B) and in particular, if n = 3,

then P(D) > P(B3
1) = P(B3

∞).

Lemma 2. Let t 7→ Kt, t ∈ [−c, c] be a volume affine shadow move-
ment of a convex body K ⊂ Rn based on x ∈ E(K) with direction
θ ∈ Sn−1. Suppose, moreover, that

P(K) = min
t∈[−c,c]

P(Kt).

Then E(K) \ {x} is contained in a hyperplane, K is a cone with apex
x and basis conv(E(K) \ {x}) and

P(K) >
(n+ 1)n+1

nn+2
min

M∈Kn−1

P(M).

Proof. Let Rx(K) = conv(E(K) \ {x}). Observe that x 6∈ Rx(K).
Otherwise, one would have K ⊂ Kt, hence |K| 6 |Kt| for every t, since
t 7→ |Kt| is affine on interval [−c, c], it may have minimum a t = 0 only
if it is a constant on [−c, c]. Thus K = Kt, which implies that xt ∈ K
for every t ∈ [−c, c], which contradicts the extremality of x ∈ K.
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It follows that d(x,Rx(K)) > 0, hence there exist γ > 0 and c′ > 0
such that d(x + tθ, Rx(K)) > γ for all t ∈ [−c′, c′]. Thus, for all
t ∈ [−c′, c′], x + tθ is an extreme point of Kt. Decreasing c, we may
suppose that c′ = c.

By the second part of Corollary 2, we may suppose also that P(Kt) =
P(K) for every t ∈ [0, c]. Let d := c

2
and L = Kd. We define the shadow

movement of L based on x + dθ with direction θ. We notice that for
s ∈ [−d, d], one has Ls = Kd+s. Of course the shadow movement (Ls)
is also volume affine on [−d, d] and satisfy s 7→ P(Ls) is constant on
[−d, d].

By Proposition 1, there exist α ∈ R and w ∈ Rn such that for all
s ∈ [−d, d], one has Ls = As(L), where As : Rn → Rn is the affine
isomorphism defined by As(z) = z + s(z · w + α)θ.

Now, since As is affine, it maps the extreme points of L onto the
extreme points of Ls, |s| 6 d. Thus As(x + dθ) is an extreme point
of Ls, that is As(x + dθ) ∈ Rx(K) ∪ {x + (d + s)θ}. But for |s| small
enough As(x + dθ) is close to x + dθ, and thus far from Rx(K). It
follows that As(x+ dθ) = x+ (d+ s)θ for all s small enough and thus
also As(Rx(K)) = Rx(K). Then As is an isometry (with respect to the
Euclidean scalar product), when Rx(K) has non-empty interior. From
the special form of As this can only happen if As is the identity. But
As(x+dθ) = x+(d+s)θ 6= x+dθ, for s 6= 0, thus we get a contradiction
and Rx(K) must have an empty interior. Being convex Rx(K), must
be contained in a hyperplane. Thus K = conv(Rx(K), x) is a cone
with apex x and basis Rx(K). The result follows from Lemma 1. �

For sake of completeness, we prove the following classical result,
which is needed to restrict the proof of Theorem 1 to the case of poly-
topes:

Lemma 3. K 7→ P(K) is a continuous function on Kn.

Proof. Let Km,m > 0 and K be compact convex bodies such that
Km → K. By John’s Theorem (see, for example, [Pi], p. 33) there is
an affine isomorphism A : Rn → Rn such that Bn

2 ⊂ L := A(K) ⊂ nBn
2 .

If Lm := A(Km), one has still Lm → L. There exist constants c, d > 0
and M > 0 such that for any m > M , one has cBn

2 ⊂ Lm ⊂ dBn
2 and

cBn
2 ⊂ L ⊂ dBn

2 . Since Lm → L, for every ε > 0 there exists M ′ such
that Lm ⊂ L + εBn

2 and L ⊂ Lm + εBn
2 , for every m > M ′. It follows

that Lm ⊂ (1 + η)L and L ⊂ (1 + η)Lm, for m > max{M,M ′} and

η = ε
c
. Thus Ls(Lm) ⊂ (1 + η)L

s(Lm)
m and

P(L) = |L||Ls(L)|6|L||Ls(Lm)|6(1 + η)2n|Lm||Ls(Lm)
m | = (1 + η)2nP(Lm),
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for m >M . Similarly, L
s(L)
m ⊂ (1 + η)Ls(L) and

P(Lm) = |Lm||Ls(Lm)
m |6|Lm||Ls(L)

m |6(1+η)2n|L||Ls(L)| = (1+η)2nP(L).

Since P(Lm) = P
(
A(Km)

)
= P(Km) and P(L) = P

(
A(K)

)
= P(K),

we can conclude. �

Proposition 2. Suppose that C is a closed subset of Kn such that
for any K ∈ C, any z ∈ int(K), any y ∈ int(Kz) and any affine
isomorphism A : Rn → Rn, one has (Kz)y ∈ C and A(K) ∈ C. Then
1) there exists Q ∈ C such that P(Q) = minP∈C P(P );
2) Moreover, if one of the following hypothesis holds

(i) there exists a volume affine shadow movement (Qt)t∈[−c,c] of Q with
basis x ∈ E(Q) such that Qt ∈ C for t ∈ [−c, c],
(ii) there exists a volume affine shadow movement (Lt)t∈[−c,c] of L =

Qs(Q) with basis y ∈ E(L), t ∈ [−c, c] such that (Lt)
s(L) ∈ C for t ∈

[−c, c],

then for every P ∈ C, one has P(P ) > (n+1)n+1

nn+2 minM∈Kn−1 P(M).

Proof. Let γ = infK∈C P(K). Then there exists a sequence (Pm) ∈ C
such that P(Pm) → γ. Applying John’s Theorem, one can find a
sequence {Am} of affine isomorphisms such that

Bn
2 ⊂ Qm := Am(Pm) ⊂ nBn

2 , for all m ∈ N.

But Qm ∈ C, from the assumption of Proposition 2 and P(Qm) =
P(Pm) → γ. The set {K ∈ Kn : Bn

2 ⊂ K ⊂ nBn
2 } is compact with

respect to the Hausdorff distance. Thus we may assume that {Qm}m
converges to some Q ∈ Kn. Since C is closed, Q ∈ C and since, by
Lemma 3, K 7→ P(K) is continuous on Kn, we get P(Q) = γ. Under
hypothesis (i), the result follows immediately from Lemma 2. Now,
under hypothesis (ii), with the above notation, we get

Mt = (Lt)
s(L) ∈ C, Lt = (Mt)

s(L) and L
s(Lt)
t =

(
(Mt)

s(L)
)s(Lt)

,

for small enough |t|. It follows that L
s(Lt)
t ∈ C. Thus

P(Q) 6 P(L
s(Lt)
t ) 6 P(Lt).

Applying this to t = 0 and since L0 = L = Qs(Q), one has also

P(Q) 6 P(L0) = P(L) = P(Qs(Q)) 6 P(Q).

Thus Lt is a volume affine shadow movement whose volume product is
minimized at 0. From Lemma 2, we conclude that L = Qs(Q) is a cone
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and for every P ∈ C one has

P(P ) > P(Q) > P(Qs(Q)) >
(n+ 1)n+1

nn+2
min

M∈Kn−1

P(M).

�

Definition. For N > n + 1, we define PN to be the set of all convex
polytopes in Rn with non empty interior, having at most N vertices,
CN to be the set of all polytopes in PN which are the convex hull of
two of their hyperplane sections and DN to be the set of all polytopes
in PN which are the convex hull of two of their parallel facets.

Lemma 4. Let N > n + 1. Then PN , CN and DN are closed subsets
of Kn. Moreover, if P is a polytope in Rn, z ∈ int(P ), y ∈ int(P z) and
A : Rn → Rn is an affine isomorphism and P ∈ PN (resp. CN ,DN),
then so do (P z)y and A(P ).

Proof. We use standard arguments of compactness for the fact that
these classes are closed. It also follows from the definition that the
classes are stable under affine isomorphisms. Next we observe that if
K ∈ Kn, z ∈ int(K) and y ∈ int(Kz), then

(Kz)y =

{
x− z

1− (x− z) · (y − z)
+ y : x ∈ K

}
.

The above formula follows immediately by applying polarity with re-
spect to y to both sets. To show that (P z)y is in the same class as P ,
we define F : K → (Kz)y by

F (x) =
x− z

1− (x− z) · (y − z)
+ y.

We note that F is a bijection preserving segments. Indeed, let x1, x2 ∈
K and λ ∈ [0, 1]. We set

µ =
λ(1− (x2 − z) · (y − z))

(1− λ)(1− (x1 − z) · (y − z)) + λ(1− (x2 − z) · (y − z))
.

Then F ((1−λ)x1+λx2) = (1−µ)F (x1)+µF (x2). Hence, F ([x1, x2]) =
[F (x1), F (x2)] and F maps extreme points into extreme points and
hyperplanes to hyperplanes, hence preserves PN , CN and DN . �

Lemma 5. Let P be a convex polytope in Rn and x be a vertex of P .
Suppose that for some 0 6 k 6 n − 1, all but k facets F1, . . . , Fk of P
containing x are (n−1)-dimensional cones with apex x. Let H1, . . . , Hk

be their supporting hyperplanes, E = ∩ki=1Hi and Q = conv(E(P )\{x}).
For y ∈ Rn, let P (y) = conv(Q, y). Then
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1) P (x) = P , dim(E) > n− k and y 7→ |P (y)| is affine on a neighbor-
hood of x in E.
2) For any direction θ ∈ Sn−1 parallel to E, there exist c > 0 and a
shadow movement (Pt) of P , with basis x and direction θ, which is
volume affine on [−c, c].

Proof. Without loss of generality we may assume that 0 ∈ int(Q). Let
(Gm), 1 6 m 6 M , be the facets of Q, with supporting hyperplanes
{z : z · vm = hm}, vm ∈ Sn−1, hm > 0 so that

Q = ∩Mm=1{z : z · vm 6 hm} and |Q| = 1

n

M∑
m=1

hm|Gm|.

Then

|P (y)| = |Q|+ 1

n

M∑
m=1

(y · vm − hm)+|Gm| =
1

n

M∑
m=1

max{y · vm, hm}|Gm|.

Observe that if 1 6 m 6 k, Fm ∩Q is a facet of Q. With a reordering,
we may suppose that Gm = Fm ∩ Q, for 1 6 m 6 k. Moreover, for
k+1 6 m 6M , the supporting hyperplane Hm of Gm does not contain
x (indeed if x · vm = hm, then Hm ∩ P is a facet of P which is not a
cone with apex x). Thus,

|P (y)| = 1

n

M∑
m=k+1

max{y · vm, hm}|Gm|+
1

n

k∑
m=1

hm|Gm|, for y ∈ E,

and |P (y)| is affine function in the neighborhood V (x) ⊂ E defined by

V (x) = {y ∈ E : (y · vm − hm) · (x · vm − hm) > 0 : k + 1 6 m 6M}.
�

3. Proof of Theorem 1

It is enough to prove Theorem 1 for the case of polytopes. The result
for general bodies follows from Lemma 3 and a standard approximation
procedure (see, for example, [Gru], [SW]).

We first prove the general case and we shall treat the symmetric
case afterwards. Let N > 4, and CN be the set of convex polytopes
P in R3, with not more than N vertices, such that for some different
hyperplanes H1 and H2 one has P = conv(P ∩H1, P ∩H2). We notice
that this class is closed in the Hausdorff metric, thus by Proposition 2
and Lemma 4, there exists Q ∈ CN such that

P(Q) = min
P∈CN

P(P ).
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We shall prove that P(Q) > P(∆3). To do this we shall distinguish
three cases according to the dimension of H1 ∩H2 ∩Q:

Case 1: H1 ∩ H2 ∩ Q is a segment [p,m]. We shall consider 3
subcases.
Subcase 1.i: the point m is in the interior of a facet of Q.
Then m = [a1, b1] ∩ [a2, b2], where [ai, bi] are edges of Hi ∩ Q, with
m 6= ai, bi, i = 1, 2. Thus F := conv(a1, b1, a2, b2) is a face of Q
containing m. Next we shall study the edges of Q, which are not edges
of F , but have a common vertex with F . More precisely, consider
a′i, b

′
i ∈ Hi ∩ Q, such that a′i /∈ {ai, bi}, b′i /∈ {ai, bi} satisfy that [a′i, ai]

and [b′i, bi] are edges of Qi := Q ∩ Hi. If a′i = b′i = p for i = 1 or
i = 2, then Q is a cone, and we can conclude applying Lemma 1.
For i = 1, 2, let mi be the intersection of the lines supporting [ai, a

′
i]

and [p,m] and ni be the intersection of the lines supporting [bi, b
′
i] and

[p,m]. We denote αi = mmi and βi = mni, the oriented lengths of the
segments [m,mi] and [n, ni]. Observe that αi, βi 6= 0. We set αi = +∞
or βi = +∞ if [ai, a

′
i] is parallel to [p,m] or [bi, b

′
i] is parallel to [p,m].

We set 1
+∞ = 0.

We shall use the following easy facts:

Fact 1. (a1, a
′
1, a2, a

′
2) (resp. (a1, a

′
1, b2, b

′
2), (b1, b

′
1, a2, a

′
2), (b1, b

′
1, b2, b

′
2))

are the vertices of a face of Q if and only if α1 = α2 (resp. α1 = β2,
β1 = α2, β1 = β2).

Fact 2. If 1
α2
< 1

α1
, then (a1, a

′
1, a2) are the vertices of a triangular face

of Q and (a2, a
′
2, a
′
1) are vertices of another face of Q. If 1

α1
< 1

α2
, then

(a2, a
′
2, a1) are the vertices of a triangular face of Q and (a1, a

′
1, a
′
2) are

vertices of another face of Q. A similar statement holds with βi instead
of αi, bi instead of ai and b′i instead of a′i, for i = 1 or 2.

We say that ai, i = 1, 2 is a simple point if conv(ai, a
′
i, aj) and

conv(ai, a
′
i, bj), j 6= i, are side faces of Q and similarly that bi, i = 1, 2

is a simple point if conv(bi, b
′
i, bj) and conv(bi, b

′
i, aj), j 6= i, are side

faces of Q. Observe that if ai or bi, i = 1, 2, is simple, then these are
the only two faces of Q together with F containing this point.

Fact 3. For i = 1, 2, ai is a simple point if and only if 1
αi
> max( 1

βj
, 1
αj

),

j 6= i, and bi is a simple point if an only if 1
βi
> max( 1

αj
, 1
βj

), j 6= i.

Fact 4. Assume that at least one of the points (say a1) among ai, bi,
i = 1, 2, is simple. Thus there are exactly 3 faces, two of which are
triangles, connected to a1. We define a shadow movement Qt with
direction [a1, b1], based on a1. From Lemma 5, this shadow movement
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of Q is volume affine on some interval [−c, c], c > 0. We conclude using
the minimality of Q and Lemmas 2 and 4.

Conclusion. It follows from Fact 3 and Fact 4 that there is a simple
point among ai, bi, i = 1, 2 if and only if

max(
1

β1

,
1

α1

) 6= max(
1

β2

,
1

α2

).

Suppose now that none of the points ai, bi, i = 1, 2, is simple. Then
one has

max(
1

β1

,
1

α1

) = max(
1

β2

,
1

α2

).

Without lost of generality, we may then suppose that

1

β1

,
1

β2

6
1

α1

=
1

α2

.

From Fact 1 and Fact 2, one deduces that conv(a1, a
′
1, a2, a

′
2) is a face

of Q and conv(b2, a1, a
′
1) and conv(b1, a2, a

′
2) are part of faces of Q. So

a1 and a2 are the intersection of exactly 3 faces of Q. Let L = Qs(Q).
Then L is a polytope. Let f be the vertex of L corresponding to the
face conv(a1, a2, b1, b2) of Q. Using the correspondence between the
face lattices of a polytope and its dual (see, for example, [Mat], Chap-
ter 5.1 or [Gr], Chapter 3.4), we see that there are exactly 4 faces, say,
F1, F2, G1, G2 of L containing f , corresponding to a1, a2, b1, b2. More-
over, F1 and F2 are triangles (because, a1 and a2 are the intersection
of exactly 3 faces of Q). Let ` be the intersection of the supporting
hyperplanes of G1 and G2, and let θ ∈ Sn−1 be the direction of `. We
define the shadow movement of L with basis f and direction θ. By
Lemma 5 for some c > 0, this shadow movement is volume affine on
[−c, c]. We conclude using Lemmas 2 and 4. �

Subcase 1.ii: The point m is in the interior of an edge of Q.
We may suppose that m is an interior point of an edge [a1, b1] of H1∩Q
and is an extreme point of H2 ∩ Q. Let a2 6= b2 such that [a2,m] and
[m, b2] are edges of H2∩Q. Then the two faces of Q containing the edge
[a1, b1] of Q are the triangles (a1, b1, a2) and (a1, b1, b2). Observe that
by a1 cannot pass more than two non triangular faces, and that these
non-triangular faces must have [a′1, a1] as an edge, where as before, we
denote by a′1 the vertex of H1 ∩ Q different from b1 such that [a1, a

′
1]

is an edge of H1 ∩ Q. Define a shadow movement Qt with basis a1

and direction θ parallel to the line supporting [a1, a
′
1]. Then, from

Lemma 5, for some c > 0, Qt is volume affine and Qt ∈ CN on [−c, c].
We conclude again using Lemmas 2 and 4. �
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Subcase 1.iii: The point m is a vertex of Q. If m is a vertex
of Q, then all the faces containing m are triangles. We move m on
the segment [m, p] and, from Lemma 5, we get a shadow movement Qt

such that t 7→ |Qt| is affine on [−c, c] for some c > 0, and Qt ∈ CN . We
conclude as above.

Case 2: H1 ∩ H2 ∩ Q is one point m. It is easy to see that if Q is
not a double-cone nor a cone then m is a vertex of H1∩Q and H2∩Q.
Let ai, bi ∈ Q ∩ Hi be vertices of Q ∩ Hi such that [ai,m] and [bi,m]
are edges of Q ∩ Hi (and thus of Q), i = 1, 2. Then the faces of Q
containing m are the two triangles (a1,m, a2), (b1,m, b2) and the two
other faces Q ∩ Hi, i = 1, 2. We define the affine shadow movement
with basis m in the direction of the line H1 ∩ H2 and we conclude as
above.

Case 3: H1 ∩ H2 ∩ Q = ∅. In this case Ki = Hi ∩ Q are faces of Q.
We call the other faces of Q side faces. It is clear that the side faces of
Q can be only triangles or quadrilaterals: any side face of Q is either
the convex hull of an edge of K1 and an edge of K2 or the convex hull
of an edge of K1 and a vertex of K2, or the convex hull of an edge of
K2 and a vertex of K1. We distinguish two cases:

Subcase 3.i: Q has a side face F which is a triangle. Without loss
of generality, we may suppose that F = conv(u1, v1, v2), where [u1, v1]
is an edge of K1 and v2 is a vertex of K2. If K2 = {v2} we conclude
applying Lemma 1. Otherwise, among the faces of Q containing v1,
those which have [u1, v1] as an edge are F and K1. If there is a an
other side face G of Q containing v1 which is a quadrilateral, it must be
of the form G = conv(v1, a2, b2, w1), where [v1, w1] is the other edge of
K containing v1, and [a2, b2] is an edge of K2 (with possibly a2 = v2).
So there are at most 2 faces of Q passing through v1 which are not
triangles. We are thus in position to apply Lemma 5. With the notation
of this lemma, we define the volume affine shadow movement Kt with
basis v1 and in the direction of [v1, w1]. By Lemma 5 there exists c > 0
such that (Kt) is volume affine on [−c, c]. We conclude using Lemmas
4 and 2.

Subcase 3.ii: There is no triangle among the side faces. Thus
all the side faces of Q are quadrilateral. Because of the special con-
figuration of Q, we see that each vertex of Q belongs to exactly three
faces, two among them are quadrilateral side faces. Thus Q is a simple
polytope, and its polar body L := Qs(Q) is a simplicial polytope (all
its faces are triangles). The polytope L has two special vertices k1 and
k2 (dual to faces H1 ∩ Q and H2 ∩ Q of Q) such that all the faces of
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L contain either k1 or k2. Through all the other vertices of L pass
exactly four triangular faces of L, two of them containing k1 and the
two others k2. Let r 6= k1, k2 be a vertex of L. Fix any θ ∈ S2 and
define a shadow movement (Lt) based on r with direction θ. We also

note that t 7→ |Lt| is affine and L
s(L)
t ∈ CN , for small enough |t|. We

use Lemmas 2 and 4 to conclude this case. �

Proof of the centrally symmetric case:
The proof is exactly the same as the proof of the general case, except
that the movements will now keep the symmetry. Moreover, as men-
tioned in Remark 1 after Theorem 1, there are only two cases: either
H1 ∩ H2 ∩ Q is a segment or it is empty, in which case the planes
are parallel. Case 2 of the preceding discussion does not occur. Let
us show how the arguments may be adapted to the symmetric case
in the case 3, when H1 and H2 are parallel. By an adaptation of
Lemma 4 there is a polyhedron Q with minimal volume product in the
set {K ∈ D2N : K = −K}. We reduce to the case when Q is formed
as follows: Q = conv(M + e3,−M − e3) where M is a polygon in the
hyperplane {x3 = 0} with N vertices. We shall show that

P(Q) = P(Q1) = P(Q2) =
32

3
,

where Qi = conv(Qi + e3,−Qi − e3) with Q1 a triangle and Q2 a
parallelogram. Actually Q1 is affinely equivalent to B3

1 and Q2 to B3
∞,

which are the two, non affinely equivalent, conjectured mimima for the
volume product of centrally symmetric bodies in R3. We begin as in
the proof of Theorem 1, but we apply now shadow systems which keep
the central symmetry of Q.

Subcase i: There is a triangle F among the side faces of Q.
Since Q is centrally symmetric, the face −F symmetric of F is also a
triangle. One may suppose that F = conv(u + e3,−v − e3,−w − e3)
where u, v, w are different extreme points of Q and [v, w] is an edge of
Q. Consider now the shadow system constructed as follows. Define

Qt = conv(E(Q) \ {v + e3,−v − e3}, v + e3 + tθ,−v − e3 − tθ),

for t ∈ R and θ ∈ S2 is the direction of the edge [v, w]. We notice that at
most two faces of Q which are not triangles can contain v+e3 (the same
is true for −v−e3), and we may apply Lemma 5. Thus, for some c > 0,
t 7→ |Qt| is affine for t ∈ [−c, c]. Applying the minimality of P(Q) we
get P(Q) = P(Q0) = P(Qt); it follows from Proposition 1 that Qt is
an affine image of Q, say Qt = At(Q), with At of the type described in
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Proposition 1. Thus Q is a double cone with apices v+ e3,−v− e3 and
we conclude the proof applying Lemma 2.

Subcase ii: There is no triangle among the side faces of Q.
Then they are all quadrangles. We pass to the polar body L = Q◦,
which is of course also centrally symmetric, and has all the properties
mentioned in Subcase 3 ii, in the proof of the non-symmetric case. We
modify it with a ”symmetric shadow movement” Lt, moving two of
its vertices v and −v, along one edge. As before, by minimality this
shadow movement must satisfy that Lt = At(L) for t ∈ [−c, c], for
some c > 0, where At is an affine isomorphism of R3. It is easy to see
that this can only happen when L is a double cone with apices −v and
v. So that, by the minimality of the volume product, its basis must be
a quadrilateral. So that L is affinely isomorphic to B3

1 and P = L◦ is
affinely isomorphic to B3

∞. �
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Champs-sur-Marne 77454 Marne-la-Vallée Cedex 2, France

E-mail address: Matthieu.Fradelizi@univ-mlv.fr, Mathieu.Meyer@univ-mlv.fr



AN APPLICATION OF SHADOW SYSTEMS TO MAHLER’S CONJECTURE. 17

Department of Mathematical Sciences, Kent State University, Kent,
OH 44242, USA

E-mail address: zvavitch@math.kent.edu


