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This note revisits a paper from Velan and Florian [Velan and Florian(2002)] dealing with the entropy con-
dition in traffic flow models. It aims to clarify the application of this condition for non-differentiable funda-
mental diagrams and then to correct some misunderstandings that appear in the above-mentioned paper.
Notably, this note clearly exhibits that the non-smoothness of the fundamental diagram does not change
the properties of the LWR solutions: (i) existence of a unique entropy solution and (ii) non-uniqueness of
weak solutions. These precisions are important because piecewise linear fundamental diagrams appear to
accurately fit with experimental observations and cannot be disproved on an alleged mathematical basis.

1. Introduction
[Velan and Florian(2002)] propose a complete description of the entropy condition for the solutions
of the LWR model. This condition aims to select a unique among all the weak solutions. Entropy
conditions were first studied independently by [Oleinik(1957)] and [Lax(1957)] and their existence
and uniqueness proven by [Kružkov(1970)]. Several authors have then reformulated this condition to
emphasize its physical meaning. For instance, [Ansorge(1990)] proved that the entropy condition is
equivalent to what he calls the driver’s ride impulse, i.e. drivers either (i) tend to instantaneously decel-
erate when crossing a discontinuity corresponding to an increase in the density profile or (ii) smooth
their speed increase in the reverse case. It is worth noticing that this equivalence has only been demon-
strated for a strictly concave and continuously differentiable fundamental diagram. [Lebacque(1996)]
shows that the entropy condition can be rephrased by stating that the flow should always be locally
maximized.

A central question in [Velan and Florian(2002)] is the influence of a non differentiable fun-
damental diagram on the solutions of the LWR model. This question is crucial because
experimental observations put credit on piecewise linear fundamental diagrams (PLFD)
[Leclercq(2005), Chiabaut et al.(2009)Chiabaut, Buisson, and Leclercq] and especially on triangular
ones. In [Velan and Florian(2002)] it is claimed that, with the latter diagrams, the solution of the LWR
model is unique but non-entropic. This note aims to invalidate this result. Considering a triangular
fundamental diagram, we will demonstrate (i) that the weak solutions of the LWR are not unique and
(ii) that the solution which is usually retained (and claimed to be unique) is in fact the unique weak
entropy solution in the sense of Kruskov [Kružkov(1970)]. This means that PLFD cannot be disproved
on an alleged mathematical basis, since contrary to what is claimed in [Velan and Florian(2002)], the
entropy criterion is indeed respected by its solutions.

2. Entropy solutions for Lipschitz-continuous fluxes
For simplicity, we restrict ourselves to the case where Q depends only on k, and not on the variables
x and t (this is also the case in [Velan and Florian(2002), Section 6]). Consider the LWR model:

∂tk + ∂x(Q(k(x, t)) = 0,

k(x,0) = k0(x), x∈R,
(1)
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under the following assumptions:

Q is a Lipschitz-continuous function from R to R, (2a)
k0 ∈L∞(R) (2b)

Note that the assumption (2a) is satisfied by any piecewise linear continuous flux function, and
thus by the PLFD. The proper mathematical formulation of this problem, along with the existence
and uniqueness theory are now wellknown, see e.g. [Godlewski and Raviart(1991), Smoller(1982),
Dafermos(2000), Serre(1999), Bressan(2000)]. In particular, it is wellknown (e.g. [Dafermos(2000),
Theorem 6.2.1 p. 86]) that the system (2) admits a unique entropy weak solution, which is defined as
follows.

Definition 2.1 (Entropy weak solution)Under assumptions (2),
• a weak solution to (1) is a function k ∈L∞(R×R+) such that

∫

R+

∫

R

(k∂tϕ +Q(k)∂xϕ)dxdt+

∫

R

k0(x)ϕ(x,0)dx= 0,∀ϕ∈C1
c
(R×R,R). (3)

• an entropy weak solution to (1) is a function k ∈ L∞(R × R+) such that, for any convex
function η ∈C2(R) (the entropy) and any associated entropy flux, i.e. any function Φ such that Φ′ =
Q′η′ a.e. (that is almost everywhere in the sense of the Lebesgue measure).

∫

R+

∫

R

(η(k)∂tϕ +Φ(k)∂xϕ)dxdt+

∫

R

η(k0(x))ϕ(x,0)dx≥ 0,∀ϕ∈C1
c
(R×R+,R+). (4)

Let us now consider the so-called Riemann problem associated to (1), that is Problem (1) with the
following initial condition:

k0 =

{

kℓ for x < 0,

kr for x > 0,
with (kℓ, kr)∈R

2. (5)

Let σ ∈R, and let k̃ ∈L∞(R×R+) be the function defined a.e. by:

k̃(x, t) =

{

kℓ for x < σt,

kr for x > σt.
(6)

We then give the celebrated Oleinik condition [Oleinik(1957)] for the characterization of the entropy
weak solution, which gives a handy way [Dafermos(1972)] to check whether a discontinuous solution is
entropic or not. We shall use this wellknown condition in Section 3 to construct the entropy solutions
for the Riemann problem in the case of the piecewise linear diagram flux function.

Corollary 2.1Under assumptions (2), let kℓ and kr ∈ R, kℓ 6= kr. Let I(kℓ, kr) = {θkℓ + (1− θ)kr, θ ∈
[0,1]} be the interval with end points kℓ and kr. Let C be the affine function defined by k ∈ I(kℓ, kr) 7→

C(k) = Q(kℓ) + σ(k− kℓ), with σ =
Q(kℓ)−Q(kr)

kℓ − kr

(see Figure 1). Then the function k̃ defined by (6)

is the unique weak entropy solution to (1), (5) if and only if the following condition is satisfied:

∀k ∈ I(kℓ, kr), (kℓ − kr) (Q(k)−C(k))≤ 0. (7)

which can also be written:
{

Q(k)≥C(k), ∀k ∈ [kℓ, kr] if kℓ < kr,

Q(k)≤C(k), ∀k ∈ [kℓ, kr] if kℓ > kr.
(8)
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Figure 1 Admissible discontinuities in an entropy weak solution: if kℓ < kr the flux is above its chord; if kℓ > kr, the
flux is under its chord.

Another well-known condition is the Lax entropy condition [Lax(1957), Lax(1973)], which states
that if the function Q is continuously differentiable, then the function k̃ is an entropy weak condition
if and only if

Q′(kℓ) > σ > Q′(kr).

An important point here is that this condition is no longer valid if Q is not continuously differentiable.
Therefore, the Lax condition does not hold in the case of a piecewise linear diagram. Note that if
the flux is differentiable and concave or convex, then the Lax condition and the Oleinik condition are
equivalent.

We stated the Oleinik and Lax conditions for a solution consisting of two constant states separated
by one line of discontinuity. Of course, the same conditions hold for a weak solution to be an entropy
weak solution if the considered weak solution to the Riemann problem consists of several constant
states separated by discontinuities and satisfies the Rankine Hugoniot for each discontinuity. In fact,
a usual way to solve the Riemann problem (1),(5) is to first construct weak solutions which are self-
similar (that is such that if k(x1, t1) = k(x2, t2) then x1

t1
= x2

t2
), and which consist of constant states

that are separated either by discontinuities or by regular zones (usually refered to as rarefaction waves
or fans). For each discontinuity, one then checks whether the entropy condition is satisfied or not.
Discontinuities may be either shocks, in this case the entropy inequality is strict, or contact discon-
tinuities, in which case the entropy inequality is an equality. If the entropy condition is satisfied, we
are assured by the uniqueness result that this piecewise regular or constant solution thus constructed
is the unique entropy weak condition to (1),(5). If it is not,then one should construct another weak
solution of this type: again by the existence, we are assured that there exists at least one.

3. Weak and entropy weak solutions of the Riemann problem for the
piecewise linear diagram

Let kc and km be the so-called critical and maximum densities, 0 < kc < km. Let u and w ∈ R+ be
such that ukc = w(kc −km). A linear piecewise diagram Q is a function from [0, km] to R+ defined by:

Q(k) =

{

uk for 0≤ k ≤ kc,

w(km − k) for kc ≤ k ≤ km.
(9)

Let us give the weak and entropy weak solutions of the Riemann problem for this flux. Consider first
the (easy) cases kℓ < kr ≤ kc (or kr < kℓ ≤ kc) and kc ≤ kℓ < kr (or kc ≤ kr < kℓ). In both cases, the
values kℓ and kr of the initial data lie on one side of kc, so that solving the Riemann problem amounts
to solving a linear transport equation, namely kt +(uk)x = 0 if kℓ < kr ≤ kc and kt +(w(km −k))x = 0
if kc ≤ kℓ < kr. For both cases, the weak solution is unique: it is in fact the entropy weak solution
and all entropy inequalities are equalities. These cases are described in Figure 2. For clarity, give the
solutions in both (x, t) and (t, x) referentials.

Next we turn to the case kℓ < kc < kr, depicted in Figure 3. The weak solution with constant states
kℓ and kr is also an entropy weak solution since it satisfies the Oleinik condition (7): the chord is
under the flux function. Hence this is a case of uniqueness of the weak solution.
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Figure 2 Weak and entropy weak solution to the PLD Riemann problem: the “linear” cases
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Figure 3 Weak and entropy weak solution to the PLD Riemann problem: case of one weak (and entropy weak)
solution

Finally, we consider the case kr < kc < kℓ in Figure 4. The weak solution with constant states kℓ

and kr is no longer an entropy weak solution since it does not satisfy the Oleinik condition (7) (the
chord is under the flux function, whereas it should be above). However, one obtains an entropy weak
function by considering an intermediate constant state kc. Both discontinuities kr|kc and kc|kℓ satisfy
the Oleinik condition (the chord is actually the flux function itself), so that the piecewise constant
function depicted on the bottom diagram of Figure 4 is the unique entropy weak solution. Note that
this entropy weak solution is the one usually retained in traffic flow.

4. Discussion
This note clearly shows that the non-smoothness of the fundamental diagram does not change the
properties of the LWR solutions: (i) there exists a unique entropy weak solution of the LWR model
and (ii) weak solutions are not unique when kℓ > kc > kr. However, it is important to note that the
driver’s ride impulse rule exhibited by Ansorge [Ansorge(1990)] to identify entropic solutions does not
hold for non-smooth fundamental diagrams. As Velan and Florian [Velan and Florian(2002)] based
their proof in section 6 on this argument, this explains the misunderstandings (see p. 443, column 2,
line 8 ; p. 443, column 2, line 41, p. 444, column 2, line 1). Indeed, the Lax condition which was used
in [Ansorge(1990)] is not valid for non differentiable functions, and therefore we used here the Oleinik
condition to find all entropy weak solutions of the LPD Riemann problem.
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Figure 4 Weak and entropy weak solution to the PLD Riemann problem: case of two weak solutions (and one
entropy weak solution)

Thus, non-smooth fundamental diagrams and especially piecewise linear ones provide solutions that
perfectly respect the entropy condition. Such diagrams cannot then be disproved on a mathematical
basis. In fact, the main difference between piecewise linear fundamental diagrams and smoother ones
is platoon behavior during acceleration phase. In the first case, platoons remain stable and successive
vehicles accelerate at the same rate. In the latter case, some platoon dispersion is observed, i.e. front
vehicles drive faster than middle ones. Experimental evidences appear to favor the first situation (see
for example the NGSIM dataset) but this question mainly remains open in the traffic flow community.
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