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How to model marine reserves ?

Patrice Loisel ∗Pierre Cartigny †

Abstract: The safeguarding of resources is one of the principal subjects of

halieutics studies. Among the solutions proposed to avert the disappearance

of species, the setting in place of no take reserves is often mentioned. Most

work on this subject, theoretical as well as applied, was undertaken in recent

years. In this paper, we seek to compare two different models presented in

existing literature by highlighting their underlying assumptions. Both models

were derived from what is often referred to as the ”model of Schaefer-Clark”

(reference to the work of the last author on Mathematical Bioeconomics :

Clark [7]). We show that various variations of this model lead to properties

that can be very different.

Keywords: dynamical system; calculus of variation; infinite horizon; ma-

rine reserve; bioeconomic model

1 Introduction

It is now well known and largely accepted within the scientific community

that the exploitation of halieutics resources has reached a critical thresh-

old and solutions must be found urgently to conserve marine biodiversity –

and indeed the existence of certain species. Beyond the application of quota

policies, other strategies have been proposed such as the creation of marine

reserves. The study of the role of reserves in fishery management has been
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the subject of renewed interest in recent years [2, 5, 8, 10, 11, 14]. The In-

ternational Conference on the Economics of Marine Protected Areas (MPA)

held in July 2000 in Vancouver was one of the starting points in the de-

velopment of this new paradigm: the use of MPAs as an instrument in the

management of fisheries.

In economics literature, Sanchirico and Wilen [18] seem to have been the

first to suggest that MPAs could be beneficial not only from an ecological

but also from an economic point of view. In their dynamic and spatial model

of a Marine Reserve Creation, they analyze whether the transfer of biomass

from the reserve to areas where catch is allowed could create economics profit

from the MPA since its creation could help to improve a depleted biomass

and increase catch outside of the reserve. They call this a double-payoff

because in this case the MPA would increase both biomass and economic

profits from the fishery.

Both theoretical and applied aspects of the subject are well documented

in the literature. From a theoretical point of view, numerous types of models

have been proposed based on differential equations, mixing an inter temporal

dynamic that corresponds to the population growth under consideration with

a spatial distribution of this dynamic over diverse zones [9, 15, 18].

Sanchirico and Wilen construct a model where ”the population struc-

ture is characterized in a manner consistent with modern biological ideas

that stress patchiness, heterogeneity and interconnections among and be-

tween patches” [17]. In this model, independent growth dynamics thus are

associated with different patches.

Another type of model has been used in the literature to account for an

analogue structure [19] where a population develops different characteristics

in sub-zones. In these models, the population of the entire zone under con-

sideration follows a given dynamic evolution and the diverse sub-zones have

dynamics such that by aggregating them together one may rediscover the

global dynamic.

The question that one then must ask is whether these two approaches

may be used interchangeably. Few studies have focused on comparing these

different model types. We would like to demonstrate that the choice between

a patch model and a global model is not a neutral one, and highlight char-
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acteristics of these two models that often are not specified in the literature.

The two models that we will compare are both Clark type (Schaefer,

Gordon,...) [7] whose dynamic is logistic (Verhulst) and therefore widely

used in halieutics dynamics. We use them to study the consequences of

setting up a marine reserve from both an economic (inter temporal revenue)

and a biologic point of view (population stocks).

The first, the patch model, assumes a relative autonomy between reserve

and non-reserve zones. This type of model is fairly widely used. The second

model, known as the global model, assumes for its part a greater interaction

between zones.

The rest of the paper is organized as follows. In Section 3, we introduce

and examine the two models we wish to study. We then compare results

obtained, particularly using numerical simulation, in Section 4. Section 5

concludes and is followed by a series of annexes that present the demonstra-

tion of various results.

2 Two variations on the Clark model

We present two modelizations for a protected area in a given zone. These two

modelizations derive from the well known fishery model studied for instance

by Clark [7] among others.

2.1 The first variation: patches model

2.1.1 The model

We consider a fish population that lives in a zone caracterised by a car-

rying capacity K = 1. We assume that this zone splits in two sub-zones,

with capacity respectively equal to α and 1 − α; we denote the stock of the

corresponding sub-populations by x1 and x2.

These two populations follow two independent evolutions laws and this

is the reason why we use the “patches-concept”. These evolutions are given

by:

dx1

dt
(t) := ẋ1(t) = F1(x1(t))
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dx2

dt
(t) := ẋ2(t) = F2(x2(t)).

The standard reference for the evolutions law is the logistic law:

F1(x1) := r1x1(1−
x1

α
)

F2(x2) := r2x2(1−
x2

1− α
).

But for our purpose it is enough to assume that the Fi are strictly con-

cave, C1 functions defined on [0, α] respectively on [0, 1−α] and the Fi satisfy

Fi(0) = 0, F1(α) = F2(1− α) = 0.

We now assume that some exchange exists between these two patches

and that this can be represented in terms of the density of these populations.

More precisely we assume that the existence of some diffusion between these

two patches can be captured by the following:

λ(
x2

1− α
−

x1

α
)

where λ ≥ 0 represents a diffusion coefficient ( x2

1−α
, x1

α
being the density of the

populations). The value of the diffusion coefficient depends on the location

of the protected area.

From now on, we decide that the first zone with capacity α is a protected

area where no catch is allowed, whereas in the second zone fishing is allowed.

The “normal” situation, i.e. the protected area acts like a source of biomass,

corresponds to the case where the density inside the protected area is bigger

than outside, i.e.
x2

1− α
≤

x1

α
.

The growth of the two sub-populations are governed respectively by the fol-

lowing dynamics:

ẋ1(t) = F1(x1(t)) + λ(t)(x2(t)
1−α

− x1(t)
α

)

ẋ2(t) = F2(x2(t))− λ(t)(x2(t)
1−α

− x1(t)
α

)− h(t)
(1)
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where h(t) is the capture rate at time t.

We note, from the positiveness of λ and of the functions Fi(.), that if the

sytem (1) possesses an equilibrium, it has to be necessarily normal.

As it is generally assumed the catch is proportional to the fishing effort

E, and to the density of the population [4], therefore given by:

h(t) = qE(t)
x2(t)

1− α

where q, the catchability coefficient, represents the fishing death rate when

the density of the population is equal to one. We assume

0 ≤ E(t) ≤ EM q > 0

The catch is sold on a market. In order to simplify we assume a constant

price, p, over time and a constant cost, c, proportional to the effort. Therefore

the revenue at t time is

ph(t)− cE(t) = (pq
x2(t)

1− α
− c)E(t)

We then consider the discounted total revenue on an infinite horizon is

given by

J(E(.), λ(.)) :=

∫
∞

0

e−δt(pq
x2(t)

1− α
− c)E(t) dt (2)

where δ > 0 is an actualisation factor.

We assume the existence of a manager whose goal is the maximisation

of this total revenue. Moreover we assume that this manager can act on

the fishing effort E and on some caracteristics of the reserve (closure, loca-

tion) that are captured by λ. Then the manager faces the following control

problem:

max
E(.), λ(.)

J(E(.), λ(.))

s.t. (1)
0 ≤ E(t) ≤ EM

(3)
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Remark In many papers the states variables stand for the densities of

the populations and not for the amount of the biomass. The link with the

present model is obtained in setting:

X1 =
x1

α
, X2 =

x2

1− α

The two dynamical equations that give the evolution of the populations in

the logistic case, then become:

Ẋ1 = r1X1(1−X1) +
λ
α
(X2 −X1)

Ẋ2 = r2X2(1−X2)−
λ

1−α
(X2 −X1)−QEX2

(4)

with Q = q

1−α
.

This model with patches could be considered as a more general one than the

[1] paper which corresponds to α = 1
2
.

2.1.2 Analysis of the solutions

We will study the previous optimal control problem by the help of the calculus

of variations theory .

From the dynamic (1), we deduce the expression of the effort in terms of the

state variables:

E(t) =
1− α

qx2(t)
(F1(x1(t)) + F2(x2(t))− ẋ1(t)− ẋ2(t))

and then we obtain the new form of the objective. Thus the optimisation

problem becomes:

max
X∈C

∫
∞

0

e−δt(p−
c(1− α)

qx2
)[F1(x1) + F2(x2)− ẋ1 − ẋ2] dt

C being the set of admissible curves:

C = {x(.) = (x1(.), x2(.)) xi(.) ∈ BC1([0,∞[), xi(0) given ,
G(x1, x2)− qEM

x2

1−α
≤ ẋ1 + ẋ2 ≤ G(x1, x2)}

(5)

with G(x1, x2) := F1(x1) + F2(x2) and BC1 stands for the bounded with

bounded derivative functions defined on the interval [0,∞[.
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It is known that on BC1, the first order optimality conditions given by

the Euler-Lagrange equations, apply (see [3]). We suppose that x(.) stands

for an interior solution and then x(.) has to satisfy:

lxi
(x1(t), x2(t))−

d

dt
lẋi
(x1(t), x2(t)) + δlẋi

(x1(t), x2(t)) = 0

l(., .) being the non actualised Lagrangian of the calculus of variations prob-

lem, lxi
(., .) stands for the derivative with respect to xi and lxi

(., .) stands for

the derivative with respect to xi..

The Euler-Lagrange equations becomes then

ẋ1 = x2(
pqx2

c(1−α)
− 1)(F ′

2(x2)− δ) + F1(x1) + F2(x2)

ẋ2 = x2(
pqx2

c(1−α)
− 1)(δ − F ′

1(x1)).
(6)

We first are interested by the non trivial equilibria , (x∗

1, x
∗

2), of (6) i.e. such

that Fi(x
∗

i ) 6= 0, i.e. x∗

1 6= 0, α and x∗

2 6= 0, 1− α. It is easy to establish that

such equilibria have to satisfy (Appendix 1)

F ′

1(x
∗

1) = δ.

We now assume that r1 > δ. Then in the logistic case, from the strict con-

cavity of F1(.), we immediatly deduce the existence of a unique x∗

1 ∈]0, α/2[.

Therefore we obtain the following result whose proof is postponed in Ap-

pendix 1.

Lemma 1 In the logistic case with r1 > δ, there is a unique positive non

trivial solution, (x∗

1, x
∗

2), of the Euler-Lagrange equations (6). This solution

is caracterised by

x∗

1 =
α(r1 − δ)

2r1

and x∗

2 given by

x2[
2r2pq

c(1− α)2
x2
2 − (

pq

c(1− α)
(r2 − δ) +

r2
1− α

)x2 − δ] = α
(r1 − δ)(r1 + δ)

4r1
. (7)
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Clearly x∗

1 ∈]0, α[. It remains to show that x∗

2 ∈ [0, 1 − α]. This can

be done straightforwordly but we prefer to use the following approach. We

recall that if (1) possesses a non-zero equilibrium (x∗

1, x
∗

2) then it is necessarily

normal that is to say
x∗

2

1−α
≤

x∗

1

α
and we first observe that if this last condition

holds then x∗

2 ≤
x∗

1

α
(1− α) ≤ 1− α.

We prove now that this condition holds under conditions on the ratio pq

c
and

on the size of the different zones given by α.

Let us introduce T (.) defined from the left hand member in (7)

T (z) = z[2r2θz
2 − (θ(r2 − δ) + r2)z − δ]

where θ := pq

c
. Then:

T (
x∗

2

1− α
) =

α

1− α

(r1 − δ)(r1 + δ)

4r1
.

As we assume r1 > δ, then T (
x∗

2

1−α
) > 0. From the graph of T (.) we deduce

that the inequality
x∗

2

1− α
≤

x∗

1

α

holds if and only if

T (
x∗

2

1− α
) ≤ T (

x∗

1

α
).

Let us introduce when r1 6= r2

θ0 := (
2r1

r1 − δ
+

r2
δ
)

r1
r1 − r2

. (8)

The following result is detailled in Appendix 2.

Lemma 2

In the logistic case,

1. if r1 > r2, for each θ > θ0 if α satisfies

α(r1 + δ +
r1 − δ

r1
(θδ

r1 − r2
r1

− r2)− 2δ) ≤
r1 − δ

r1
(θδ

r1 − r2
r1

− r2)− 2δ (9)
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then the solution (x∗

1, x
∗

2), of the Euler Lagrange equation (6) given in

Lemma 1, is normal i.e. satisfies:

x∗

2

1− α
≤

x∗

1

α

2. if r1 ≤ r2, (x
∗

1, x
∗

2) is never normal i.e.

x∗

2

1− α
>

x∗

1

α
.

Then it remains to prove that (x∗

1, x
∗

2) is a candidate to the optimisation

problem (3), thus that the constraints are satisfied.

If the conditions in the Lemma 1 and Lemma 2.1 hold, then F1(x
∗

1) >

0 and
x∗

2

1− α
<

x∗

1

α∗
. Therefore to this corresponds a unique coefficient of

diffusion λ∗ > 0.

From (1) we deduce that

E∗ =
1− α

qx∗

2

(F1(x
∗

1) + F2(x
∗

2)) > 0. (10)

Moreover the expression of the total revenue is given by

J∗ = (pq
x∗

2

1− α
− c)

E∗

δ
. (11)

This revenue is positive if the fishery profit is positive at this equilibrium,

that is to say if
x∗

2

1− α
>

c

pq
=

1

θ
.

But this inequality holds because we have

T (
x∗

2

1− α
) > T (

1

θ
) = (1− θ)

r2
θ2

and due to the fact that θ ≥ θ0 > 1, this last term is nonpositive .
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Proposition 1

In the logistic case if r1 > δ the problem (3) possesses at most a non trivial

and positive optimal stationary solution caracterised by

x∗

1 =
α(r1 − δ)

2r1

and x∗

2 given by (7). The corresponding effort, diffusion coefficient and total

revenue are given respectively by (10), (1), (11).

Remarks

1) When α = 1
2
the value of θ0 coincides with the value p̃m given in [1].

2) From the expression of θ0 in (8), we observe that r1 can’t be closed to r2.

If this is not the case, then the value of the dimensionless ratio θ has to be

very high. But this can be unrealistic because the value of θ is given by the

economic environment.

3) From (8 ) with a given value for θ we can precise a bound for r2 expressed

in terms of r1, δ:

r2 ≤
θ − 2r1

r1−δ

θ + r1
δ

r1.

2.2 The second variation: the splitting of a unique

zone

In this second model we start with an unique zone with capacity K that

we normalise to one, K = 1. Let us assume that the population follows a

standard evolution law:

ż(t) = φ(z(t)) (for instance = rz(t)(1 − z))

φ(.) being a C1 concave function defined on [0, 1], with φ(0) = φ(1) = 0 and

φ′(1) < 0. We assume that this zone splits first in a part that is a reserved

area where no fishing is allowed and a complementary part that is open to

harvest. We assume that these two parts have respectively α and 1− α as a

carying capacity.

The main difference with the previous model is that the two populations,
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which stocks are respectively x1 and x2 follow the evolution laws given by:

ẋ1(t) = F (x1(t), x1(t) + x2(t))

ẋ2(t) = F (x2(t), x1(t) + x2(t))

where F (., .) satisfies the standard assumption of regularity with F (x, z) =

0 if and only if x = 0 or z = 1 and where F (.) and φ(.) satisfy

F (x1, x1 + x2) + F (x2, x1 + x2) = φ(x1 + x2).

For instance F can be a logistic function

F (x, z) = rx(1− z) = rx(1− (x1 + x2)).

As in the previous model, there is some diffusion between the two zones which

can be represented by:

λ(
x2

1− α
−

x1

α
).

Then the two populations evolve following the dynamics:

ẋ1(t) = F (x1(t), x1(t) + x2(t)) + λ(
x2(t)

1− α
−

x1(t)

α
)

ẋ2(t) = F (x2(t), x1(t) + x2(t))− λ(
x2(t)

1− α
−

x1(t)

α
).

We want to stress on the fact that this new model is consistant in the sense

that the sum of the two dynamics is exactly the evolution law of the total

population.

Now taking into account the catch in the zone where fishing is allowed,

we derive the final dynamics of the populations

ẋ1(t) = F (x1(t), x1(t) + x2(t)) + λ(x2(t)
1−α

− x1(t)
α

)

ẋ2(t) = F (x2(t), x1(t) + x2(t))− λ(x2(t)
1−α

− x1(t)
α

)− qE x2(t)
1−α

(12)

where E ∈ [0, EM ] stands for the fishing effort and q > 0 is the catchability

coefficient.

In order to compare with the previous model, we assume that a manager

has as an objective to maximise the actualised total revenue as presented
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before. To do so, he has to act on two controls, the fishing effort and the

location of the reserve area given by λ. Therefore the manager faces the

following program of optimisation

max
E(.), λ(.)

∫
∞

0
e−δt(pq x2(t)

1−α
− c)E(t) dt

s.c. (12)
0 ≤ E(t) ≤ EM

(13)

2.2.1 Analysis of the solutions

From the dynamic equations (12) we can derive the expression of the effort

E(t) =
1− α

qx2(t)
(φ(x1(t) + x2(t))− ẋ1(t)− ẋ2(t)) (14)

and then we obtain the equivalent problem to (13) as a calculus of variations

problem:

max
X∈C

∫
∞

0

e−δt(p−
c(1− α)

qx2
)[φ(x1 + x2)− ẋ1 − ẋ2] dt

where C stands for the set of feasible curves defined by:

C = {x(.) = (x1(.), x2(.)) xi(.) ∈ BC1([0,∞[), xi(0) given ,
φ(x1 + x2)− qEM

x2

1−α
≤ ẋ1 + ẋ2 ≤ φ(x1 + x2)}.

We know that in this framework a necessary optimality condition for an

interior solution x(.) is given by the Euler-Lagrange equations that are:

ẋ1 = x2(
pqx2

c(1−α)
− 1)(φ′(x1 + x2)− δ) + φ(x1 + x2)

ẋ2 = x2(
pqx2

c(1−α)
− 1)(δ − φ′(x1 + x2)).

For now, we will stick to the logistic case. The Euler-Lagrange equations are

then:

ẋ1 = x2(
pqx2

c(1−α)
− 1)(r − 2r(x1 + x2)− δ) + r(x1 + x2)(1− (x1 + x2))

ẋ2 = x2(
pqx2

c(1−α)
− 1)(δ − r + 2r(x1 + x2)).

(15)
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In order to derive the non trivial positive equilibria, denoted by (x∗

1, x
∗

2),

we first consider the second equation in (15) with the condition

x∗

1 + x∗

2 =
r − δ

2r
.

This implies as a result

0 = r(x∗

1 + x∗

2)(1− (x∗

1 + x∗

2)) =
(r − δ)(r + δ)

4r
.

A contradiction if r > δ. In the case where r = δ, then we obtain the trivial

solution x∗

1 = x∗

2 = 0.

Then we deduce that an equilibrium has to necessarily satisfy

x∗

2 =
c(1− α)

pq
.

With the help of first equation in (15) we find that either x∗

1 + x∗

2 = 0 or

x∗

1 + x∗

2 = 1.

Finding a non trivial equilibrium implies to exclude the first condition. There-

fore we have proved the following result

Lemma 3 In the logistic case there is a unique non trivial and positive

solution for the Euler-Lagrange solutions (15) given by:

(x∗

1, x
∗

2) = (1−
c(1− α)

pq
,
c(1− α)

pq
).

In order to examine whether this candidate solution of the problem (13)

can be optimal or not, we have to derive the corresponding effort and diffusion

coefficient. From the expression of the effort (14), we obtain φ(x∗

1 + x∗

2) =

φ(1) = 0 that is to say

E∗ = 0.

We also deduce that

λ∗ = 0
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except if θ = 1. Finally at this equilibrium the intertemporal revenue is null

too. We have established the following proposition

Proposition 2

In the logistic case the problem (13) possesses at most a non trivial and

positive stationary solution given by

(x∗

1, x
∗

2) = (1−
c(1− α)

pq
,
c(1− α)

pq
).

The corresponding effort, diffusion coefficient and total revenue are null.

Remarks

1) It is easy to obtain that this equilibrium is normal, i.e.

x∗

1

α
>

x∗

2

1− α

if the fishery is profitable, that is to say if

pq − c > 0.

2) An adaptation of the model given in Gomez et al. [6] to our case of a

no take zone is:

ẋ1 = αr(x1 + x2)(1− (x1 + x2)) + λ( x2

1−α
− x1

α
)

ẋ2 = (1− α)r(x1 + x2)(1− (x1 + x2))− λ( x2

1−α
− x1

α
)− q2E2

x2

1−α
.

(16)

We can get the same results as those given earlier. In Gomez et al. [6], fishing

is allowed in the so called artisanal zone (corresponding to the protected area

in our case) and the objective to be maximised is somewhat different (it takes

into account the revenues of the artisanal and industrial fisheries). Here also

it has been proved that a unique solution exists but with a non null effort

and a non null revenue.
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3 Comparison, Numerical application

In this section we underline the differences between the results we obtained

in the previous sections for both the patches case and the global model.

From their expressions given in the Propositions 1 and Proposition 2, we can

make the following remarks for the equilibria (x∗

1, x
∗

2):

• In the model with patches the first component x∗

1 doesn’t depend ex-

plicitely on the ratio c
pq
, whereas it does in the global model.

• In the global model the second component is given by x∗

2 = c(1−α)
pq

,

whilst the patches model doesn’t possess any equilibrium with such a

component as the second, cf. Appendix 1.

Thus the expressions of the equilibria are different in the two models.

Now we established that the optimal effort and the corresponding total

revenu at (x∗

1, x
∗

2) was null for the global model. This doesn’t seem to be the

case for the patches model, we will later show with simulations that optimal

effort and total revenue are not significantly close to zero.

In order to continue the comparison, let’s arbitrarily fix the parameters

p, q, c, α, δ. Thus the models depend only on the instantaneous growth rates

r1, r2 and r respectively.

If we let r1 = r2 = r, in Lemma 2 we established that the equilibrium (x∗

1, x
∗

2)

was never normal in the patches case, while it is always normal for the global

model (Remark 1 in section 3.2).

Now to compare our models with r1 and r2 only near r, we noted in the

Remark 2 of section 3.1 that this situation wasn’t a realistic one.

Then comparing these two models is not an easy task. Our first conclusion

is: the role of the instantaneous growth rates of the biomasses are crucial to

choose such or such model. An assumption that is not underlined in general.

Now let’s come back to the comparison of the optimal efforts and revenues

by using simulations. The main issue is to determine significant growth rates

that are not equal.

But this choice shouldn’t depend on our particular models with preserving
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areas. It should be the same for a wide class of models. For instance for

models that correspond to a situation where fishing is allowed in the the two

areas ([13]). We consider thus:

ẋ1 = F1(x1) + λ( x2

1−α
− x1

α
)− qEx1

ẋ2 = F2(x2)− λ( x2

1−α
− x1

α
)− qEx2

(17)

and

ẋ1 = F (x1, x1 + x2) + λ( x2

1−α
− x1

α
)− qEx1

ẋ2 = F (x2, x1 + x2)− λ( x2

1−α
− x1

α
)− qEx2

(18)

with the same assumptions as before. In order to compare numerically (17)

and (18) we will face the same issue to determine significant growth rates.

We propose to use this new situation in order to fix values for r1, r2, r. The

new problem we consider now is to maximize the same objective as before

J(E) =

∫
∞

0

(pq(x1 + x2)− c)Ee−δtdt

but with (17) and (18). We observe that (18) corresponds to the classic

Clark model, it is enough to let z = x1 + x2 to obtain that the dynamic is

ż = φ(z)− qEz.

We can assume that a manager has no reason to use one model rather

than another. Then the two models can be considered as equivalent in the

sense that they provide the same optimal effort.

Hence, we propose the following procedure to determine a system of growth

rates: Let’s set an arbitrary choice of values for r1 and r2. From the first

order optimality conditions, given here by the Pontryagin principle, we can

derive the optimal value of the corresponding effort for problem (17). We

hand-over this value in the first order optimality conditions of the second

problem (18) from which we derive the value of the growth rate r.

To follow this procedure we set:

α = .5, δ = .05, c = .15, q = 2., λ = 20

and we obtained for

r1 = 0.4, r2 = 0.05
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that

Ē = .0566 and r = 0.28739.

Let’s now go back to our models with protected areas from where we take

the previous values for the parameters and where we set r1 = .4, r2 = .05

and r = 0.28739 .

Then for the model with patches we found that:

• the optimal effort is E∗ = .0457, and the biomass values are respectively

x∗

1 = .21875, x∗

2 = .0302

and for the global model

• E∗ = 0 et x∗

1 = .875, x∗

2 = .125 .

We observe that the optimal efforts corresponding to the patches case,

E∗ = .0457, and the Clark model (18), Ē = 0.0566, have similar sizes. We

know that the optimal value of the effort in this last model can’t be considered

as null. Therefore we can deduce that in the first model with patches the

effort is not null.

Then the two models have different qualitative behaviour:total revenues and

optimal effort are totally different.

4 Conclusion

In this article, we have shown that different models have been proposed

and used in the literature for the same MPA problematic. We focused on

demonstrating the importance of the hypotheses underlying two types of

models – the patch model and sub-zone model –particularly the crucial role

played by the growth functions (rate and form), and on studying the different

results produced by them.

A manager who wishes to study the role of an MPA in a given zone

must first know if the entire zone is artificially divided or if it can be broken

down into patches (entities with their own dynamics). Without taking this

precaution, and in obtaining the very different results that we have seen, the

manager risks taking erroneous decisions.
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The two preceding models of resource dynamics are adapted to the case

where control instruments are independent of the size of the no take reserve.

If the manager must take size into account in his decisions, the modelling

of the dynamic has to be changed. For instance, it is necessary to consider

a depending of α diffusion coefficient. A justification is given in Appendix

3. In this Appendix, we also underline that this coefficient can be given by

formula

λ(α) = λ0α(1− α)

which is the expression considered by Boncoeur (cf. [4]).

5 Appendix

5.1 Appendix 1

We determine the non trivial equilibria of the Euler-Lagrange equations (6)

ẋ1 = x2(
pqx2

c(1−α)
− 1)(F ′

2(x2)− δ) + F1(x1) + F2(x2)

ẋ2 = x2(
pqx2

c(1−α)
− 1)(δ − F ′

1(x1)).

If we assume that x∗

2 =
c(1−α)

pq
, from the first equation:

F1(x1) + F2(x
∗

2) = 0. (19)

From the assumption of the non triviality of the equilibria, we have that

c 6= 0, α 6= 1, c 6= pq and then F2(x
∗

2) > 0. Therefore we can’t find any

x1 ∈ [0, α] such that (19) holds. Thus there is no non trivial equilibrium

with x∗

2 =
c(1−α)

pq
.

Therefore in order for a non trivial equilibrium to exist it is necessary

that

F ′

1(x
∗

1)) = δ.

In the logistic case it is easy to compute that

x∗

1 =
α(r1 − δ)

2r1
.
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Reporting this value in (6) we get the following equation for x∗

2

x2(
pqx2

c(1− α)
− 1)(F ′

2(x2)− δ) + F2(x2) = −F1(x
∗

1)

which is (7) in the logistic case

x2[
2r2pq

c(1− α)2
x2
2 − (

pq

c(1− α)
(r2 − δ) +

r2
1− α

)x2 − δ] = α
(r1 − δ)(r1 + δ)

4r1
.

The graphes of the functions defined by the left and right hand members

are curves that crosse in a single x∗

2 if r1 ≥ δ. But this last inequality holds

because from our assumption we have

F1(x
∗

1) = α
(r1 − δ)(r1 + δ)

4r1
≥ 0.

This ends the proof of Lemma 1.

5.2 Appendix 2

In order to find conditions for the inequality
x∗

2

1−α
≤

x∗

1

α
to be true, we know

that it is equivalent to consider the inequality T (
x∗

2

1−α
) ≤ T (

x∗

1

α
). This last

inequality becomes

α
1−α

(r1−δ)(r1+δ)
4r1

≤

T (
x∗

1

α
) = r1−δ

2r1
[2r2pq

c
( r1−δ

2r1
)2 − (pq

c
(r2 − δ) + r2)

r1−δ
2r1

− δ]

that is equivalent to

α(r1 + δ) ≤ (1− α)(
r1 − δ

r1
(θδ

r1 − r2
r1

− r2)− 2δ).

1) If r1 > r2 the right hand member has to be positive, this implies the

following condition on θ:

θ > θ0 := (
2r1

r1 − δ
+

r2
δ
)

r1
r1 − r2

.

Now if this condition on θ holds, from the previous inequality we should

deduce (9).

2) If r1 ≤ r2, the right hand member is always negative and therefore

(x∗

1, x
∗

2) can’t be normal.

This ends the proof of Lemma 2.
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5.3 Appendix 3

We consider the case where the manager has the size of the preserved area

as control. We will first prove that the diffusion coefficient has to depend on

this size.

We start with the dynamics and the objective given in the second variation

(§ 3.2). We suppose that the manager has to maximise his objective by using

the fishing effort E and the size of the preserved area that is captured by α.

We always denote by z the stock of the total population and the two sub-

populations stocks by x1 and x2 respectively. Then the densities in the two

regions are d1 =
x1

α
and d2 =

x2

1−α
.

When α = 0 we can only find a single zone and thus x1 = 0 and x2 = z. In

this case, it is natural to set for the densities: d1 = 0 and d2 = z respectively.

Now if α = 1, it is natural to set: d1 = z d2 = 0.

As we have done before, we assume that some diffusion exists between the

two zones and that it is proportional to the difference of the two densities.

Therefore in order to respect our previous remark, we have to set

λ(α)(
x2

1− α
−

x1

α
) (20)

where the diffusion coefficient depends on α. Indeed if α = 0, from d1 = 0

we deduce that λ(0) x2

1−α
= λ(0)z = 0 because in this case we can only find a

single zone, and thus λ(0) = 0. From a similar argument, we deduce that for

α = 1, we have λ(1) = 0. Now for α ∈]0, 1[ the coefficient λ(α) is certainly

not null.

For instance we can let

λ(α) = λ0α(1− α) (21)

and in this case the diffusion is modelised by

λ0α(1− α)(
x2

1− α
−

x1

α
). (22)

This expression is the one proposed by Boncoeur in [4].

Then the problem of the manager becomes in this setting

max
E(.), α

∫
∞

0
e−δt(pq x2(t)

1−α
− c)E(t) dt

s.c. (12)
(23)
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where the diffusion coefficient in (12) is given by (21).

The solution of this problem is straightforward using the Pontryagin maxi-

mum principle. We won’t mention it in this paper.
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