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Abstract: In condition-based maintenance area, mean residual life function is recognized as a promis-
ing reliability indicator for maintenance decision-making. However, very few maintenance strategies
based on the mean residual life have been developed. This paper therefore analyzes a predictive main-
tenance strategy based on the mean residual life given the degradation level collected periodically
in different inspection times. This strategy is developed for systems which are subject to competing
and dependent failures due to degradation and traumatic shocks. Numerical examples are given to
illustrate the analytical results of the strategy.
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1. INTRODUCTION

Condition based maintenance is a maintenance program that utilizes condition monitoring technolo-
gies in order to construct a reliability indicator representing the health state of a system and, through
that knowledge, set up proper maintenance decisions. Synthesizing, the literature shows that a robust
reliability indicator has to characterize precisely not only the current, but also the future state of sys-
tems. The system degradation level is a traditional indicator, based on which numerous maintenance
models have been analyzed and their performance has been proved through practical applications (see
e.g., [1] and [2]). However, since the degradation level can only reflect the current system state, it does
not suffice to be a robust indicator. From the degradation level, one can estimate the mean residual
life (MRL) of system. Since the MRL can provide an idea about how long a system at any particular
age and deterioration is expected to survive, it can also reflect the system future state. The MRL is
therefore considered as a very promising indicator for maintenance decision-making. This is why we
seek in the present paper a maintenance strategy based on this reliability indicator.

It is well known that most of the industrial systems degrade physically over time, and a stochastic
process is often used to describe this phenomenon [3]. But, considering a degradation process only
seems to be unsatisfactory for modeling dynamic systems, because they can fail due to another causes
rather than the degradation [4]. When the system is subject to the competing risks of degradation and
shocks, one can show that Degradation-Threshold-Shock (DTS) models are relevant for the modeling
purpose [5]. For these models, the system is regarded as failed when its degradation reaches a critical
threshold or when a catastrophic shock occurs although the degradation process has not reached the
threshold. The “classical” DTS models assume that the degradation process and the shock process
are independent [6, 7]. However, in many practical situations, the dependence between them is of
importance and should not be neglected in the modeling [8]. Recently, Huynh et al. provide in [9] and
[10] an extension of DTS models by introducing the dependence of the shock process on the degradation
process. The authors show that such a model can be seen as a combination and a more versatile and
hopefully realistic extension of many classical failure models based either only on degradation or only
on parametric lifetime distributions. Hence, we will develop our MRL-based maintenance strategy
under the assumption of this kind of model.

The performance of the considered MRL-based maintenance strategy is assessed by a cost criterion



which is the long-run expected maintenance cost rate C∞. We assume that a maintenance action,
either preventive or corrective, restores the system to an as-good-as-new condition. The behavior of
the maintained system is then assimilated to a regenerative process. As such, by applying the well-
known renewal-reward theorem [11], the long-run expected maintenance cost rate can be calculated
as the expected cost in a renewal cycle divided by the expected length of the cycle

C∞ = lim
t→∞

E [C (t)]

t
=
E [C (S)]

E [S]
, (1)

where C (t) is the cumulated maintenance cost at time t and S is the length of the first renewal cycle.

The remainder of this paper is organized as follows. The detailed description of the maintained system
according to the MRL-based maintenance strategy is introduced in section 2. Section 3 is devoted to
computing the mean residual life function and to analyzing its monotony. In section 4, we formulate
the cost model of the MRL-based maintenance strategy for the considered system. Section 5 shows
the maintenance strategy optimization and some numerical examples. Finally, section 6 concludes the
paper.

2. SYSTEM DEFINITION AND MAINTENANCE STRATEGY

We consider a system subject to the competing and dependent failure modes due to shocks and
degradation. Such a system, under the proposed predictive maintenance strategy based on MRL, is
described as follows.

1. The system is subject to an accumulative degradation and starts working at time 0. Let X(t)
be the degradation level of the system at time t with X (0) = 0. We assume that {X (t) , t ≥ 0}
follows a homogeneous gamma process whose increment X (t)−X (s) between two times s and
t, 0 ≤ s < t, follows a Gamma density function with shape parameter α · (t− s) and scale
parameter β

fα·(t−s),β (x) =
1

Γ (α · (t− s))
βα·(t−s)xα·(t−s)−1e−βx, x ≥ 0,

where Γ denotes the gamma function given by

Γ(α) =

∫ ∞

0
uα−1e−udu.

We assume that the system fails when its degradation level exceeds the value L. Let σL be the
hitting time of the threshold L (i.e., failure time due to degradation), F̄σL

and fσL
be its survival

function and its density function respectively, then

F̄σL
(t) = P (σL ≥ t) = P (X (t) ≤ L) = 1−

Γ(αt, Lβ)

Γ(αt)
, t ≥ 0, (2)

fσL
(t) =

α

Γ(αt)

∫ ∞

Lβ
{log (z)− ψ (αt)} zαt−1e−zdz, (3)

where Γ (α, x) =
∫∞
x zα−1e−zdz and ψ (α) = Γ′(α)

Γ(α) are respectively the Gamma function and
Digamma function.

2. The system also fails whenever a shock occurs. We assume that the shock arrival times are mod-
eled by a non-homogeneous Poisson process {Ns(t), t ≥ 0} with stochastic increasing intensity
depending on both degradation level X (t) and working time t

r (t,X (t)) = r1 (t) 1{X(t)≤Ms} + r2 (t) 1{X(t)>Ms}, (4)

where r1 (t) and r2 (t) denote two non-decreasing failure rates and r1 (t) ≤ r2 (t) for t ≥ 0.
The quantity Ms represents a fixed deterioration threshold. The expression 4 means that the



degradation evolution affects to the occurrence of traumatic shocks in the sense that the system
is more prone to shocks when the degradation increases and exceeds a given level. Let F̄1(t) and
F̄2(t) be the survival functions associated to the failure rates r1 and r2, that is,

F̄i(t) = exp

{

−

∫ t

0
ri(z)dz

}

, t ≥ 0, i = 1, 2. (5)

3. In order to monitor the system health, a periodic inspection scheme with period T is planned
at a cost rate Ci > 0 to detect the degradation level. At each inspection, if the system is still
running, we estimate the MRL from the detected degradation level, and we make a preventive
maintenance decision based on this indicator. If the value of MRL is less than a threshold m,
the system is preventively replaced with a cost Cp > Ci; otherwise, nothing is done. But if
the system is detected to be in a failure state (i.e., due to degradation or shock), a corrective
replacement is performed with a cost Cc > Cp. In this case, because of the system inactivity
after failure, an additional cost is incurred from the failure time until the replacement time at a
cost rate Cd > 0. We assume that all the maintenance operations are perfect and take negligible
time.

According to the above descriptions, constructing the MRL and choosing the optimal values of T and
m are very important deciding the performance of the maintenance strategy for the considered system.
Two next sections deal with the mathematical models to construct and optimize these quantities.

3. MEAN RESIDUAL LIFE FUNCTION

Generally, the mean residual life function at time t ≥ 0 can be defined as [1]

E [σf − t | σf > t,Z (t)] ,

where σf denotes the time to failure and Z (t) denotes the covariates vector related to the system
condition obtained at time t. In the model presented in this paper, we assume that the data collected
in the inspection times can perfectly reflect the degradation level of the system at time t, Z (t) = X (t).
Thus, given the degradation level at time t X (t) = z and known the system is still working at time t,
σf > t, the MRL function is given by

mz (t) = E [σf − t | σf > t,X (t) = z] =

∫ ∞

t
R (u | X (t) = z) du, (6)

where R (u | X (t) = z) denotes the conditional reliability of the system at time u, u ≥ t, given
X (t) = z.

For the considered system, where the system fails whenever degradation level exceeds a fixed threshold
L or a shock occurs, R (u | X (t) = z) is hence computed by:

R (u | X (t) = z) = P (X (u) < L,Ns (u) = 0 | X (t) = z) = R11{z≤Ms} +R21{z>Ms}, (7)

where 1 denotes the indicator function which equals 1 if the argument is true and 0 otherwise, R1 and
R2 are given respectively by:

R1 = F̄σMs−z
(u− t)

F̄1 (u)

F̄1 (t)
+

∫ u

t
F̄σL−σMs

(u− v)
F̄1 (v) F̄2 (u)

F̄1 (t) F̄2 (v)
fσMs−z

(v − t) dv,

R2 = F̄σL−z
(u− t)

F̄2 (u)

F̄2 (t)
,

where F̄σMs−z
, F̄σL−z

, fσMs−z
, F̄1 and F̄2 is computed from equations 2, 3 and 5. F̄σL−σMs

denotes the
survival function of the random variable σL − σMs given by [12]

F̄σL−σMs
(t) = F̄(σMs ,σL)(t, x, y)1{y>x>0} + F̄d(t, x, y)1{y=x>0}, (8)



where

F̄(σMs ,σL)(t, x, y) = −

∫ ∫

Ms<x<L,0<x+y<L,0<y

(
∫ ∞

0
fαu,β(x)du

)

∂fαt,β(y)

∂t
dxdy,

and

F̄d(t, x, y) =

∫ ∞

t

∫ y−t

0
α

∫ Ms

0
fαx,β(w)dw

(

∫ ∞

L−y

e−βz

z
dz

)

dxdy.

Consequently, the MRL function of the considered system is computed by equations 6 and 7.

Analyzing the monotonicity of the MRL function is important to compute the probabilities of the
different maintenance actions. Lemma 1 shows the monotonicity of the MRL function. In order to
fulfill the space requirements of the conference, we omit its proof in the present paper; interested
readers can refer to [13].

Lemma 1 For a fixed degradation level z, 0 ≤ z ≤ L, the MRL function, mz (t), is a non-decreasing

function of the time t. For a fixed time t, 0 ≤ t, the MRL function, mz (t), is a non-decreasing

function of the degradation level z.

To illustrate the property of monotonicity of the MRL function, Figure 1 shows the MRL surface as a
function of t and z when the shocks intensities r1 (t) and r2 (t) are linear in time t. Figure 1 shows that
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Figure 1: MRL function - α = 0.1, β = 0.1, L = 30, Ms = 15, r1 (t) = 0.0025t + 0.01 and r2 (t) =
0.0025t + 0.1.

the MRL function, mz (t), depends on both z and t, so it contains more information on the system
compared to the degradation level. This is why the MRL function is more significant for maintenance
decision-making than degradation level, and it is then interesting to estimate and integrate the MRL
in maintenance planning.

4. MAINTENANCE COST MODEL

In this section, the maintenance cost model of the considered strategy based on the MRL is analyzed.
By applying equation 1, the long-run expected maintenance cost rate is computed by the following
formula:

C∞ (T,m) =
CpPp (T,m) + CcPc (T,m) + CiE [Ni (T,m)] + CdE [Wd (T,m)]

E [S (T,m)]
, (9)

where E [S (T,m)] is the expected length of a replacement cycle under the considered policy, Pp (T,m),
Pc (T,m), E [Ni (T,m)] and E [Wd (T,m)] are, respectively, the probability of a preventive replace-
ment, the probability of a corrective replacement, the expected number of inspections and the expected



down time of the system in a replacement cycle. Computing these quantities is complicated but quite
classical. The idea is, firstly, to represent all the possible events of MRL related to each quantity,
then, to transform these events into the ones of degradation levels thanks to the monotony property
of the MRL function, and finally, to compute the associated probabilities. In this way, we must define
a degradation level corresponding to a given MRL value. For a fixed working time t ≥ 0, let zt,m be
the minimum value of degradation level z such that the mean residual life is less than m ≥ 0, that is,

zt,m = inf {z ≥ 0,mz (t) ≤ m} (10)

(if zt,m > L, then we impose zt,m ≡ L). Furthermore, using the monotonicity of the MRL function,
for t1 ≤ t2, mz(t1) ≥ mz(t2); hence zt1,m ≥ zt2,m for t1 ≤ t2. The remainder of this section reports
the detailed mathematical results of the quantities of interest.

4.1. Preventive maintenance probability

Under the considered MRL-based maintenance policy, a preventive maintenance is performed at in-
spection time if the system is still working and the MRL calculated from the detected degradation
level of the system is less than the value m. As such the probability of the preventive replacement in
a renewal cycle is calculated by

Pp (T,m) =
∞
∑

k=0

Pp ((k + 1)T ) , (11)

where, Pp ((k + 1)T ) is the probability of a preventive replacement at time (k + 1)T , k = 0, 1, 2, . . .,
given by:

Pp ((k + 1)T ) = P
(

mzkT (kT ) > m ≥ mz(k+1)T
((k + 1)T ) , (k + 1)T < σL, σs > (k + 1)T

)

= P
(

X(kT ) < zkT,m, z(k+1)T,m ≤ X((k + 1)T ), (k + 1)T < σL, σs > (k + 1)T
)

= P
(

kT < σzkT,m
, σz(k+1)T,m

≤ (k + 1)T < σL, σs > (k + 1)T
)

,

where σzt,m is the hitting time of the degradation level zt,m and σs is the time to the first shock.

To explicite the formula of Pp ((k + 1)T ), we consider three exclusive events:
{

Ms ≤ z(k+1)T,m

}

,
{

z(k+1)T,m < Ms ≤ zkT,m

}

and {zkT,m < Ms}. Before going ahead with the calculation, we define, for

0 ≤ u ≤ v ≤ w and 0 ≤ z1 ≤ z2 ≤ z3 (i.e., 0 = σ0 ≤ σz1 ≤ σz2 ≤ σz3), the functions G (u, v) and
Hσz1 ,σz2 ,σz3

(u, v, w) by

G (u, v) = P (Ns(v) = 0 | σMs = u) = F̄1 (u)
F̄2 (v)

F̄2 (u)
, (12)

Hσz1 ,σz2 ,σz3
(u, v, w) = fσz2−σz1

(v − u) F̄σz3−σz2
(w − v) , (13)

where F̄1 and F̄2 is given from equation 5, F̄σz3−σz2
and fσz2−σz1

is computed and derived respectively
from equation 8.

When Ms ≤ z(k+1)T,m, the probability Pp ((k + 1)∆T ) is computed as

Pp,1 =

∫ kT

0

∫ kT

u
G (u, (k + 1)T )HσMs ,σz(k+1)T,m

,σzkT,m
(u, v, (k + 1)T ) fσMs

(u) dvdu

+

∫ kT

0

∫ (k+1)T

kT
G (u, (k + 1)T )HσMs ,σz(k+1)T,m

,σL
(u, v, (k + 1)T ) fσMs

(u) dvdu

+

∫ (k+1)T

kT

∫ (k+1)T

u
G (u, (k + 1)T )HσMs ,σz(k+1)T,m

,σL
(u, v, (k + 1)T ) fσMs

(u) dvdu

+

∫ kT

0

∫ kT

u

∫ (k+1)T

kT
−G (u, (k + 1)T )

∂Hσ0,σMs ,σz(k+1)∆T,m
(0, u, v)

∂v
×

Hσz(k+1)T,m
,σzkT,m

,σL
(v,w, (k + 1)T ) dwdvdu. (14)



When z(k+1)T,m < Ms ≤ zkT,m, the probability Pp ((k + 1)T ) is rewritten as

Pp,2 =

∫ kT

0

∫ kT

u
G (v, (k + 1)T )Hσz(k+1)T,m

,σMs ,σzkT,m
(u, v, (k + 1)T ) fσz(k+1)T,m

(u) dvdu

+

∫ kT

0

∫ (k+1)T

kT
G (v, (k + 1)T )Hσz(k+1)T,m

,σMs ,σL
(u, v, (k + 1)T ) fσz(k+1)T,m

(u) dvdu

+ F̄1 ((k + 1)T )

∫ (k+1)T

0
Hσ0,σz(k+1)T,m

,σMs
(0, u, (k + 1)T ) du

+

∫ (k+1)T

kT

∫ (k+1)T

u
G (v, (k + 1)T )Hσz(k+1)T,m

,σMs ,σL
(u, v, (k + 1)T ) fσz(k+1)T,m

(u) dvdu

+

∫ kT

0

∫ kT

u

∫ (k+1)T

kT
−G (v, (k + 1)T )

∂Hσ0,σz(k+1)T,m
,σMs

(0, u, v)

∂v
×

HσMs ,σzkT,m
,σL

(v,w, (k + 1)T ) dwdvdu. (15)

And when zkT,m < Ms, the probability Pp ((k + 1)T ) is given by

Pp,3 = F̄1 ((k + 1)T )

∫ kT

0

∫ (k+1)T

kT
Hσz(k+1)T,m

,σzkT,m
,σMs

(u, v, (k + 1)T ) fσz(k+1)T,m
(u) dudv

+ F̄1 ((k + 1)T )

∫ kT

0
Hσ0,σz(k+1)T,m

,σzkT,m
(0, u, (k + 1)T ) du

+ F̄1 ((k + 1)T )

∫ (k+1)T

kT
H0,σz(k+1)T,m

,σMs
(0, u, (k + 1)T ) du

+

∫ (k+1)T

kT

∫ (k+1)T

u
G (v, (k + 1)T )Hσz(k+1)T,m

,σMs ,σL
(u, v, (k + 1)T ) fσz(k+1)T,m

(u) dudv

+

∫ kT

0

∫ (k+1)T

kT

∫ (k+1)T

v
−G (w, (k + 1)T )

∂Hσ0,σz(k+1)T,m
,σzkT,m

(0, u, v)

∂v
×

HσzkT,m
,σMs ,σL

(v,w, (k + 1)T ) dwdvdu. (16)

Consequently, the probability Pp ((k + 1)T ) is given by:

Pp ((k + 1)T ) = Pp,11{Ms≤z(k+1)T,m} + Pp,21{z(k+1)T,m<Ms≤zkT,m} + Pp,31{zkT,m<Ms}. (17)

where Pp,1, Pp,2 and Pp,3 are given by 14, 15 and 16 respectively.

4.2. Corrective maintenance probability

Similarly to the above analysis, the probability of a corrective replacement under the considered
MRL-based maintenance policy in a renewal cycle is calculated by

Pc (T,m) =
∞
∑

k=0

Pc ((k + 1)T ) , (18)

where, Pc ((k + 1)T ) is the probability of a corrective replacement at time (k + 1)T , k = 0, 1, 2, . . .,
given by:

Pc ((k + 1)T ) = P
(

kT < σzkT,m
≤ σL ≤ (k + 1)T, σL < σs

)

+ P
(

kT < σs ≤ (k + 1)T, σs < σzkT,m

)

+ P
(

kT < σzkT,m
≤ σs ≤ (k + 1)T, σs < σL

)

.

When Ms ≤ zkT,m, the probability Pc ((k + 1)T ) is given by

Pc,1 =

∫ kT

0
fσMs

(u)

∫ (k+1)T

kT

∫ (k+1)T

v
−
∂

∂w

(

HσMs ,σzkT,m
,σL

(u, v, w)G (u,w)
)

dwdvdu



+

∫ (k+1)T

kT

∫ (k+1)T

u
−
∂

∂v

(

F̄σL−σMs
(v − u)G (u, v)

)

fσMs
(u) dvdu

+

∫ kT

0

∫ (k+1)T

kT
−
∂

∂v
(G (u, v))Hσ0,σMs ,σzkT,m

(0, u, v) dvdu

+

∫ (k+1)T

kT
f1 (u) F̄σMs

(u) du. (19)

When zkT,m < Ms, the probability Pc ((k + 1)T ) is computed by

Pc,2 =

∫ (k+1)T

kT

∫ (k+1)T

u

∫ (k+1)T

v
−
∂

∂w

(

HσzkT,m
,σMs ,σL

(u, v, w)G (u,w)
)

fσzkT,m
(u) dwdvdu

+

∫ (k+1)T

kT

∫ (k+1)T

u
Hσ0,σzkT,m

,σMs
(0, u, v) f1 (v) dvdu

+

∫ (k+1)T

kT
f1 (u) F̄σzkT,m

(u) du. (20)

Hence, the probability Pc ((k + 1)T ) is given by

Pc ((k + 1)T ) = Pc,11{Ms≤zkT,m} + Pc,21{Ms>zkT,m}, (21)

where Pc,1 and Pc,2 are given by 19 and 20 respectively.

4.3. Expected downtime in a replacement cycle

The system downtime corresponds to the time interval from a failure to the next replacement. As-
suming (k + 1)T is the failure time, the downtime of the considered system is expressed by

Wd (T,m) =
∞
∑

k=0

((k + 1)T − σL) 1{kT≤σzkT,m
,kT≤σL≤(k+1)T,σL<σs

}

+
∞
∑

k=0

((k + 1)T − σs) 1{kT≤σzkT,m
,kT≤σs≤(k+1)T,σs<σL

}. (22)

As such, the expected downtime is given by

E [Wd (T,m)] =
∞
∑

k=0

d1 (k, T ) 1{Ms<zkT,m} +
∞
∑

k=0

d2 (k, T ) 1{Ms≥zkT,m}, (23)

where d1 (k, T ) is given by

d1 (k, T ) =

∫ kT

0

∫ (k+1)T

kT

∫ (k+1)T

v
− ((k + 1)T − w)

∂

∂w

(

HσMs ,σzkT,m
,σL

(u, v, w)G (u,w)
)

dwdvdu

+

∫ (k+1)T

kT

∫ (k+1)T

u
− ((k + 1)T − v)

∂

∂v

(

F̄σL−σMs
(v − u)G (u, v)

)

fσMs
(u) dvdu

+

∫ kT

0

∫ (k+1)T

kT
− ((k + 1)T − v)

∂

∂v
(G(u, v))Hσ0,σMs ,σzkT,m

(0, u, v) dvdu

+

∫ (k+1)T

kT
((k + 1)T − u) f1 (u) F̄σMs

(u) du, (24)

and d2 (k, T ) is given by

d2 (k, T ) =

∫ (k+1)T

kT

∫ (k+1)T

u

∫ (k+1)T

v
− ((k + 1)T − w)

∂

∂w

(

HσzkT,m
,σMs ,σL

(u, v, w)G (v,w)
)

×

fσzkT,m
(u)dwdvdu

+

∫ (k+1)T

kT

∫ (k+1)T

u
((k + 1)T − v)Hσ0,σzkT,m

,σMs
(0, u, v) f1 (v) dvdu

+

∫ (k+1)T

kT
((k + 1)T − u) f1 (u) F̄σzkT,c

(u) du. (25)



4.4. Expected replacement time and expected number of inspections

Under the considered MRL-based maintenance policy, the system can be replaced either preventively
or correctively. So the expected time to a system replacement is given by

E [S (T,m)] =
∞
∑

k=0

(k + 1)T (Pp ((k + 1)T ) + Pc ((k + 1)T )) , (26)

where Pp ((k + 1)T ) and Pc ((k + 1)T ) are given by 17 and 21 respectively. And the expected number
of inspections in a replacement cycle is given by

E [Ni (T,m)] =
E [S (T,m)]

T
. (27)

where E [S (T,m)] is given by 26.

5. MAINTENANCE OPTIMIZATION AND NUMERICAL EXAMPLE

As indicated in the previous sections, the inspection period T and the preventive replacement threshold
m decide the performance of the considered maintenance strategy. Thus, optimizing the strategy is
reduced to find the optimal values Topt and mopt that minimize the long-run expected maintenance
cost rate C∞ (T,m) given by equation 9, that is

C∞ (Topt,mopt) = min
T,m

{C∞ (T,m) , T > 0, 0 ≤ m ≤MTTF} , (28)

where MTTF denotes the mean time to failure of system, which is computed by

MTTF =

∫ ∞

0
F̄1 (u) F̄σMs

(u) du+

∫ ∞

0

∫ ∞

0
F̄σL−σMs

(v)
F̄1 (u) F̄2 (v + u)

F̄2 (u)
fσMs

(u) dvdu. (29)

Due to the complexity of the cost function C∞ (T,m), obtaining the analytical solution of Topt andmopt

is almost impossible; numerical methods (e.g., policy iteration algorithm [11]) are used to overcome
the problem.
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Figure 2: Long-run expected maintenance cost rate C∞ (T,m)

To illustrate the cost surface and the optimum solution of the considered MRL-based maintenance
strategy, we use the following data set: α = 0.5, β = 0.5, Ms = 15, L = 30, r1 (t) = 0.0025t + 0.01,



r2 (t) = 0.0025t + 0.1, Ci = 5, Cp = 50, Cc = 100 and Cd = 25. The numerical example of the
strategy is shown in Figure 2. Sub-figures 2a and 2b illustrate respectively the shape and the iso-level
cost curves of the expected maintenance cost rate when the inspection period T and the preventive
replacement threshold m vary. The convexity of the cost surface shows the existence of an optimal
setting of parameters T and m. In fact, for the chosen data set, optimal values are Topt = 4.5 and
mopt = 8.5, which correspond to the optimal cost rate given by C∞ (4.5, 8.5) = 7.8416.

6. CONCLUSION

The present paper introduces the cost model of a predictive maintenance strategy for a system subject
to the computing failure modes due to degradation and shocks. The system is described by an extension
of DTS model where the shock intensity is assumed to be dependent on the system degradation level.
We have shown that, under the assumptions of the model, the MRL function of the system is a
decreasing function of the degradation level and working time. The preventive maintenance decisions
of the proposed strategy is based on the MRL function calculated at different inspection times. Due to
the monotonicity of the MRL function, the degradation levels at different inspection times for the same
value of MRL are different. Hence, the considered MRL-based maintenance strategy is equivalent to a
degradation-based maintenance strategy with multiple preventive degradation thresholds. Since these
thresholds can finely adapt to the health state of system, this strategy is better than the one based
on single degradation threshold. Furthermore, for our new strategy, multiple preventive thresholds
are integrated in an unique MRL indicator, so it is generally more simple and more complete than
degradation-based maintenance strategies.
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