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Global well-posedness for the primitive equations with less

regular initial data

Frédéric Charve, ∗

Résumé: Cet article est consacré à l’étude du temps d’existence des solutions du
système des équations primitives pour des données moins régulières. On interpole les
résultats d’existence globale à données Ḣ

1

2 petites fournis par le théorème de Fujita-
Kato, et le résultat de [6] qui donne l’existence globale si le paramètre de Rossby ε est
suffisamment petit, et pour des données plus régulières (partie oscillante initiale dans

Ḣ
1

2 ∩ Ḣ1 et partie quasigéostrophique initiale dans H1).

Classification AMS: 35Q35, 76D05, 76U05, 46M35
Mots clés: Equations primitives, système quasigéostrophique, dispersion, estimations

de Strichartz, interpolation réelle.

Abstract: This paper is devoted to the study of the lifespan of the solutions of the
primitive equations for less regular initial data. We interpolate the globall well-posedness
results for small initial data in Ḣ

1

2 given by the Fujita-Kato theorem, and the result from
[6] which gives global well-posedness if the Rossby parameter ε is small enough, and for

regular initial data (oscillating part in Ḣ
1

2 ∩ Ḣ1 and quasigeostrophic part in H1).

AMS Classification: 35Q35, 76D05, 76U05, 46M35
Key words: Primitive equations, quasigeostrophic system, dispersion, Strichartz esti-

mates, real interpolation.

1 Introduction

1.1 The primitive equations

The primitive system writes:

(PEε)





∂tUε + Uε.∇Uε − LUε +
1

ε
AUε =

1

ε
(−∇Φε, 0)

div vε = 0

Uε/t=0 = U0,ε.

The unknowns are Uε and Φε. We denote by Uε a pair (vε, θε) where vε is a vector field
on R

3 (three dimensional velocity), θε a scalar function (the density fluctuation : in the
case of the atmosphere it depends on the scalar (potential) temperature and in the case
of the ocean it depends on the temperature and the salinity), and Φε the pressure, all of
them depending on (t, x). The operator L is defined by
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LUε
def
= (ν∆vε, ν

′∆θε),

We define :

Uε.∇Uε = vε.∇Uε =
3∑

i=1

viε.∂iUε,

and the matrix A by:

A def
=




0 −1 0 0
1 0 0 0
0 0 0 F−1

0 0 −F−1 0


 .

The small parameter ε is called here the Rossby number and F is called the Froude
number. They are related to the physical Rossby and Froude numbers by the following
relations :

Ro = ε, Fr = εF.

The smaller is ε, the more important are the Coriolis force (induced by the rotation of the
earth around its axis) and the vertical stratification of the density.

We refer for example to [6] for the physical meaning of these terms and for a list of
physical references.

Definition 1.1 If s is a real number, the homogenous (resp. inhomogenous) Sobolev
space of order s, which we will denote by Ḣs (resp. Hs), is defined as the space of
tempered distributions u ∈ S ′(R3) whose Fourier transform û is locally integrable and has
the following property:

‖u‖2
Ḣs

def
=

∫

R3

|ξ|2s|û(ξ)|2dξ < ∞ (resp. ‖u‖2Hs
def
=

∫

R3

(1 + |ξ|2)s|û(ξ)|2dξ < ∞).

Although the primitive equations have no scaling anymore, we can easily adapt the
proofs of the Leray and Fujita-Kato theorems (thanks to the skewsymmetry of matrix
A and the fact that both of these theorems are proved using mainly inner products and
energy estimates) to get the following results :

Theorem 1.1 (Leray, 1934, [15]) if the initial data U0 ∈ L2(R3), then there exists for
all ε > 0 a Leray solution of the system (PEε), Uε, globally defined in time, belonging
to L∞(R+, L

2(R3)) ∩ L2(R+, Ḣ
1(R3)) and satisfying the following energy inequality (let

ν0 = min(ν, ν ′) > 0):

∀t ∈ R+, ‖Uε(t)‖2L2(R3) + 2ν0

∫ t

0
‖∇Uε(t)‖2L2(R3)dt ≤ ‖U0‖2L2(R3).

We refer to [5] where we studied the limit of Leray solutions when ε, the Rossby num-
ber, goes to zero and introduced the following notations and results in the case of weak
solutions: the potential vorticity is defined by

Ωε
def
= ∂1v

2
ε − ∂2v

1
ε − F∂3θε.

Then from this, we define the orthogonal decomposition of Uε into its quasigeostrophic
part, and its oscillating part :
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Uε,QG
def
=




−∂2∆F
−1Ωε

∂1∆F
−1Ωε

0
−F∂3∆F

−1Ωε


 ,

with ∆F
def
= ∂2

1 + ∂2
2 + F 2∂3

3 , and :

Uε,osc
def
= Uε − Uε,QG =




v1ε + ∂2∆F
−1Ωε

v2ε − ∂1∆F
−1Ωε

v3ε
θε + F∂3∆F

−1Ωε


 .

We have seen in [5] that this decomposition is an orthogonal decomposition and we denoted
by P the orthogonal projector onto the potential vorticity free vector fields (which is built
the same way as the orthogonal projector P on the divergence free vector fields, also called
the Leray projector) and Q = Id − P the orthogonal projector on the quasigeostrophic
vectorfiels. Both of them are homogeneous pseudo differential operators of degree zero.

In [5] we studied the convergence, when ε goes to zero, of the weak Leray solutions
towards the quasigeostrophic model (see (1) below).

When the initial data is more regular and even if there is no scale invariance for this
system we can easily adapt the Fujita and Kato theorem (1964) :

Theorem 1 (Fujita and Kato, 1964, [12]) If U0 ∈ Ḣ
1

2 there exist a unique maximal time
T ∗
ε > 0, and a unique solution

Uε ∈ C([0, T ∗
ε [, Ḣ

1

2 ) ∩ L2
loc([0, T

∗
ε [, Ḣ

3

2 ).

Moreover, if T ∗
ε is finite, then we have

∫ T ∗

ε

0
‖Uε(t)‖2

Ḣ
3
2 (R3)

dt = +∞.

Finally there exists a constant c such that if ‖U0‖
Ḣ

1
2 (R3)

≤ cν0 then T ∗
ε = +∞.

Contrary to the Leray solutions, the solutions are unique but we do not know whether
they are global in general. The Fujita-Kato theorem also works on the quasigeostrophic
system, and again, it does not say whether the unique solution is global if we do not have
a small initial data.

Both of these results are general results directly adaptated from the Navier-Stokes
case, without using the special structure of the primitive equations. As we have seen in
[5], [6], and [7], when the Rossby number ε goes to zero, the system is stabilized as its
solutions go to the solutions of the quasigeostrophic model (We refer to [5], [6], and [7] for
the study, in the case of the whole space, and for F 6= 1, of the convergence, as ε goes to
zero, of the primitive equations solutions to the quasigeostrophic model.), which is closer
to the two-dimensionnal Navier-Stokes system than to the three-dimensionnal one:

Theorem 2 [6] If U0,QG ∈ H1(R3) then the quasigeostrophic system

{
∂tUQG − ΓUQG +Q(UQG.∇UQG) = 0

UQG/t=0 = U0,QG,
(1)
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has a unique global solution in L∞(R+,H
1)∩L2(R+, Ḣ

1 ∩ Ḣ2), with the following energy
estimate for all s ∈ [0, 1] :

∀t ∈ R+, ‖ŨQG(t)‖2Ḣs + 2cν0

∫ t

0
‖ŨQG(t

′)‖2
Ḣs+1dt

′ ≤ C(U0,QG), (2)

where ν0 = min(ν, ν ′)

The convergence theorem is the following one:

Theorem 3 ([6]) Assume that U0 ∈ Ḣ1(R3) ∩ Ḣ
1

2 (R3) and U0,QG ∈ L2(R3). Let us

define for s ∈ R, Ės def
= L∞(R+, Ḣ

s) ∩ L2(R+, Ḣ
s+1) and let Wε be a solution of the

following linear system:



∂tWε − LWε +

1

ε
PAWε = −G

Wε/t=0 = U0,osc = P(U0)
(3)

with G
def
= PP(ŨQG.∇ŨQG)− F (ν − ν ′)∆∆−2

F




−F∂2∂
2
3

F∂1∂
2
3

0
(∂2

1 + ∂2
2)∂3


 Ω̃QG. (4)

Then we have the following results:

• Wε exists globally and is unique in the space Ės for every s ∈ [12 , 1].

• Moreover ‖Wε‖L2(R+,L∞) → 0 as ε → 0.

• If we denote by γε
def
= Uε − ŨQG − Wε, then if ε is small enough, γε ∈ Ės and

converges to zero in this space Ės for every s ∈ [12 , 1].

• Finally if ε is small enough Uε is defined for all time in Es and Uε − ŨQG = γε +Wε

goes to zero as ε goes to zero, in the space L2(R+, L
∞).

The aim of this paper is to get global existence results on the solutions of the primitive
equations but with less initial regularity. The Ḣ

1

2 regularity being the minimal regularity
as we want to apply at least the Fujita and Kato theorem, we will require in this paper
U0,QG ∈ H

1

2
+η, U0,osc ∈ Ḣ

1

2 and we will interpolate between theorem 1 and theorem 3,
using the arguments given by [14]. The key point is that we cut the initial data into two
parts : the first part being regular enough to apply theorem 3, and the second one being
Ḣ

1

2 with small initial data, in order to apply theorem 1. We get the following result :

Theorem 4 If the initial data U0 = U0,QG + U0,osc with U0,QG ∈ H
1

2
+η, U0,osc ∈ Ḣ

1

2

then, there exists ε0 > 0 such that for all ε ≤ ε0, (PEε) has a unique global solution

Uε ∈ L∞(R+, Ḣ
1

2 ) ∩ L2(R+, Ḣ
3

2 ).

This paper is devoted to the proof of theorem 4 and the structure will be the following :
first we will use truncation in order to cut the initial data into two parts. At this point
we show how important is the interpolation argument from [14] to get adaptated energy
estimates on the quasigeostrophic system. We then prove this interpolation argument and
manage to apply theorem 3. Finally we are able to adapt theorem 1 with small initial
data, which concludes the proof.
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2 Proof of Theorem 4

2.1 Frequency truncation of the initial data

We have seen that the above theorems give two different results concerning the lifespan of
the strong solutions of the primitive equations:

• Theorem 1 requires U0,QG ∈ Ḣ
1

2 , U0,osc ∈ Ḣ
1

2 , and gives local existence of strong so-
lutions, with global lifespan and energy if the initial data are small enough (‖U0‖

Ḣ
1
2
≤

cν0).

• Theorem 3 requires U0,QG ∈ H1, U0,osc ∈ Ḣ
1

2 ∩ Ḣ1, and gives global strong solutions
(and energy and convergence) when the Rossby number ε is small enough.

So the idea is to cut our initial data into two parts: on the first one, which is regular (H1)
and whose norm is large, we will be able to apply Theorem 3, and on the second one,
which is Ḣ

1

2 with a small norm we will use Theorem 1. We then decompose the initial
data in the following way (χ is a C∞ truncation function : χ(x) ≡ 1 if x ∈ [−1, 1] and
χ(x) ≡ 1 if |x| > 3

2 for example):

U0 = U0,QG + U0,osc =

(
χ(

|D|
λ

)U0,QG + U0,osc

)
+ (1− χ(

|D|
λ

))U0,QG.

So let us begin with the use of Theorem 3 on the first part (low frequencies for the
quasigeostrophic part).

2.2 Study of the low frequencies

2.2.1 Global well-posedness

Let us define Uλ
ε solution of the primitive equations:





∂tU
λ
ε + Uλ

ε .∇Uλ
ε − LUλ

ε +
1

ε
AUλ

ε =
1

ε
(−∇Φλ

ε , 0)

div vλε = 0

Uλ
ε /t=0 = χ( |D|

λ )U0,QG + U0,osc.

Theorem 3 gives then ε0 = ε0(λ, ...) > 0 such that ∀ε ≤ ε0, the unique solution Uλ
ε globally

exists. Precisely we define Uλ
QG and W λ

ε , solutions of the following systems (we refer to
[6] for details concerning the convergence of the strong solutions and its proof):

{
∂tU

λ
QG − ΓUλ

QG +Q(Uλ
QG.∇Uλ

QG) = 0

Uλ
QG/t=0

= χ( |D|
λ )U0,QG,

(5)

and {
∂tW

λ
ε − LW λ

ε + 1
εPAW λ

ε = −Gλ

W λ
ε /t=0 = U0,osc,

(6)
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where Gλ = Gλ,b +Gλ,l,

with Gλ,b = PP(Uλ
QG.∇Uλ

QG), and Gλ,l = −F (ν − ν ′)∆∆−2
F




−F∂2∂
2
3

F∂1∂
2
3

0
(∂2

1 + ∂2
2)∂3


Ωλ

QG.

(7)
Then Theorem 3 gives ε0 = ε0(λ, ...) > 0 such that ∀ε ≤ ε0, the difference of the solutions
of the primitive and quasigeostrophic systems, to whom we substract rapid oscillations,
γε = Uλ

ε − Uλ
QG −W λ

ε , globally exists in Ė
1

2 and goes to zero in this space.

The aim is to get estimates in Ė
1

2 of and then use it in the system satisfied by V λ
ε =

Uε − Uλ
ε so we will outline the adaptation of the estimates given in [6] in the proof of

Theorem 3.

2.2.2 Estimates for the limit system

First we have to estimate Uλ
QG in Ḣs : let us recall that in the proof, the fact that the initial

data is in Ḣ
1

2 allows us to use the Fujita and Kato theorem, which gives a local lifespan
[0, T ∗,λ[. The fact that, in addition, χ( |D|

λ )U0,QG ∈ Ḣ1 allows us to use the regularity
propagation theorem that provides enough regularity to the potential vorticity which is in
C([0, T ∗,λ[, L2) ∩ L2

loc([0, T
∗,λ[, Ḣ1), and it is sufficient for us to define the scalar product

in L2 of Ωλ
QG by the equation :

∂tΩ
λ
QG − ΓΩλ

QG + Uλ
QG.∇Ωλ

QG = 0,

and for all t < T ∗ (ν0 = min(ν, ν ′) > 0):

‖ΩQG(t)
λ‖2L2 + 2cν0

∫ t

0
‖∇Ωλ

QG(τ)‖2L2dτ = ‖Ωλ
QG(0)‖2L2 ≤ C ′‖χ( |D|

λ
)U0,QG‖2Ḣ1 .

Finally, the fact that χ( |D|
λ )U0,QG is in L2 allows us to get the fact that it is a global weak

solution, and the following Leray estimate ∀t ≥ 0, (ν0 = min(ν, ν ′) > 0) :

‖Uλ
QG(t)‖2L2 + ν0

∫ t

0
‖∇Uλ

QG(τ)‖2L2dτ ≤ ‖χ( |D|
λ

)U0,QG‖2L2 .

Then from this, we easily contradict the usual blow-up criterion, and that implies that
there is a unique, global solution and for every s ∈ [0, 1] :

∀t ∈ R+, ‖Uλ
QG(t)‖2Ḣs + ν0

∫ t

0
‖Uλ

QG(τ)‖2Ḣs+1dτ ≤ C‖χ( |D|
λ

)U0,QG‖2H1 (8)

≤ Cλ
1

2
−η‖U0,QG‖

H
1
2
+η .

2.2.3 Estimates for W λ
ε and Uλ

ε

We refer to [6] (section 3.2) for the following estimates :

‖W λ
ε (t)‖2

Ḣ
1
2

+ ν0

∫ t

0
‖∇W λ

ε (t
′)‖2

Ḣ
1
2

e

∫ t

t′
‖Gλ,b(τ)‖

Ḣ
1
2

dτ
dt′ ≤ ‖U0,osc‖2

Ḣ
1
2

e

∫ t

0
‖Gλ,b(τ)‖

Ḣ
1
2

dτ
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+

∫ t

0
(‖Gλ,b‖

Ḣ
1
2
+

1

ν0
‖Gl‖2

Ḣ−
1
2

)e

∫ t

t′
‖Gλ,b(τ)‖

Ḣ
1
2

dτ
dt′,

and there is no change, in lemma 3.2 from [6], for the estimate on Gλ,l :

∫ ∞

0
‖Gl‖2

Ḣ−
1
2

dt ≤ C‖Uλ
QG‖L2Ḣ

3
2
,

contrary to the estimate on Gλ,b, where we could use the argument from [6] :

∫ ∞

0
‖Gb‖Ḣsdt ≤ C




‖ŨQG‖L2(R+,Ḣ1)‖ŨQG‖L2(R+,Ḣ2) if s = 1

2

‖ŨQG‖2L2(R+,Ḣs+1)
if s ∈]12 , 1].

But here s = 1
2 and as we cannot afford to use much regularity, we prefer to do it differently,

using product laws in Sobolev spaces :

∫ ∞

0
‖Gb‖

Ḣ
1
2
dt ≤ C

∫ ∞

0
‖Uλ

QG.∇Uλ
QG‖Ḣ 1

2
≤ C

∫ ∞

0
‖Uλ

QG‖Ḣ 3
2
−η .‖∇Uλ

QG‖Ḣ 1
2
+η .

Then
‖Gb‖

L1Ḣ
1
2
≤ ‖Uλ

QG‖Ḣ 3
2
−η .‖Uλ

QG‖Ḣ 3
2
+η

So, using the estimate from the previous section, we obtain that :

‖W λ
ε ‖Ė 1

2
≤ C(‖U0,osc‖

Ḣ
1
2
+ λ

1

2
−η‖U0,QG‖

H
1
2
+η).

Finally, as γλε goes to zero, in particular if ε is small enough, its norm in Ė
1

2 is less than
1, so we obtain the estimate for Uλ

ε :

‖Uλ
ε ‖Ė 1

2
≤ C(‖U0,osc‖

Ḣ
1
2
+ λ

1

2
−η‖U0,QG‖

H
1
2
+η).

But in the following we will use the fact that λ goes to infinity in order to use the results
of global well-posedness with small initial data. But in this case the previous estimates
explode. We refer to the following section for an explaination of this problem.

2.3 Study of the high frequencies

In the previous section we used Theorem 3 to define Uλ
ε . The Fujita and Kato theorem

gives the existence of Uε in C([0, T ∗
ε [, Ḣ

1

2 ). Then we can define the difference V λ
ε = Uε−Uλ

ε ,
which satisfies :




∂tV

λ
ε + V λ

ε .∇V λ
ε + V λ

ε .∇Uλ
ε + Uλ

ε .∇V λ
ε − LV λ

ε +
1

ε
AV λ

ε =
1

ε
(−∇Φλ

ε , 0)

V λ
ε /t=0 = (1− χ( |D|

λ ))U0,QG.

Then the classical schemes of the proofs of the Leray or Fujita-Kato theorems can be
adapted on this system to prove the existence of weak solutions, strong solutions, and
global lifespan when the initial data are small. We won’t give details in this section, we
will only write energy estimates (in the proof, such estimates are proved for regularized
approximated solutions and obtained as limits).
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First, the inner product in L2, yields:

1

2

d

dt
‖V λ

ε ‖2L2 + ν0‖∇V λ
ε ‖2L2 ≤ |(V λ

ε .∇Uλ
ε |V λ

ε )L2 |.

Then, classical Sobolev injections (Ḣ1(R3) →֒ L6(R3) and Ḣ
1

2 (R3)) →֒ L3(R3), imply :

1

2

d

dt
‖V λ

ε ‖2L2 + ν0‖∇V λ
ε ‖2L2 ≤ ν0

2
|∇V λ

ε ‖2L2 +
C

ν0
‖V λ

ε ‖2L2 .‖∇Uλ
ε ‖Ḣ 1

2
.

Then a Gronwall estimate implies :

∀t ≥ 0, ‖V λ
ε (t)‖2L2 + ν0

∫ t

0
‖∇V λ

ε (τ)‖2L2dτ ≤ ‖(1− χ(
|D|
λ

))U0,QG‖2L2e

2C
ν0

‖∇Uλ
ε ‖2

L2Ḣ
1
2 . (9)

And if we take the inner product in Ḣ
1

2 , we obtain :

1

2

d

dt
‖V λ

ε ‖2
Ḣ

1
2

+ ν0‖∇V λ
ε ‖2

Ḣ
1
2

≤ |(V λ
ε .∇V λ

ε |V λ
ε )

Ḣ
1
2
|+ |(V λ

ε .∇Uλ
ε |V λ

ε )Ḣ
1
2
|

+|(Uλ
ε .∇Uλ

ε |V λ
ε )

Ḣ
1
2
|.

Using |(f |g)
Ḣ

1
2
| ≤ C‖f‖L2‖g‖Ḣ1 , the fact that L3.L6 →֒ L2, and linear interpolation

arguments, we get :

1

2

d

dt
‖V λ

ε ‖2
Ḣ

1
2

+ ν0‖∇V λ
ε ‖2

Ḣ
1
2

≤ C‖V λ
ε ‖2

Ḣ1‖∇V λ
ε ‖

Ḣ
1
2
+ C‖V λ

ε ‖Ḣ 1
2
‖∇V λ

ε ‖Ḣ 1
2
‖∇Uλ

ε ‖Ḣ 1
2

+C‖Uλ
ε ‖

1

2

Ḣ
1
2

‖∇Uλ
ε ‖

1

2

Ḣ
1
2

‖∇V λ
ε ‖

3

2

Ḣ
1
2

.

The classical inequality ab ≤ ap

p + bq

q if 1
p + 1

q = 1 gives :

1

2

d

dt
‖V λ

ε ‖2
Ḣ

1
2

+ ν0‖∇V λ
ε ‖2

Ḣ
1
2

≤ C‖V λ
ε ‖

Ḣ
1
2
‖∇V λ

ε ‖2
Ḣ

1
2

+
ν0

4
‖∇V λ

ε ‖2
Ḣ

1
2

+

C

ν0
‖V λ

ε ‖2
Ḣ

1
2

‖∇Uλ
ε ‖2

Ḣ
1
2

+
ν0

4
‖∇V λ

ε ‖2
Ḣ

1
2

+
C

ν30
‖Uλ

ε ‖2
Ḣ

1
2

‖∇Uλ
ε ‖2

Ḣ
1
2

‖V λ
ε ‖2

Ḣ
1
2

.

And then,

d

dt
‖V λ

ε ‖2
Ḣ

1
2

+ ν0‖∇V λ
ε ‖2

Ḣ
1
2

≤ 2C‖V λ
ε ‖

Ḣ
1
2
‖∇V λ

ε ‖2
Ḣ

1
2

+

‖V λ
ε ‖2

Ḣ
1
2

(
2C

ν0
‖∇Uλ

ε ‖2
Ḣ

1
2

+
2C

ν30
‖Uλ

ε ‖2
Ḣ

1
2

‖∇Uλ
ε ‖2

Ḣ
1
2

)
.

A Gronwall estimate finally gives that for all t ∈ [0, T ∗
ε [ :

‖V λ
ε (t)‖2

Ḣ
1
2

+

∫ t

0
(ν0 − 2C‖V λ

ε (t′)‖
Ḣ

1
2
)‖∇V λ

ε (t′)‖2
Ḣ

1
2

e
∫ t
t′
g(τ)dτdt′ ≤

‖(1− χ(
|D|
λ

))U0,QG‖2L2e
∫ t
0
g(τ)dτ , (10)

with g(t) = ‖∇Uλ
ε (t)‖2

Ḣ
1
2

(
2C

ν0
+

2C

ν30
‖Uλ

ε ‖2
Ḣ

1
2

).
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In both cases, we obtain a majoration by ‖(1− χ( |D|
λ ))U0,QG‖e

‖Uλ
ε ‖

Ė
1
2 , that is

‖(1 − χ(
|D|
λ

))U0,QG‖e
λ1−2ηC(‖U0,osc‖

Ḣ
1
2

,‖U0,QG‖
H

1
2
+η

)

which does not go to zero when λ goes to infinity which is annoying as we want to
adapt a theorem with small initial data. So as everything depends on the estimate of
Uλ
QG, we will provide, in the following, an estimate whose right-hand member depends on

‖χ( |D|
λ ))U0,QG‖

H
1
2
+η instead of ‖χ( |D|

λ ))U0,QG‖H1 .

2.4 Real interpolation

The aim of this section is to prove the following result:

Lemma 2.1 Let η > 0, U0,QG ∈ H1, and UQG the unique global solution (we refer to [6])
of the following quasigeostrophic system:

{
∂tUQG − ΓUQG +Q(UQG.∇UQG) = 0

UQG/t=0 = U0,QG.

There exists a constant C such that, for all t ≥ 0,

‖UQG(t)‖2
H

1
2
+η

+ ν0

∫ t

0
‖∇UQG(τ)‖2

H
1
2
+η
dτ ≤ C‖U0,QG‖

2+ 1

η

H
1
2
+η
.

With this estimate, we will be able to use the results from the previous section on V λ
ε and

prove the global well-posedness as λ is large enough to ensure small initial data.
To prove this lemma, we will use the same Calderon method (see [4]) as Gallagher

and Planchon in [14]: thanks to interpolation arguments we will be able to control the
norm of a part of the initial data and make it as small as we want, so that we can use the
Fujita-Kato theorem.

2.4.1 General interpolation results

In this section we will recall classical real interpolation definitions (we refer for example
to [3] for a presentation) and present it in the same way as in [14] together with a useful
lemma from this paper :

Definition 2.1 Let E1 and E2 two Banach spaces. The interpolated space E = [E1, E2]θ,q
with θ ∈ [0, 1] and q ≥ 1 is defined by:

E = [E1, E2]θ,q = {f ∈ E1 + E2 such that ‖f‖E < ∞},

with

‖f‖E =


∑

j∈Z

2jqθK(f, j)q




1

q

,

and
K(f, j) =def inf

f1+f2=f
(‖f1‖E1

+ 2−j‖f2‖E2
) (fi ∈ Ei).
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The following lemma concerns the case when E2 →֒ E →֒ E1. In the following, we will
take E1 = H

1

2 , E2 = H1 and E = H
1

2
+η.

Lemma 2.2 There exists a constant C(θ, q) such that for any integer j0 ≥ 1 and any
function f ∈ E, the following equivalence holds:


∑

j≥j0

2jqθK(f, j)q




1

q

≤ ‖f‖E ≤ C(θ, q)2j0


∑

j≥j0

2jqθK(f, j)q




1

q

.

We refer to [14] for the proof of this result (section 4.4).

2.4.2 Decomposition and small data

As said in section 2.2.2, we have different results on the quasigeostrophic system:

• U0,QG ∈ L2 leads to a global weak solution and a global energy estimate in L2.

• U0,QG ∈ Ḣ
1

2 leads to a local unique strong solution, global if ‖U0,QG‖
Ḣ

1
2
≤ cν0 (see

Theorem 1) with global energy estimate in Ḣ
1

2 .

• U0,QG ∈ H1 leads to a global strong solutions together with a global energy estimate
in H1.

The aim is to decompose the initial data in H
1

2
+η = [H

1

2 ,H1]2η,2 and solve separatedly

a quasigeostrophic system with small data in H
1

2 (therefore it is small in Ḣ
1

2 ), and a
modified quasigeostrophic system with initial data in H1.
For every j ∈ Z let us decompose

U0,QG = U
1,j
0,QG + U

2,j
0,QG, with U

1,j
0,QG ∈ E1 = H

1

2 , U
2,j
0,QG ∈ E2 = H1,

(actually, as U0,QG is H1, so does U1,j
0,QG), and by definition of K(U0,QG, j) as an infimum :

‖U1,j
0,QG‖H 1

2
+ 2−j‖U2,j

0,QG‖H1 ≤ 3

2
K(U0,QG, j).

As said earlier, we want to define the corresponding solutions, U
1,j
QG(t) and UQG(t)

2,j ,
respectedly given by the Fujita-Kato theorem, or Theorem 2. The problem is that we
have no information on the smallness of ‖U1,j

0,QG‖Ḣ 1
2
.

But, like in [14], using Lemma 2.2, we can write, that, for every j ≥ 1 (with θ = 2η
and q = 2) :

‖U0,QG‖
H

1
2
+η ≥ 22jηK(U0,QG, j) ≥ 22jη

2

3

(
‖U1,j

0,QG‖H 1
2
+ 2−j‖U2,j

0,QG‖H1

)
.

In particular,

‖U1,j
0,QG‖Ḣ 1

2
≤ ‖U1,j

0,QG‖H 1
2
≤ 3

2
2−2jη‖U0,QG‖

H
1
2
+η .

So if j0 is defined such that (c being the constant given by the global lifespan for small
initial data result) :

3

2
2−2j0η‖U0,QG‖

H
1
2
+η =

cν0

‖U0,QG‖
H

1
2
+η

, (11)
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i.-e.

j0 = E(− 1

2η

log 2cν0
3‖U0,QG‖

H
1
2
+η

log 2
) + 1,

and, for all j ≥ j0, ‖U1,j
0,QG‖Ḣ 1

2
≤ cν0. This allows us to apply the Fujita-Kato theorem

with small initial data and define U
1,j
QG, solution of :

{
∂tU

1,j
QG − ΓU1,j

QG +Q(U1,j
QG.∇U

1,j
QG) = 0

U
1,j
QG/t=0

= U
1,j
0,QG,

(12)

with the global energy estimate :

∀t ∈ R+, ‖U1,j
QG(t)‖2Ḣ 1

2

+ ν0

∫ t

0
‖∇U

1,j
QG(τ)‖2Ḣ 1

2

dτ ≤ C‖U1,j
0,QG‖2Ḣ 1

2

. (13)

On the other hand, as U
1,j
0,QG ∈ H

1

2 →֒ L2 the Leray Theorem says that U
1,j
QG is also a

global weak solution, together with the associated energy estimate (in L2), so we finally
obtain :

∀t ∈ R+, ‖U1,j
QG(t)‖2H 1

2

+ ν0

∫ t

0
‖∇U

1,j
QG(τ)‖2H 1

2

dτ ≤ C‖U1,j
0,QG‖2H 1

2

≤ Cν20 . (14)

Remark 2.1 As U1,j
0,QG = U0,QG −U

2,j
0,QG, it is in fact in Ḣ1 so by the regularity propaga-

tion theorem, the solution is more regular and the estimate 14 is in fact in H1.

We now define U2,j
QG(t) = UQG(t)−U

1,j
QG(t), UQG(t) globally given by Theorem 2, which

satisfies the following system :

{
∂tU

2,j
QG − ΓU2,j

QG +Q(U2,j
QG.∇U

2,j
QG) +Q(U2,j

QG.∇U
1,j
QG) +Q(U1,j

QG.∇U
2,j
QG) = 0

U
2,j
QG/t=0

= U
2,j
0,QG.

(15)

Its potential vorticity satisfying :

∂tΩ
2,j
QG − ΓΩ2,j

QG + U
2,j
QG.∇Ω2,j

QG + U
2,j
QG.∇Ω1,j

QG + U
1,j
QG.∇Ω2,j

QG = 0. (16)

We aim to adapt Theorem 1 and get global estimates : if we take the inner product in L2

of (15) by U
2,j
QG :

1

2

d

dt
‖U2,j

QG‖2L2 + ν0‖∇U
2,j
QG‖2L2 ≤ |(U2,j

QG.∇U
1,j
QG|U

2,j
QG)L2 ≤ ‖U2,j

QG.∇U
1,j
QG‖L2‖U2,j

QG‖L2 .

Using the usual product law L3.L6 →֒ L2, we get :

1

2

d

dt
‖U2,j

QG‖2L2 + ν0‖∇U
2,j
QG‖2L2 ≤ ‖U2,j

QG‖Ḣ1‖∇U
1,j
QG‖Ḣ 1

2
‖U2,j

QG‖L2 .

The same Hölder estimate as above gives :

1

2

d

dt
‖U2,j

QG‖2L2 + ν0‖∇U
2,j
QG‖2L2 ≤ ν0

2
‖∇U

2,j
QG‖2L2 +

C

ν0
‖∇U

1,j
QG‖Ḣ 1

2
‖U2,j

QG‖L2 ,
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and then, classical Gronwall estimates give for all t ≥ 0 :

‖U2,j
QG(t)‖2L2 + ν0

∫ t

0
‖∇U

2,j
QG(τ)‖2L2dτ ≤ C‖U2,j

0,QG‖2L2e
2C
ν0

‖∇U1,j
QG

‖2

L2Ḣ
1
2 .

On the other hand, as in section 2.2.2, the inner product in L2 of (16) by Ω2,j
QG yields (with

the same methods as above) :

‖U2,j
QG(t)‖2Ḣ1 + ν0

∫ t

0
‖∇U

2,j
QG(τ)‖2Ḣ1dτ ≤ C‖U2,j

0,QG‖2Ḣ1e
2C
ν0

‖∇U1,j
QG

‖2

L2Ḣ
1
2 .

Collecting these last two estimates, and using (14) we obtain (the new constant C contains
ν0.) :

‖U2,j
QG(t)‖2H1 + ν0

∫ t

0
‖∇U

2,j
QG(τ)‖2H1dτ ≤ C‖U2,j

0,QG‖2H1 . (17)

2.4.3 Application of Lemma 2.2

Since we have decomposed the initial data, we want to use Lemma 2.2 on U
1,j
QG and U

2,j
QG

in order to estimate UQG.
According to section(2.4.1) and to the definition K :

‖U0,QG‖2
H

1
2
+η

≥
∑

j≥j0

24jηK(U0,QG, j,H
1

2 ,H1)2,

After the definition of U1,j
QG and U

2,j
QG we can write that (j0 fixed in the previous section) :

‖U0,QG‖2
H

1
2
+η

≥ 2

3

∑

j≥j0

24jη
(
‖U1,j

0,QG‖H 1
2
+ 2−j‖U2,j

0,QG‖H1

)2
. (18)

According to the estimates (14) and (17) we have for all t ≥ 0 :

{
‖U1,j

0,QG‖H 1
2
≥ C‖U1,j

QG(t)‖H 1
2

‖U2,j
0,QG‖H1 ≥ C‖U2,j

QG(t)‖H1 ,
(19)

and 


‖U1,j

0,QG‖H 1
2
≥ C

√
ν0‖U1,j

QG‖L2
tH

3
2

‖U2,j
0,QG‖H1 ≥ C

√
ν0‖U2,j

QG‖L2
tH

1 .
(20)

So if we use (19) into (18), we obtain that :

‖U0,QG‖2
H

1
2
+η

≥ C
∑

j≥j0

24jη
(
‖U1,j

QG(t)‖H 1
2
+ 2−j‖U2,j

QG(t)‖H1

)2
.

And, using UQG(t) = U
1,j
QG(t) + U

2,j
QG(t) and the definition of K as an infimum :

‖U0,QG‖2
H

1
2
+η

≥ C
∑

j≥j0

24jηK
(
UQG(t), j,H

1

2 ,H1
)2

.

Using Lemma 2.2 allows us to go back to UQG(t) :

‖U0,QG‖2
H

1
2
+η

≥ C(2−j0‖UQG(t)‖
H

1
2
+η)

2.
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Finally, replacing j0 (see (11)) implies :

∀t ≥ 0, ‖UQG(t)‖2
H

1
2
+η

≤ C‖U0,QG‖
2+ 1

η

H
1
2
+η
.

Similarly if we use (20) into (18), we obtain that :

‖U0,QG‖2
H

1
2
+η

≥ C
∑

j≥j0

24jη
(√

ν0‖∇U
1,j
QG‖L2([0,t],H

1
2 )

+ 2−j√ν0‖∇U
2,j
QG‖L2([0,t],H1)

)2
.

Using ∇UQG = ∇U
1,j
QG +∇U

2,j
QG and the definition of K :

‖U0,QG‖2
H

1
2
+η

≥ C
√
ν0

∑

j≥j0

24jηK
(
∇UQG, j, L

2([0, t],H
1

2 ), L2([0, t],H1)
)2

.

Using the fact that [L2
tE1, L

2
tE1]θ,2 = L2

t [E1, E1]θ,2 (we refer for example to [3], this can
be easily proved using the continuous (equivalent) definition of K) and Lemma 2.2, we
can write that:

‖U0,QG‖2
H

1
2
+η

≥ C
√
ν0

(
2−j0‖∇UQG‖

L2([0,t],H
1
2
+η)

)2
,

and, finally:

ν0

∫ t

0
‖∇UQG(τ)‖2

H
1
2
+η
dτ ≤ C‖U0,QG‖

2+ 1

η

H
1
2
+η
.

In particular this implies that T ∗ = ∞ and if we collect the previous results, we obtain
that:

∀t ≥ 0, ‖UQG(t)‖2
H

1
2
+η

+ ν0

∫ t

0
‖∇UQG(τ)‖2

H
1
2
+η
dτ ≤ C‖U0,QG‖

2+ 1

η

H
1
2
+η
, (21)

which concludes the proof of Lemma 2.1.

2.5 End of the proof

if we apply Lemma 2.1 to system 5, we obtain that for all t ≥ 0:

‖Uλ
QG(t)‖2

H
1
2
+η

+ ν0

∫ t

0
‖∇Uλ

QG(τ)‖2
H

1
2
+η
dτ ≤ C‖χ( |D|

λ
)U0,QG‖

2+ 1

η

H
1
2
+η

≤ C‖U0,QG‖
2+ 1

η

H
1
2
+η
.

And the right-hand member is now a constant (no divergence when λ goes to infinity), so
we can go back to 10 and now we can estimate the L1-norm of g where:

g(t) = ‖∇Uλ
ε (t)‖2

Ḣ
1
2

(
2C

ν0
+

2C

ν30
‖Uλ

ε ‖2
Ḣ

1
2

),

and ‖g‖L1 ≤ C(‖U0,QG‖
H

1
2
+η , ν0), so we can write :

‖V λ
ε (t)‖2

Ḣ
1
2

+

∫ t

0
(ν0 − 2C‖V λ

ε (t′)‖
Ḣ

1
2
)‖∇V λ

ε (t′)‖2
Ḣ

1
2

e
∫ t

t′
g(τ)dτdt′ ≤

‖(1− χ(
|D|
λ

))U0,QG‖2L2e
∫ t
0
g(τ)dτ ≤ C ′‖(1 − χ(

|D|
λ

))U0,QG‖2L2 . (22)
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We can now complete the bootstrap argument: if λ is large enough so that:

√
C ′‖(1 − χ(

|D|
λ

))U0,QG‖L2 ≤ ν0

8C
,

and if we define (recall that T ∗
ε is the lifespan of V λ

ε ) :

Tε = sup{t ∈ [0, T ∗
ε [, so that ∀t′ ≤ t, ‖V λ

ε (t)‖
Ḣ

1
2
≤ ν0

4C
}.

Then for all t ≤ Tε,

‖V λ
ε (t)‖2

Ḣ
1
2

+
ν0

2

∫ t

0
‖∇V λ

ε (t′)‖2
Ḣ

1
2

dτdt′ ≤ ν0

8C
<

ν0

4C
,

then it implies Tε = T ∗
ε and we use the blow-up criterion to conclude that T ε,∗ = +∞.

Finally, if λ ≥ λ0 and ε ≤ ε(λ), Vε is global, and then our solution Uε is also global,

and is an element of Ė
1

2 .
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