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We give an explicit bound for the Wasserstein distance with quadratic cost between the solutions of Boltzmann's and Landau's equations in the case of soft and Coulomb potentials. This gives an explicit rate of convergence for the grazing collisions limit. Our result is local in time for very soft and Coulomb potentials and global in time for moderately soft potentials.

Introduction and main result

1.1. The Boltzmann equation. If we denote by f t (v) the density of particles which move with velocity v ∈ R 3 at time t ≥ 0 in a spatially homogeneous dilute gas, then, under some assumptions, f solves the Boltzmann equation

∂ t f t (v) = R 3 dv * S 2 dσB(|v -v * |, θ) f t (v )f t (v * ) -f t (v)f t (v * ) , (1.1)
where the pre-collisional velocities are given by

v = v + v * 2 + |v -v * | 2 σ, v * = v + v * 2 - |v -v * | 2 σ, (1.2)
and θ is the so-called deviation angle defined by cos θ = (v-v * ) |v-v * | .σ. The function θ) is called the collision kernel and depends on the nature of the interactions between particles.

B = B(|v -v * |, θ) = B(|v -v * |,
Let us interpret this equation: for each v ∈ R 3 , new particles with velocity v appear due to a collision between two particles with velocities v and v * , at rate B(|v -v * |, θ), while particles with velocity v disappear because they collide with another particle with velocity v * , at rate B(|v -v * |, θ). See Cercignani [START_REF] Cercignani | The Boltzmann equation and its applications[END_REF], Desvillettes [START_REF] Desvillettes | Boltzmann's kernel and the spatially homogeneous Boltzmann equation. Fluid dynamic processes with inelastic interactions at the molecular scale (Torino[END_REF], Villani [START_REF] Villani | A review of mathematical topics in collisional kinetic theory[END_REF] and Alexandre [START_REF] Alexandre | A Review on Boltzmann Equation with Singular Kernels[END_REF] for much more details.

Since the collisions are assumed to be elastic, conservation of mass, momentum and kinetic energy hold at least formally for solutions to (1.1) and we will assume without loss of generality that R 3 f 0 (v)dv = 1.

We will first assume that the collision kernel B has the following form

B(|v -v * |, θ) sin θ = |v -v * | γ β(θ), (A1(γ))
where β : (0, π] → [0, ∞) is a function and γ ∈ R. We consider the case of particles which interact through repulsive forces following an inverse power law, which means that two particles apart from a distance r exert on each other a force proportional to 1/r s , with s ∈ (2, ∞). In this case, we have

β(θ) 0 ∼ cstθ -1-ν with ν = 2 s -1
∈ (0, 2), and γ = s -5 s -1 ∈ (-3, 1). (1.3) One classically names hard potentials the case where γ ∈ (0, 1) (i.e. s > 5), Maxwellian molecules the case where γ = 0 (i.e. s = 5), moderately soft potentials the case where γ ∈ (-1, 0) (i.e. s ∈ (3, 5)), very soft potentials the case where γ ∈ (-3, -1] (i.e. s ∈ [START_REF] Alexandre | On the Boltzmann equation for long-range interactions[END_REF][START_REF] Alexandre | A Review on Boltzmann Equation with Singular Kernels[END_REF]). We will study in this paper all soft potentials.

In all these cases, we have π 0 β(θ)dθ = +∞, which means that there is an infinite number of grazing collisions (collisions with a very small deviation) for each particle during any time interval. We will consider the Boltzmann equation without cutoff where we assume π 0 θ 2 β(θ)dθ = 4 π , (A2) which corresponds to the real physical situation. The classical assumption is only π 0 θ 2 β(θ)dθ < ∞ but we can assume without loss of generality that it is equal to 4 π (it suffices to make a change of time).

In the case of soft potentials, we will suppose that for some ν ∈ (0, 2) and 0 < c 1 < c 2 , c 1 θ -1-ν ≤ β(θ) ≤ c 2 θ -1-ν for all θ ∈ (0, π]. (A3(ν))

In order to focus on grazing collisions for soft potentials, we also set, for 0 < ≤ π,

B (|v -v * |, θ) sin θ = |v -v * | γ β (θ) with β (θ) = π 3 3 β πθ 1 |θ|< . (1.4) 
Observe that β is concentrated on small deviation angles, but for all ∈ (0, π),

π 0 θ 2 β (θ)dθ = 4 π . (1.5)
When the particles exert on each other a force proportional to 1/r 2 , we talk about Coulomb potential. As explained in Villani [START_REF] Villani | On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations[END_REF]Section 7], the Boltzmann equation does not make sense in this case because grazing collisions become preponderant over all other collisions. To treat the Coulomb case, we will consider the following collision kernel

B (|v -v * |, θ) sin θ = (|v -v * | + h ) -3 β (θ), (AC)
where ∈ (0, 1), h ∈ (0, 1) decreases to 0 as tends to 0 and for θ ∈ (0, π],

β (θ) = c log 1 cos θ/2 sin 3 θ/2 1 ≤θ≤π/2 , (1.6)
where c is such that (1.5) is satisfied. We can compute explicitly c and we get c = 4 π log 1 2 sin 2 /2 + 4 cos /2 sin /2 + 8 log

1 √ 2 sin /2 -π 2 /2 -2π
, which tends to 1 2π as → 0. We thus take the same collision kernel as in Villani [START_REF] Villani | On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations[END_REF]Section 7] with two small modifications. We add h in the velocity part only to get easily existence and uniqueness of solutions to (1.1). Indeed, we do not need it for the calculus of the rate of convergence in Theorem 1.2 (observe that we only ask to h to decrease to 0 without asking any rate for this convergence). We use c to get (1.5) for our convenience, but it does not change the nature of the cross section since c is close to 1 2π when is small. Since we have (1.5) for each > 0 and since π 0 θ 4 β (θ)dθ ≤ C log 1/ → 0, this cross section indeed concentrates on grazing collisions.

1.2. The Landau equation. We consider the spatially homogeneous Landau equation in dimension 3 for soft and Coulomb potentials. This equation of kinetic physics, also called Fokker-Planck-Landau equation, has been derived from the Boltzmann equation by Landau in 1936 when the grazing collisions prevail in the gas. It describes the density g t (v) of particles having the velocity v ∈ R 3 at time t ≥ 0:

∂ t g t (v) = 1 2 3 i,j=1 ∂ i R 3 l ij (v -v * ) g t (v * )∂ j g t (v) -g t (v)∂ j g t (v * ) dv * , (1.7)
where l(z) is a symmetric nonnegative 3 × 3 matrix for each z ∈ R 3 , depending on a parameter γ ∈ [-3, 0), defined by l ij (z) = |z| γ (|z| 2 δ ij -z i z j ). (1.8) As for the Boltzmann equation, we can observe that the solutions to (1.7) conserve at least formally the mass, the momentum and the kinetic energy and we assume without loss of generality that R3 g 0 (v)dv = 1. We refer to Villani [START_REF] Villani | On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations[END_REF][START_REF] Villani | A review of mathematical topics in collisional kinetic theory[END_REF] for more details on this equation, especially its physical meaning and its derivation from the Boltzmann equation. 1.3. Notation. We denote by C 2 b (R 3 ) the set of real bounded functions which are in C 2 (R 3 ) with first and second derivatives bounded and by L p (R 3 ) the space of measurable functions f with ||f || L p := ( R 3 |f (v)| p dv) 1/p < +∞. For k ≥ 0, we denote by P k (R 3 ) the set of probability measures on R 3 admitting a moment of order k (i.e. such that m k (f ) := R 3 |v| k f (dv) < ∞) and for α ∈ (-3, 0], we introduce the space J α (R 3 ) of probability measures f on R 3 such that J α (f ) := sup

v∈R 3 R 3 |v -v * | α f (dv * ) < ∞. (1.9)
For any T > 0, we finally denote by L ∞ ([0, T ], P 2 (R 3 )), L ∞ ([0, T ], L p (R 3 )), L 1 ([0, T ], J α (R 3 )) and L 1 ([0, T ], L p (R 3 )) the set of measurable families (f t ) t∈[0,T ] of probability measures on R 3 with sup [0,T ] m 2 (f t ) < +∞, sup [0,T ] ||f t || L p < +∞, T 0 J α (f t )dt < +∞ and T 0 ||f t || L p dt < +∞ respectively. We finally denote the entropy of a nonnegative function f ∈ L 1 (R 3 ) by

H(f ) := R 3 f (v) log f (v) dv.
In this article, we will use the Wasserstein distance with quadratic cost for our results of convergence: if f, g ∈ P 2 (R 3 ),

W 2 (f, g) = inf E[|U -V | 2 ] 1/2 , U ∼ f, V ∼ g ,
where the infimum is taken over all R 3 -valued random variables U with law f and V with law g. It is known that the infimum is reached and more precisely if we fix U ∼ f , then there exists

V ∼ g such that W 2 2 (f, g) = E[|U -V | 2 ]
. See e.g. Villani [START_REF] Villani | Topics in optimal transportation[END_REF] for many details on the subject.

1.4. The main results. We first give an explicit rate of convergence for the asymptotic of grazing collisions for soft potentials. Observe that the existence and the uniqueness of solutions to (1.1) and (1.7) that we state in the following result are direct consequences of the papers of Fournier-Mouhot [START_REF] Fournier | On the well-posedness of the spatially homogeneous Boltzmann equation with a moderate angular singularity[END_REF] and Fournier-Guérin [START_REF] Fournier | On the uniqueness for the spatially homogeneous Boltzmann equation with a strong angular singularity[END_REF]- [START_REF] Fournier | Well-posedness of the spatially homogeneous Landau equation for soft potentials[END_REF]. The precise notion of weak solutions that we use is given in the next section.

Theorem 1.1. Let γ ∈ (-3, 0), ν ∈ (0, 2) and B be a collision kernel which satisfies (A1(γ)-A2-A3(ν)). For ∈ (0, π], we consider B as in (1.4). (i) If γ ∈ (-1, 0) and ν ∈ (-γ, 1), let f 0 ∈ P p+2 (R 3 ) for some p > max(5, γ 2 /(ν + γ)) such that H(f 0 ) < ∞. Then there exists a unique weak solution (g t ) t∈[0,∞) to (1.7) with g 0 = f 0 , and for any ∈ (0, π], there exists a unique weak solution (f t ) t∈[0,∞) to (1.1) with collision kernel B and initial condition f 0 = f 0 . Moreover, for any T > 0 and ∈ (0, 1), sup

[0,T ] W 2 (f t , g t ) ≤ C p 2p+3 ,
where C is a constant depending on T, p, γ, f 0 . (ii) If γ ∈ (-3, 0), let f 0 ∈ P p+2 (R 3 ) for some p ≥ 5 such that f 0 ∈ L q (R 3 ) for some q > 3 3+γ . Then there exists T * = T * (q, ||f 0 || L q ) > 0 such that there exists a unique weak solution (g t ) t∈[0,T * ] to (1.7) with g 0 = f 0 , and for any ∈ (0, π], there exists a unique weak solution (f t ) t∈[0,T * ] to (1.1) with collision kernel B and initial condition f 0 = f 0 . Moreover, for any ∈ (0, 1),

sup [0,T * ] W 2 (f t , g t ) ≤ p 2p+3 ,
where C is a constant depending on p, q, γ, f 0 .

Point (i) applies to the case of moderately soft potentials (s ∈ (3, 5)) and (ii) applies to the case of very soft potentials (s ∈ [START_REF] Alexandre | On the Boltzmann equation for long-range interactions[END_REF][START_REF] Alexandre | A Review on Boltzmann Equation with Singular Kernels[END_REF]). The proof of this result is based on a more general inequality, see Theorem 3.1.

We now treat the case of Coulomb potential. The existence and the uniqueness of solutions to (1.1) and (1.7) stated below are direct consequences of the papers of Fournier-Guérin [START_REF] Fournier | On the uniqueness for the spatially homogeneous Boltzmann equation with a strong angular singularity[END_REF] for (1.1) and Arsen'ev-Peskov [START_REF] Arsen'ev | The existence of a generalized solution of Landau's equation[END_REF] and Fournier [START_REF] Fournier | Uniqueness of bounded solutions for the homogeneous Landau equation with a Coulomb potential[END_REF] for (1.7).

Theorem 1.2. Let γ = -3, B be given by (AC) and let f 0 ∈ P p (R 3 ) ∩ L ∞ (R 3 ) for some p ≥ 7. Then there exists T * = T * (||f 0 || L ∞ ) such that there exists a unique weak solution (g t ) t∈[0,T * ] to (1.7) with g 0 = f 0 , and for any ∈ (0, 1), there exists a unique weak solution (f t ) t∈[0,T * ] to (1.1) with collision kernel B and initial condition f 0 = f 0 . Moreover, for any ∈ (0, 1),

sup [0,T * ] W 2 (f t , g t ) ≤ C h a + 1 log 1 a ,
where C and a > 0 depend on p and f 0 .

The constant a can be made explicit from the proof. We have two error terms. The first one (h a ) comes from the fact that we introduce a parameter in the collision kernel in order to get easily existence and uniqueness of solutions to (1.1). The second one

1 log 1 a
is the true rate of convergence that we get for the asymptotic of grazing collisions in the Coulomb case. These two terms are not linked, so that assuming existence and uniqueness for (1.1), we could take h = 0 (which still makes our proofs valid). Anyway, since we allow h to decrease to 0 as fast as one wants, we believe that this is not really a limitation. 1.5. Comments and main difficulties. It was already known that in the limit of grazing collisions, the solution to Boltzmann's equation converges to the solution of the Landau equation. To be more precise, Degond and Lucquin-Desreux [START_REF] Degond | The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case[END_REF] and Desvillettes [START_REF] Desvillettes | On asymptotics of the Boltzmann equation when the collisions become grazing[END_REF] have shown the convergence of the operators (not of the solutions) and Villani [START_REF] Villani | On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations[END_REF] has shown some compactness results and the convergence of subsequences. The uniqueness results of Fournier-Guérin [START_REF] Fournier | On the uniqueness for the spatially homogeneous Boltzmann equation with a strong angular singularity[END_REF] and Fournier [START_REF] Fournier | Uniqueness of bounded solutions for the homogeneous Landau equation with a Coulomb potential[END_REF] show the true convergence (under some more restrictive assumptions). In this article, we give an explicite rate for this convergence and we thus justify the fact that the Landau equation is a good approximation of the Boltzmann equation in the limit of grazing collisions.

In all cases (soft or Coulomb potentials), we expect to get a bound for W 2 (f t , g t ) of order π 0 θ 4 β (θ)dθ as for the Kac equation (see [START_REF] Fournier | Asymptotic of grazing collisions and particle approximation for the Kac equation without cutoff[END_REF]). For soft potentials, the rate of convergence that we get is 1/2-(if f 0 is nice) instead of . For the Coulomb potential (which is the only case which has a real physical interest), we get a rate of order 1 log 1 a with a > 0 very small (if f 0 is nice) instead of 1 log 1 . This last case is very complicated because of the huge singularity, and there may be underlying reasons for the slow convergence.

The results are local in time, except for moderately soft potentials, but this was expected since the uniqueness results for the Boltzmann and Landau equations are also local in time.

To our knowledge, the present paper is the first, with the one of He [START_REF] He | Asymptotic analysis of the spatially homogeneous Boltzmann equation I: grazing collisions limit[END_REF], which states an explicit rate of convergence. He obtains a better rate ( instead of 1/2- for soft potentials) but considers much more regular solutions (lying in P p (R 3 ) ∩ H N l (R 3 ) for some N ≥ 6, l > 0 and p which depends on N ). Furthermore, for the Coulomb case, He uses a cross section which does not seem to correspond to the physical situation (it resembles more at the case of soft potentials).

Our result has two main interests. A physical one, since it gives a justification for the Landau equation, and a numerical one. Indeed, in a recent paper about the Kac equation [START_REF] Fournier | Asymptotic of grazing collisions and particle approximation for the Kac equation without cutoff[END_REF], using the same kind of result for grazing collisions, we have shown numerically and theoretically that it is much more efficient to replace small collisions (which cannot be simulated) by a Landau-type term than to neglect them. Theorem 1.1 shows that this should also be the case for the Boltzmann equation for soft potentials.

Our proofs use probabilistic methods. The first who used probabilistic methods to study a Boltzmann-type equation (the Kac equation) is McKean [START_REF] Mckean | Entropy is the only increasing functional of Kac's one-dimensional caricature of a Maxwellian gas[END_REF][START_REF] Mckean | Speed of approach to equilibrium for Kac's caricature of a Maxwellian gas[END_REF]. He was investigating the convergence to equilibrium and he proposed some probabilistic representation of Wild's sums, using some tools now known as the McKean graphs. The present article is strongly inspired by Tanaka [START_REF] Tanaka | An inequality for a functional of probability distributions and its application to Kac's one-dimensional model of a Maxwellian gas[END_REF]. He proved that the Wasserstein distance with quadratic cost between two solutions of Kac's equation is non-increasing. He extended the same ideas in [START_REF] Tanaka | Probabilistic treatment of the Boltzmann equation of Maxwellian molecules[END_REF] to the Boltzmann equation for Maxwell molecules. His study was based on the use of some nonlinear stochastic processes related to the Kac and Boltzmann equations. The same kind of ideas is also used in Desvillettes-Graham-Méléard [START_REF] Desvillettes | Probabilistic interpretation and numerical approximation of a Kac equation without cutoff[END_REF].

In this article, we will also use a result of Zaitsev [START_REF] Zaitsev | Estimates for the strong approximation in multidimensional central limit theorem[END_REF] in order to obtain a bound for the Wasserstein distance between a compensated Poisson integral and a Gaussian random variable. Such an idea comes from the paper of Fournier [START_REF] Fournier | Simulation and approximation of Lévy-driven stochastic differential equations[END_REF] about the approximation of Lévy-driven stochastic differential equations in one dimension, see also [START_REF] Fournier | Asymptotic of grazing collisions and particle approximation for the Kac equation without cutoff[END_REF]. Since we work here in dimension 3, such a result is much more difficult to obtain.

If we compare the present work to our similar result for the Kac equation, another difficulty is the fact that we treat the case of soft and Coulomb potentials (γ ∈ [-3, 0)) instead of the Maxwell case (γ = 0) where the velocity part of the collision kernel is constant. These reasons explain why we are not able to obtain an optimal rate of convergence. 1.6. Plan of the paper. In the next section, we precise the notion of weak solutions that we shall use, we give well-posedness results and some properties of the solutions to Boltzmann's and Landau's equations. In Section 3, we give a general result about the Wasserstein distance between solutions of Boltzmann's and Landau's equations for soft potentials and we deduce Theorem 1.1. In Section 4 we give a probabilistic interpretation of the equations (1.1) and (1.7). Section 5 is devoted to the proof of our general result for soft potentials. In Section 6, we study the Coulomb case. We end the paper with an appendix where we give a result about the distance between a compensated Poisson integral and a centered Gaussian law with the same variance, a result about the ellipticity of the diffusion matrix l (recall (1.8)), a generalized Grönwall Lemma and another technical result .

Weak solutions

2.1. Preliminary observations. 2.1.1. Soft potentials. We consider a collision kernel which satisfies (A1(γ)-A2-A3(ν)) and we set, for θ ∈ (0, π],

H(θ) := π θ β(x)dx and G(z) := H -1 (z). (2.1)
The function H is a continuous decreasing bijection from (0, π] into [0, +∞) and G : [0, +∞) → (0, π] is its inverse function. By Fournier-Guérin [14, Lemma 1.1, (i)], Assumption (A3(ν)) implies that there exists κ 1 > 0 such that for all

x, y ∈ R + , ∞ 0 G(z/x) -G(z/y) 2 dz ≤ κ 1 (x -y) 2 x + y . (A4)
Lemma 2.1. For ∈ (0, π], we consider β as in (1.4), and we set for θ ∈ (0, ]

H (θ) := θ β (x)dx and G (z) := H -1 (z).
The function H is a continuous decreasing bijection from (0, ] into [0, +∞) and G : [0, +∞) → (0, ] is its inverse function. Then for all ∈ (0, π], G satisfies (A4) with the same κ 1 > 0 as G.

Proof. Observing that H (θ) = π 2 2 H( πθ ) and G (z) = π G( 2 z
π 2 ), we have, for all x, y > 0 and all ∈ (0, π],

∞ 0 G z x ) -G z y 2 dz = ∞ 0 2 π 2 G 2 z π 2 x ) -G 2 z π 2 y 2 dz = ∞ 0 G u x ) -G u y 2 du.
That concludes the proof.

To deal with soft potentials, we will use that for α ∈ (-3, 0) and for q ∈ (3/(3 + α), ∞], there exists a constant C α,q such that for any h ∈ P(R 3 ) ∩ L q (R 3 ),

J α (h) = sup v∈R 3 R 3 h(v * )|v -v * | α dv * (2.2) ≤ sup v∈R 3 |v * -v|<1 h(v * )|v -v * | α dv * + sup v∈R 3 |v * -v|≥1 h(v * )dv * ≤ C α,q ||h|| L q (R 3 ) + 1,
where

C α,q = |v * |≤1 |v * | αq/(q-1) dv * (q-1)/q < ∞,
since by assumption αq/(q -1) > -3. This computation will be useful in many proofs of this article.

2.1.2. Coulomb potential. We consider the collision kernel B given by (AC) and we set, for ∈ (0, 1) and θ ∈ [ , π/2],

H (θ) := π/2 θ β (x)dx and G (z) := H -1 (z). (2.3)
The function H is a continuous decreasing bijection from [ , π/2] into [0, H ( )] and we extend its inverse function

G : [0, H ( )] → [ , π/2] on [0, ∞) by setting G (z) = 0 for z > H ( ).
Lemma 2.2. There exists κ 2 > 0 such that for all x, y ∈ R + , for all ∈ (0, 1),

∞ 0 G (z/x) -G (z/y) 2 dz ≤ κ 2 (x -y) 2 x + y + max(x, y) log 1 log max(x, y) min(x, y) . (A5)
Proof. We have, for θ ∈ [ , π/2] and z ∈ [0, ∞),

H (θ) = c log 1 (sin -2 θ 2 -2) and G (z) = 2 arcsin log 1 c z + 2 -1 2 1 {z<H ( )} .
We consider 0 < x < y. We have

∞ 0 G (z/x) -G (z/y) 2 dz = xH ( ) 0 G (z/x) -G (z/y) 2 dz + yH ( ) xH ( ) G 2 (z/y)dz =: A + B.
Using that for any a, b > 2,

arcsin 1 √ a -arcsin 1 √ b 2 ≤ 2 1 √ a - 1 √ b 2 = 2 b -a √ ab( √ a + √ b) 2 ≤ 2 (b -a) 2 ab(a + b) ,
and setting K := log 1 c , we have, recalling that 0 < x < y,

A ≤ C x K sin 2 2 0 K 2 1 x - 1 y 2 z 2 dz z x K + 1 z y K + 1 z x K + z y K + 1 ≤ C (x -y) 2 y K 2 x K sin 2 2 0 z 2 dz zK + x 2 zK + y ≤ C (x -y) 2 x + y K 2 x K sin 2 2 0 z 2 dz zK + x 3 ≤ C (x -y) 2 x + y x K 0 z 2 K 2 dz x 3 + x K sin 2 2 x K dz zK ≤ C (x -y) 2 x + y 1 K + log 1 sin 2 2 K ≤ C (x -y) 2 x + y .
We finally used that K ∼ 

ydz K z + y = 8 y K log K yH ( ) + y K xH ( ) + y ≤ 8 y K log K yH ( ) + y K xH ( ) + x = 8 c y log 1 log y x ,
which ends the proof since sup ∈(0,1) c < ∞ (recall that c → 1 2π ).

2.2. The Landau equation. We consider the operator L defined, for any φ ∈ C 2 b (R 3 ), by

(2.4) Lφ(v, v * ) = 1 2 3 i,j=1 l ij (v -v * )∂ 2 ij φ(v) + 3 i=1 b i (v -v * )∂ i φ(v),
where l ij is defined in (1.8) and

(2.5) b i (z) = 3 j=1 ∂ j l ij (z) = -2|z| γ z i , for i = 1, 2, 3. For any φ ∈ C 2 b , we have |Lφ(v, v * )| ≤ C φ (|v -v * | γ+1 + |v -v * | γ+2 ) ≤ C φ 1 + |v| 2 + |v * | 2 + |v -v * | γ+1 1 γ∈[-3,-1) .
We can thus observe that all the terms in the following definition are well-defined.

Definition 2.3. Let γ ∈ [-3, 0). We say that (g t ) t∈[0,T ] ∈ L ∞ ([0, T ], P 2 (R 3 )) is a weak solution to (1.7) if T 0 R 3 R 3 |v -v * | γ+1 g t (dv)g t (dv * )dt < ∞, (2.6) (which is automatically satisfied if γ ∈ [-1, 0)) and if for any φ ∈ C 2 b (R 3 ) and any t ∈ [0, T ], R 3 φ(v)g t (dv) = R 3 φ(v)g 0 (dv) + t 0 R 3 R 3 Lφ(v, v * )g s (dv)g s (dv * )ds. (2.7)
We now recall a result of Fournier and Guérin [START_REF] Fournier | Well-posedness of the spatially homogeneous Landau equation for soft potentials[END_REF] which gives existence and uniqueness of a weak solution for the Landau equation.

Theorem 2.4. (i) Assume that γ ∈ (-2, 0). Let p(γ) := γ 2 /(2 + γ). Let g 0 ∈ P 2 (R 3 ) ∩ P p (R 3 ) for some p > p(γ) satisfy also H(g 0 ) < ∞. Consider q ∈ (3/(3 + γ), (3p -3γ)/(p -3γ)) ⊂ (3/(3 + γ), 3). Then the Landau equation (1.7) has a unique weak solution

(g t ) t≥0 in L ∞ loc ([0, ∞), P 2 (R 3 )) ∩ L 1 loc ([0, ∞), L q (R 3 
)). (ii) Assume that γ ∈ (-3, 0), and let q > 3/(3 + γ). Let g 0 ∈ P 2 (R 3 ) ∩ L q (R 3 ). Then there exists T * > 0 depending on q, ||g 0 || L q such that there exists a unique weak solution

(g t ) t∈[0,T * ] to (1.7) lying in L ∞ ([0, T * ], P 2 (R 3 ) ∩ L q (R 3 )). (iii) Assume that γ = -3. Let g 0 ∈ P 2 (R 3 ) ∩ L ∞ (R 3 ).
Then there exists T * > 0 depending on ||g 0 || L ∞ such that there exists a unique weak solution

(g t ) t∈[0,T * ] to (1.7) lying in L ∞ ([0, T * ], P 2 (R 3 ) ∩ L ∞ (R 3 )).
(iv) For any t ≥ 0 (case (i)) or t ∈ [0, T * ] (case (ii) and (iii)), we have

R 3 g t (v)φ(v)dv = R 3 g 0 (v)φ(v)dv, φ(v) = 1, v, |v| 2 . (2.8)
We also have the decay of entropy: for all t ≥ 0 (case (i)) or t ∈ [0, T * ] (case (ii) and (iii)),

R 3 g t (v) log g t (v)dv ≤ R 3 g 0 (v) log g 0 (v)dv. (2.9)
Furthermore, if m p (g 0 ) < ∞ for some p ≥ 2, then sup [0,T ] m p (g s ) < ∞ for all T ≥ 0 (case (i)) or all T ∈ [0, T * ] (case (ii) and (iii)).

For Points (i) and (ii), one can see Fournier-Guérin [START_REF] Fournier | Well-posedness of the spatially homogeneous Landau equation for soft potentials[END_REF]Corollary 1.4]. For Point (iii), one can see Arsen'ev-Peskov [START_REF] Arsen'ev | The existence of a generalized solution of Landau's equation[END_REF] for the existence and Fournier [START_REF] Fournier | Uniqueness of bounded solutions for the homogeneous Landau equation with a Coulomb potential[END_REF] for the uniqueness of (g t ) t∈[0,T * ] . The conservation of mass, momentum and energy and the decay of entropy are classical in Point (iv). For the propagation of moments, one can see Villani [START_REF] Villani | A review of mathematical topics in collisional kinetic theory[END_REF]Section 2.4 p 73] for γ ∈ (-2, 0) and [START_REF] Villani | Contribution à l'étude mathématiques des équations de Boltzmann et de Landau en théorie cinétique des gaz et des plasmas[END_REF]Appendix B p 193] for γ ∈ [-3, -2].

2.3. The Boltzmann equation. We take here the notation of Fournier-Méléard [START_REF] Fournier | A stochastic particle numerical method for 3D Boltzmann equations without cutoff[END_REF]. For each X ∈ R 3 , we introduce I(X), J(X) ∈ R 3 such that ( X |X| , I(X) |X| , J(X) |X| ) is an orthonormal basis of R 3 . We also require that I(-X) = -I(X) and J(-X) = -J(X) for convenience. For X, v, v * ∈ R 3 , for θ ∈ [0, π] and ϕ ∈ [0, 2π), we set

         Γ(X, ϕ) := (cos ϕ)I(X) + (sin ϕ)J(X), v := v (v, v * , θ, ϕ) := v -1-cos θ 2 (v -v * ) + sin θ 2 Γ(v -v * , ϕ), v * := v * (v, v * , θ, ϕ) := v * + 1-cos θ 2 (v -v * ) -sin θ 2 Γ(v -v * , ϕ), a := a(v, v * , θ, ϕ) := (v -v) = -(v * -v * ), (2.10)
which is nothing but a suitable spherical parametrization of (1.2): we write σ ∈ S 2 as σ

= v-v * |v-v * | cos θ + I(v-v * ) |v-v * | sin θ cos ϕ + J(v-v * ) |v-v * | sin θ sin ϕ.
We can now give the notion of weak solution of Boltzmann's equation.

Definition 2.5. Consider a collision kernel B(|v

-v * |, θ) sin θ = Φ(|v -v * |)β(θ)
with β satisfying (A2). We say that a family

(f t ) t∈[0,T ] ∈ L ∞ ([0, T ], P 2 (R 3 )) is a weak solution to (1.1) if T 0 R 3 R 3 |v -v * | 2 Φ(|v -v * |)f t (dv)f t (dv * )dt < ∞, (2.11)
and if for any φ ∈ C 2 b (R 3 ) and any t ∈ [0, T ],

R 3 φ(v)f t (dv) = R 3 φ(v)f 0 (dv) + t 0 R 3 R 3 Aφ(v, v * )f s (dv)f s (dv * )ds, (2.12)
where

Aφ(v, v * ) = Φ(|v -v * |) 2 π 0 2π 0 [φ(v ) + φ(v * ) -φ(v) -φ(v * )]dϕβ(θ)dθ. (2.13) For any v, v * ∈ R 3 , θ ∈ [0, π] and φ ∈ C 2 b (R 3 ), we have (see Villani [28, p 291]) 2π 0 [φ(v ) + φ(v * ) -φ(v) -φ(v * )]dϕ ≤ C||φ || ∞ θ 2 |v -v * | 2 , (2.14)
so that (A2) and (2.11) ensure that all the terms in (2.12) are well-defined.

We now give a result of existence and uniqueness for the Boltzmann equation with soft potentials. Theorem 2.6. Let γ ∈ (-3, 0), ν ∈ (0, 2) and B be a collision kernel which satisfies (A1(γ)-A2-A3(ν)). For ∈ (0, π], we consider B as in (1.4). (i) We assume that γ ∈ (-1, 0) and ν ∈ (-γ, 1). For some p > γ 2 /(ν + γ), let f 0 ∈ P 2 (R 3 ) ∩ P p (R 3 ) with H(f 0 ) < ∞. Then for any ∈ (0, π], there exists a unique weak solution (f t ) t∈[0,∞) to (1.1) with collision kernel B starting from

f 0 lying in L ∞ loc [0, ∞), P 2 (R 3 ) ∩ L 1 loc [0, ∞), L q (R 3
) for some (explicit) q ∈ (3/(3 + γ), 3/(3 -ν)) with estimates uniform in .

(ii) We next consider the general case. Let q ∈ (3/(3 + γ), ∞). For any f 0 ∈ P 2 (R 3 ) ∩ L q (R 3 ), there exists T * = T * (||f 0 || L q , q) > 0 such that for any ∈ (0, π], there exists a unique weak solution

(f t ) t∈[0,T * ] to (1.1) with collision kernel B starting from f 0 lying in L ∞ [0, T * ], P 2 (R 3 ) ∩ L q (R 3 ) , with estimates uniform in . (iii) For any t ≥ 0 (case (i)) or t ∈ [0, T * ] (case (ii)), any ∈ (0, π], R 3 f t (v)φ(v)dv = R 3 f 0 (v)φ(v)dv, φ(v) = 1, v, |v| 2 , (2.15) and R 3 f t (v) log f t (v)dv ≤ R 3 f 0 (v) log f 0 (v)dv. (2.16) Furthermore, if γ ∈ (-2, 0) and f 0 ∈ P p (R 3 ) for some p ≥ 4, then for any ∈ (0, π], any T ≥ 0 (case (i)) or any T ∈ [0, T * ] (case (ii)), sup [0,T ] m p (f t ) ≤ C p,T m p (f 0 ),
where C p,T is a constant which does not depend on .

To prove (i) and (ii), we follow the line of some proofs in Fournier-Mouhot [START_REF] Fournier | On the well-posedness of the spatially homogeneous Boltzmann equation with a moderate angular singularity[END_REF] and Fournier-Guérin [START_REF] Fournier | On the uniqueness for the spatially homogeneous Boltzmann equation with a strong angular singularity[END_REF].

Proof. Point (ii) is a consequence of [14, Proof of Corollary 1.5, Step 2] (recall (A4)). More precisely, we only need to check in their proof that T * does not depend on . For this, it suffices to prove that for any ∈ (0, π], there exists a constant C which does not depend on such that any weak solution to (1.1) (with cross section B ) a priori satisfies

d dt ||f t || L q ≤ C(1 + ||f t || 2 L q ). (2.17)
This will guarantee that for 0 ≤ t ≤ T * := 1 2C (π/2 -arctan ||f 0 || L q ), we have

||f t || L q ≤ tan(arctan ||f 0 || L q + Ct) ≤ tan π 4 + 1 2 arctan ||f 0 || L q .
We classically may replace in Aφ (recall (2.13)) 

β (θ) by β (θ) = [β (θ) + β (π - θ)]1 θ∈(0,π/2] ,
d dt R 3 |f t (v)| q dv ≤ (q -1) R 3 f t (v * )dv * R 3 dv|v -v * | γ π/2 0 β (θ)dθ 2π 0 dϕ[(f t ) q (v ) -(f t ) q (v)].
Using now the cancellation Lemma of Alexandre-Desvillettes-Villani-Wennberg [1, Lemma 1] (with N = 3, f given by (f t ) q , and B(|v

-v * |, cos θ) sin θ = β (θ)|v-v * | γ ), we obtain d dt R 3 |f t (v)| q dv ≤ 2π(q -1) R 3 f t (v * )dv * R 3 (f t ) q dv π/2 0 β (θ)dθ cos -3 (θ/2)(|v -v * | cos -1 (θ/2)) γ -|v -v * | γ .
One easily checks that cos

-3 (θ/2)(|v -v * | cos -1 (θ/2)) γ -|v -v * | γ ≤ C|v - v * | γ θ 2 for all θ ∈ (0, π/2] (where C depends only on γ). Since π/2 0 θ 2 β (θ)dθ ≤ π 0 θ 2 β (θ)dθ = 4 π , we finally get with C = C(γ, q), d dt R 3 |f t (v)| q dv ≤ C R 3 (f t ) q (v)dv R 3 |v -v * | γ f t (v * )dv * ≤ C R 3 (f t ) q (v)dv + C γ,q R 3 (f t ) q (v)dv 1+1/q
, by (2.2) and since q > 3/(3 + γ). This yields

d dt ||f t || L q = 1 q ||f t || 1-q L q d dt R 3 |f t (v)| q dv ≤ C||f t || L q + C γ,q ||f t || 2 L q ,
from which (2.17) immediately follows.

We now prove (iii). First observe that the conservation of mass, momentum and kinetic energy and the decay of entropy are classical.

Next let γ ∈ (-2, 0) and p ≥ 4. We want to apply (2.12) with φ

(v) = |v| p . We set ∆ = |v | p + |v * | p -|v| p -|v * | p (see (2.10)). Observing that v = v + a, v * = v * -a, and ∇φ(v) = p|v| p-2 v, φ (v) = p|v| p-2 I 3 + p(p -2)|v| p-4 vv * (
where φ is the Hessian matrix of φ) and using Taylor's formula, we have

∆ = a.(p|v| p-2 v -p|v * | p-2 v * ) + 1 2 a. p(|w 1 | p-2 + |w 2 | p-2 )a + p(p -2) |w 1 | p-4 (w 1 w * 1 )a + |w 2 | p-4 (w 2 w * 2 )a = pa. |v| p-2 (v -v * ) + (|v| p-2 -|v * | p-2 )v * + p 2 (|w 1 | p-2 + |w 2 | p-2 )|a| 2 + (p -2) |w 1 | p-4 (a.w 1 ) 2 + |w 2 | p-4 (a.w 2 ) 2 ,
where

w 1 = v + λ 1 a for some λ 1 ∈ [0, 1] and w 2 = v * + λ 2 a for some λ 2 ∈ [0, 1]. We have |w 1 | p-2 + |w 2 | p-2 ≤ C p (|v| p-2 + |v * | p-2 )
where C p is a constant which only depends on p. Observing that

|v| p-2 -|v * | p-2 |v * | ≤ C p |v -v * |(|v| p-3 + |v * | p-3 )|v * | ≤ C p |v -v * |(|v| p-2 + |v * | p-2 ), that |a| 2 = 1-cos θ 2 |v -v * | 2 , 2π 0 adϕ = -1-cos θ 2 (v -v * ), π 0 1-cos θ 2 β (θ)dθ ≤ 4
π by (1.5) and using (2.12) with φ, we get

d dt m p (f t ) ≤ C p R 3 R 3 |v -v * | γ+2 (|v| p-2 + |v * | p-2 )f t (dv)f t (dv * ) ≤ C p 1 + m p (f t ) + m 2 (f t )m p-2 (f t ) ≤ C p (1 + m p (f t )), with C depending on p, γ, m 2 (f 0 ) (we used that x γ+2 ≤ C γ (1 + x 2 ) for any x ≥ 0). Point (iii) immediately follows.
The existence and the uniqueness in (i) are already proved in Fournier-Guérin [START_REF] Fournier | On the uniqueness for the spatially homogeneous Boltzmann equation with a strong angular singularity[END_REF]. We only have to check that the estimates are uniform in . For that, it suffices to show that for any α ∈ (0, γ)

T 0 ||(1 + |v| γ-α )f t || L 3 3-ν dt ≤ C(1 + T ), (2.18) with C independent of . Indeed, since we have sup [0,T ] m p (f t ) ≤ C for some p > γ 2
γ+ν (with C independent of ) by (iii), we will get ||f || 

L 1 [0,T ],L q (R 3 ) ≤ C T,q , for some q ∈ (3/(3 + γ), 3/(3 -ν))
T 0 || f t || 2 H ν/2 (|v|≤R) dt ≤ CR |γ| (1 + T ), (2.19)
for some constant C which does not depend on . It remains to follow the line of Alexandre-Desvillettes-Villani-Wennberg [1, Theorem 1] to get (2.19). More precisely, we have to check that the constants which appear in the following inequality [1, Theorem 1] (observe that here Φ(|v|) = |v| γ does not vanish at 0)

|| f t || 2 H ν/2 (|v|<R) ≤ 2c -1 f R |γ| D(f t ) + (C 1 + C 2 )||(1 + |v| 2 )f t || 2 L 1 , (2.20) 
do not depend on , where D(f t ) is the functional of dissipation of entropy (see (2.22) below). The constant C 1 comes from [START_REF] Alexandre | Entropy dissipation and long-range interactions[END_REF]Corollary 2]. This constant is such that (observe that there is a misprint in the corollary)

Λ(|v -v * |) + |v -v * |Λ (|v -v * |) ≤ C 1 (|v -v * | γ + |v -v * | 2 ), where Λ(|v -v * |) = π 0 |v -v * | γ (1 -cos θ)β (θ)dθ, and Λ (|v -v * |) = π 0 sup 1<λ≤ √ 2 |v -v * | γ (λ γ -1) |v -v * |(λ -1) (1 -cos θ)β (θ)dθ.
We can thus take

C 1 = |γ|+1 2 π 0 θ 2 β (θ)dθ = 2 |γ|+1
π . Then we deal with the constant C 2 which comes from [START_REF] Alexandre | Entropy dissipation and long-range interactions[END_REF]Lemma 2]. This constant depends on

π/2 0 cos -4 θ 2 sin 2 θ 2 β (θ)dθ ≤ C π 0 θ 2 β (θ)dθ and since this last integral is equal to 4 π , the constant C 2 does not depend on . The constant c f comes from [1, Proposition 2]. It is of the form C f K. First C f > 0 is controled (from below) by upperbounds of m 1 (f t ) and R 3 f t log(1 + f t (v))dv, which are both classically controled (uniformly in ) by m 2 (f 0 ) and H(f 0 ). Next, K > 0 is such that for all |ξ| ≥ 1, π/2 0 |ξ| 2 2 (1 -cos θ) ∧ 1 β (θ)dθ ≥ K|ξ| ν .
One easily deduces from (A3(ν)) that such an inequality holds uniformly in ∈ (0, π].

Hence (2.20) holds uniformly in ∈ (0, π], and we find that

|| f t || 2 H ν/2 (|v|<R) ≤ CR |γ| D(f t ) + 1 + m 2 (f t ) 2 , (2.21)
for some constant C depending only on f 0 (and on γ, β but not on ). Integrating (2.21) in time and using that [START_REF] Fournier | Asymptotic of grazing collisions and particle approximation for the Kac equation without cutoff[END_REF]) and that concludes the proof.

T 0 D(f t )dt = H(f 0 ) -H(f t ) ≤ H(f 0 ) + Cm 2 (f 0 ), (2.22) (because classically, H(f ) ≥ -Cm 2 (f )), we finally deduce (2.
We finally treat the Coulomb case.

Theorem 2.7. Assume (AC) and let f 0 ∈ P 2 (R 3 ). Then there exists a unique weak solution

(f t ) t∈[0,∞) to (1.1). Furthermore, if f 0 ∈ L ∞ (R 3 ), then there exists T * = T * (||f 0 || L ∞ ) > 0 such that sup ∈(0,1) sup [0,T * ] ||f t || L ∞ < ∞.
Proof. We observe that for ∈ (0, 1) fixed, we consider a cutoff case with a bounded cross section: for any

v, v * ∈ R 3 and θ ∈ [0, π/2], B (|v -v * |, θ) ≤ C .
The existence and the uniqueness of (f t ) t∈[0,∞) are thus classical.

For the stability in L ∞ (R 3 ), like in the previous proof (there is no need to introduce β here since β is supported in [0, π/2]), we have for all q ≥ 1, all ∈ (0, 1),

d dt R 3 |f t (v)| q dv ≤ (q -1) R 3 f t (v * )dv * R 3 dv(|v -v * | + h ) -3 π/2 0 β (θ)dθ 2π 0 dϕ[(f t ) q (v ) -(f t ) q (v)] ≤ (q -1) R 3 f t (v * )dv * R 3 dv|v -v * | -3 π/2 0 β (θ)dθ 2π 0 dϕ[(f t ) q (v ) -(f t ) q (v)].
Using now the cancellation Lemma of Alexandre-Villani [2, Proposition 3] (with N = 3, f given by (f t ) q , and B(|v

-v * |, cos θ) sin θ = β (θ)|v -v * | -3 ), we obtain d dt R 3 |f t (v)| q dv ≤ λ (q -1) R 3 (f t (v * )) q+1 dv * ≤ C(q -1)||f t || L ∞ ||f t || q L q , since λ : = 4π 2 3 π/2 0 log 1 cos θ/2 β (θ)dθ ≤ 4π 2 3 π/2 0 1 cos θ/2 (1 -cos θ/2)β (θ)dθ ≤ √ 2π 2 3 π/2 0 θ 2 β (θ)dθ = 4 √ 2π 3 .
We thus get

d dt ||f t || L q ≤ 1 q R 3 |f t (v)| q dv 1/q-1 C(q -1)||f t || L ∞ ||f t || q L q ≤ C||f t || L ∞ ||f t || L q .
Making q tend to infinity, we get

d dt ||f t || L ∞ ≤ C||f t || 2 L ∞ ,
and thus taking

T * < 1 C||f0|| L ∞ , we have for any t < T * ||f t || L ∞ ≤ ||f 0 || L ∞ 1 -C||f 0 || L ∞ t .
This concludes the proof.

A general estimate for soft potentials

In this section, we give a general estimate for the distance between a solution of Boltzmann's equation and a solution of Landau's equation (for soft potentials) from which Theorem 1.1 follows.

Theorem 3.1. Let γ ∈ (-3, 0) and let B be a collision kernel which satisfies (A1(γ)-A2-A4). Let T > 0 and p ≥ 5. Let f = (f t ) t∈[0,T ] be a weak solution of (1.1) with collision kernel B and g = (g t ) t∈[0,T ] be a weak solution of (1.7) with

H(g 0 ) < ∞. We assume that f ∈ L 1 ([0, T ], J γ ), g ∈ L 1 ([0, T ], J γ ) ∩ L ∞ ([0, T ], P p+2 (R 3 )) and if γ ∈ (-3, -1), that f and g belong to L ∞ ([0, T ], J γ+1 ). Assume furthermore that π 0 θ 4 β(θ)dθ ≤ 1. Then for any n ≥ 1, η ∈ (0, π) and M > 2m 2 (g 0 ), sup [0,T ] W 2 2 (f t , g t ) ≤ C W 2 2 (f 0 , g 0 ) + 1 n + π 0 θ 4 β(θ)dθ + π η θ 2 β(θ)dθ + η 2 M 2 n log 2 (r η ) + log 2 (nη 2 ) + M + 1 M p ,
where

r η = π 4 η 0 θ 2 β(θ)dθ (3.1)
and where C depends on p, T, κ 1 , γ,

T 0 J γ (f s +g s )ds, sup [0,T ] m p+2 (g s ), H(g 0 ), and additionally on sup [0,T ] J γ+1 (f s + g s ) if γ ∈ (-3, -1).
This result is proved in Section 5. We can now deduce Theorem 1.1.

Proof of Theorem 1.1. We consider a collision kernel which satisfies (A1(γ)-

A2-A3(ν)) and we set β = π 3 3 β πθ 1 |θ|< and B (|v-v * |, θ) sin θ = |v-v * | γ β (θ).
We first note that (A2) is satisfied by B (see (1.5)) and that (A3(ν)) implies (A4) (see Lemma 2.1).

We now prove point (i). We thus assume that γ ∈ (-1, 0), ν ∈ (-γ, 1) and fix T > 0. Since f 0 ∈ P p+2 (R 3 ) for some p > max(5, γ 2 /(ν + γ)) and since H(f 0 ) < ∞, by Theorems 2.6 and 2.4, there exists (f t ) t∈[0,T ] solution to (1.1) with collision kernel B and (g t ) t∈[0,T ] solution to (1.7) both starting from f 0 and lying in L ∞ ([0, T ], P p+2 (R 3 )) ∩ L 1 ([0, T ], L q (R 3 )) for some q ∈ (3/(3 + γ), 3/(3 -ν)) (uniformly in ∈ (0, 1)). Now using (2.2), we get that (f t ) t∈[0,T ] and (g t ) t∈[0,T ] belong to L 1 ([0, T ], J γ (R 3 )) (uniformly in ∈ (0, 1)). We thus can use Theorem 3.1 with

β = β , η = , n ≈ -2p 2p+3 and M = 2m 2 (f 0 ) -2
2p+3 and we get (observe that π η θ 2 β (θ)dθ = 0, r η = 1 and that

π 0 θ 4 β (θ)dθ ≤ C 2 ) sup [0,T ] W 2 2 (f t , g t ) ≤ C 2p 2p+3 + 2 + 2p+2 2p+3 (log 2 + -2 2p+3 ) + 2p 2p+3 ≤ C 2p 2p+3 , since log 2 ≤ C -2
2p+3 for any ∈ (0, 1). Point (i) is proved. For point (ii), we consider f 0 ∈ P p+2 (R 3 ) ∩ L q (R 3 ) for some p ≥ 5 and q > 3 3+γ with H(f 0 ) < ∞. By Theorems 2.6 and 2.4, there exists T * > 0, (f t ) t∈[0,T * ] solution to (1.1) with collision kernel B and (g t ) t∈[0,T * ] solution to (1.7) both starting from f 0 and lying in L ∞ ([0, T * ], P 2 (R 3 ) ∩ L q (R 3 )) (uniformly in ∈ (0, 1)). We also have that

(g t ) t∈[0,T * ] belongs to L ∞ ([0, T * ], P p+2 (R 3 )). Using again (2.2), we get that (f t ) t∈[0,T * ] and (g t ) t∈[0,T * ] belong to L 1 ([0, T * ], J γ (R 3 )) and to L ∞ ([0, T * ], J γ+1 (R 3 )) if γ ∈ (-3, -1
), all this uniformly in ∈ (0, 1). We conclude the proof as previously.

Probabilistic interpretation of the equations

We will use probabilistic tools in order to prove Theorems 1.1 and 1.2, like in the paper of Tanaka [START_REF] Tanaka | Probabilistic treatment of the Boltzmann equation of Maxwellian molecules[END_REF]. Until the end of the article, (Ω, F, (F t ) t≥0 , P) will designate a Polish filtered probability space satisfying the usual conditions. Such a space is Borel isomorphic to the Lebesgue space ([0, 1], B([0, 1]), dα) which we will use as an auxiliary space. To be as clear as possible, we will use the notation E for the expectation and L for the law of a random variable or process defined on (Ω, F, P), and we will use the notation E α and L α for the expectation and law of random variables or processes on ([0, 1], B([0, 1]), dα). The processes on ([0, 1], B([0, 1]), dα) will be called α-processes.

4.1.

The Boltzmann equation. We first need to rewrite the collision operator A defined in (2.13) as in Fournier-Guérin [START_REF] Fournier | On the uniqueness for the spatially homogeneous Boltzmann equation with a strong angular singularity[END_REF]. The goal of this operation is to make disappear the velocity-dependance |v -v * | γ in the rate. One can find the following lemma and its proof in [START_REF] Fournier | On the uniqueness for the spatially homogeneous Boltzmann equation with a strong angular singularity[END_REF]

, Lemma 2.1]. Lemma 4.1. Let B(|v -v * |, θ) sin θ = Φ(|v -v * |)β(θ) with β satisfying (A2). We set k := π π 0 (1 -cos θ)β(θ)dθ. (4.1)
Recalling (2.1) and (2.10), we define for z

∈ (0, ∞), ϕ ∈ [0, 2π), v, v * ∈ R 3 , c(v, v * , z, ϕ) := a[v, v * , G(z/Φ(|v -v * |)), ϕ]. (4.2) We have Aφ(v, v * ) = 1 2 [A 1 φ(v, v * ) + A 1 φ(v * , v)] for all v, v * ∈ R 3 and φ ∈ C 2 b (R 3 ), where A 1 φ(v, v * ) = ∞ 0 2π 0 φ[v + c(v, v * , z, ϕ)] -φ[v] -c[v, v * , z, ϕ].∇φ[v] dϕdz -kΦ(|v -v * |)∇φ(v).(v -v * ) = ∞ 0 2π 0 φ[v + c(v, v * , z, ϕ + ϕ 0 )] -φ[v] -c[v, v * , z, ϕ + ϕ 0 ].∇φ[v] dϕdz -kΦ(|v -v * |)∇φ(v).(v -v * ), (4.3)
the second equality holding for any ϕ 0 ∈ [0, 2π) (which may depend on v, v * , z). As a consequence, we may replace A by A 1 in (2.12).

We now recall a fundamental remark by Tanaka [START_REF] Tanaka | Probabilistic treatment of the Boltzmann equation of Maxwellian molecules[END_REF], slighlty precised in Fournier-Méléard [START_REF] Fournier | A stochastic particle numerical method for 3D Boltzmann equations without cutoff[END_REF]Lemma 2.6].

Lemma 4.2. There exists a measurable function ϕ

0 : R 3 × R 3 → [0, 2π), such that for all X, Y ∈ R 3 , all ϕ ∈ [0, 2π), |Γ(X, ϕ) -Γ(Y, ϕ + ϕ 0 (X, Y ))| ≤ 3|X -Y |, (4.4)
where Γ(X, Y ) is defined in (2.10).

We now introduce a nonlinear stochastic differential equation linked with (1.1).

Proposition 4.3. Let B(|v -v * |, θ) sin θ = Φ(|v -v * |)β(θ) satisfying (i) (A1(γ))
for some γ ∈ (-3, 0), (A2) and (A4) or (ii) (AC). For some T > 0, let f = (f t ) t∈[0,T ] be a solution to (1.1) [START_REF] Alexandre | Entropy dissipation and long-range interactions[END_REF] with intensity measure dsdzdϕdα, and V 0 a F 0 -measurable random variable with law f 0 . Then there exists a unique process (V t ) t∈[0,T ] such that for all t ∈ [0, T ],

lying in (i) L 1 ([0, T ], J γ (R 3 ))∩L ∞ ([0, T ], P 2 (R 3 )) or in (ii) L ∞ ([0, T ], L ∞ (R 3 )) ∩ L ∞ ([0, T ], P 2 (R 3 )). Consider any α-process ( Ṽt ) t∈[0,T ] such that L α ( Ṽt ) = f t for all t ∈ [0, T ]. Let also N be a (F t ) t∈[0,T ] -Poisson mea- sure on [0, T ] × [0, ∞) × [0, 2π] × [0,
V t =V 0 + t 0 ∞ 0 2π 0 1 0 c(V s-, Ṽs (α), z, ϕ) Ñ (ds, dz, dϕ, dα) -k t 0 1 0 Φ(|V s -Ṽs (α)|) V s -Ṽs (α) dsdα, (4.5)
with k given by (4.1) and c given by (4.2). Furthermore,

L(V t ) = f t for all t ∈ [0, T ].
Proof. We start with case (i). In this case, the existence and the uniqueness of (V t ) t∈[0,T ] are already proved in Fournier-Guérin [14, proof of Lemma 4.6, Steps 3 to 6]. We set µ t = L(V t ). Using Itô's formula for jump processes (see e.g. Ikeda-Watanabe [21, Theorem 5.1]) and taking expectations, we have for any

φ ∈ C 2 b (R 3 ) R 3 φ(v)µ t (dv) = R 3 φ(v)f 0 (dv) + t 0 R 3 R 3 A 1 φ(v, v * )µ s (dv)f s (dv * )ds.
We thus have µ t = f t for any t ∈ [0, T ] by [START_REF] Fournier | On the uniqueness for the spatially homogeneous Boltzmann equation with a strong angular singularity[END_REF]Lemma 4.6].

The case (ii) is easier since it is a cutoff case with bounded collision kernel and we leave it to the reader. 4.2. The Landau equation. To give a probabilistic interpretation of (1.7), we need to use a three-dimensional space-time white noise W (ds, dα) on [0, T ] × [0, 1] with covariance measure dsdα (in the sense of Walsh [START_REF] Walsh | An introduction to stochastic partial differential equations[END_REF]). Recall that W is an orthogonal martingale measure with covariance dsdα. Proposition 4.4. (i) Let γ ∈ [-3, 0). For some T > 0, let g = (g t ) t∈[0,T ] be a solution to (1.7) 

lying in L 1 ([0, T ], J γ (R 3 )) ∩ L ∞ ([0, T ], P 2 (R 3 )) if γ ∈ (-3, 0) and in L ∞ ([0, T ], L ∞ (R 3 )) ∩ L ∞ ([0, T ], P 2 (R 3 )) if γ = -3. Consider any α-process ( Ỹt ) t∈[0,T ] such that L α ( Ỹt ) = g t for all t ∈ [0, T ].
Let also W be a three-dimensional space-time white noise on [0, T ] × [0, 1] with covariance measure dsdα, and Y 0 a F 0 -measurable random variable with law g 0 . Then there exists a unique process (Y t ) t∈[0,T ] such that for all t ∈ [0, T ],

Y t = Y 0 + t 0 1 0 σ Y s -Ỹs (α) W (ds, dα) + t 0 1 0 b Y s -Ỹs (α) dsdα, (4.6)
with for any z ∈ R 3 , b(z) given in (2.5) and

σ(z) = |z| γ/2   z 2 -z 3 0 -z 1 0 z 3 0 z 1 -z 2   . (4.7)
We observe that σ(z)σ * (z) = l(z) with l(z) given by (1.8). Furthermore,

L(Y t ) = g t for all t ∈ [0, T ]. (ii) It is possible to handle this construction in such a way that L α (( Ỹt ) t∈[0,T ] ) = L((Y t ) t∈[0,T ] ).
One can see Fournier-Guérin [15, Proposition 2.1] for the proof of point (i) when γ ∈ (-3, 0) and Fournier [START_REF] Fournier | Uniqueness of bounded solutions for the homogeneous Landau equation with a Coulomb potential[END_REF]Proposition 10] when γ = -3.

Proof of point (ii). We first observe that the law of (Y t ) t∈[0,T ] does not depend on the choice of ( Ỹt ) t∈[0,T ] . To get convinced, use a substitution to rewrite t 0 1 0 σ Y s -Ỹs (α) W (ds, dα) as t 0 R 3 σ Y s -z Ŵ (ds, dz) where Ŵ (ds, dz) is a white noise with covariance g s (dz)ds.

We thus consider some α-process ( Zt ) t∈[0,T ] such that L α ( Zt ) = g t for any t ∈ [0, T ] from which we build (Z t ) t∈[0,T ] solution to (4.6). Next we consider an α-

process ( Ỹt ) t∈[0,T ] such that L α (( Ỹt ) t∈[0,T ] ) = L((Z t ) t∈[0,T ] ) from which we build (Y t ) t∈[0,T ] . Due to the previous observation, we have L((Y t ) t∈[0,T ] ) = L((Z t ) t∈[0,T ] ) and thus L((Y t ) t∈[0,T ] ) = L α (( Ỹt ) t∈[0,T ] ).

Soft potentials

This section is devoted to the proof of Theorem 3.1. We fix γ ∈ (-3, 0), T > 0 and we consider a collision kernel satisfying (A1(γ)-A2-A4). We consider (f t ) t∈[0,T ] and (g t ) t∈[0,T ] solutions of (1.1) and (1.7) respectively. 5.1. Definition of the processes. We consider two random variables V 0 and Y 0 with law f 0 and g 0 respectively such that

E[|V 0 -Y 0 | 2 ] = W 2 2 (f 0 , g 0 ).
We fix a white noise W on [0, T ] × [0, 1] with covariance measure dsdα and we consider a process (Y t ) t∈[0,T ] and an α-process ( Ỹt ) t∈[0,T ] such that for any t ∈

[0, T ], L(Y t ) = L α ( Ỹt ) = g t , such that L α ( Ỹt ) t∈[0,T ] = L (Y t ) t∈[0,T ]
and such that (4.6) is satisfied. For any t ∈ [0, T ], we consider an α-random variable Ṽt with law

f t such that W 2 2 (f t , g t ) = E α [| Ṽt -Ỹt | 2
] and we consider the solution (V t ) t∈[0,T ] to (4.5)

for some (F t ) t∈[0,T ] -Poisson measure N as in Proposition 4.3. We will precise later the dependence of N with the white noise W . We recall the equations satisfied by (V t ) t∈[0,T ] and (Y t ) t∈[0,T ] , and we introduce some intermediate processes (here n ∈ N * is fixed)

V t =V 0 + t 0 ∞ 0 2π 0 1 0 c(V s-, Ṽs (α), z, ϕ) Ñ (ds, dz, dϕ, dα) -k t 0 1 0 |V s -Ṽs (α)| γ V s -Ṽs (α) dsdα, V n t =V 0 + t a0 ∞ 0 2π 0 1 0 c(Y ρn(s) , Ỹρn(s) (α), z, ϕ + Φ n (s, α)) Ñ (ds, dz, dϕ, dα) -k t 0 1 0 |V s -Ṽs (α)| γ V s -Ṽs (α) dsdα, I n t =V 0 + t a0 ∞ 0 2π 0 1 0 d(Y ρn(s) , Ỹρn(s) (α), z, ϕ + Φ n (s, α)) Ñ (ds, dz, dϕ, dα) + t 0 1 0 b V s -Ṽs (α) dsdα, J n t =V 0 + t a0 1 0 σ Y ρn(s) -Ỹρn(s) (α) W (ds, dα) + t 0 1 0 b V s -Ṽs (α) dsdα, Y t =Y 0 + t 0 1 0 σ Y s -Ỹs (α) W (ds, dα) + t 0 1 0 b Y s -Ỹs (α) dsdα,
where (recall Lemma 4.2)

Φ n (s, α) = ϕ 0 (V s -Ṽs (α), Y ρn(s) -Ỹρn(s) (α)) (5.1) d(v, w, z, ϕ) = 1 2 G z |v -w| γ Γ(v -w, ϕ), (5.2)
and where a 0 and ρ n are defined as follows.

We consider the subdivision 0 < a n 0 < ... < a n 2nT -1 < a n 2nT = T obtained using Proposition A.5 with h(s) = J γ (g s ) on [0, T ]. In order to lighten notation, we write a i = a n i . For s ∈ [0, T ], we set

ρ n (s) = 2nT -1 i=0 a i 1 s∈[ai,ai+1) .
By construction, we have

a 0 < 1/n, 1/4n < a i+1 -a i < 1/n, whence sup [0,T ] |s - ρ n (s)| ≤ 1/n, and 
T a0 J γ (g ρn(s) )ds ≤ 3 T 0 J γ (g s )ds + 3. (5.3)
We end this subsection with the following lemma. 

|c(v, v * , z, ϕ) -d(v, v * , z, ϕ)| 2 dzdϕ ≤ π 0 θ 4 β(θ)dθ|v -v * | γ+2 . (5.5) Proof. We have for any v, v * ∈ R 3 , z ∈ [0, ∞) and ϕ ∈ [0, 2π) (recall (2.10), |c(v, v * , z, ϕ)| 2 = 1 -cos G z |v-v * | γ 2 (v -v * ) - sin G z |v-v * | γ 2 Γ(v -v * , ϕ) 2 = 1 -cos G z |v-v * | γ 2 + sin 2 G z |v-v * | γ 4 |v -v * | 2 = 1 -cos G z |v-v * | γ 2 |v -v * | 2 ,
since for any X ∈ R 3 , the vectors X and Γ(X, ϕ) are orthogonal, and

|Γ(X, ϕ)| = |X|. Using the substitution θ = G z |v-v * | γ , we get ∞ 0 2π 0 |c(v, v * , z, ϕ)| 2 dzdϕ = π π 0 (1 -cos θ)β(θ)dθ|v -v * | γ+2 ,
and (5.4) follows. Using the same arguments, we have

∞ 0 2π 0 |c(v, v * , z, ϕ) -d(v, v * , z, ϕ)| 2 dzdϕ = π 0 2π 0 |v -v * | γ cos θ -1 2 (v -v * ) + sin θ -θ 2 Γ(v -v * , ϕ) 2 β(θ)dϕdθ = 2π π 0 (cos θ -1) 2 + (sin θ -θ) 2 4 β(θ)dθ|v -v * | γ+2 .
It suffices to observe that for θ ∈ [0, π]

2π (cos θ -1) 2 + (sin θ -θ) 2 4 ≤ θ 4
to conclude the proof.

5.2. The proof. We start with a preliminary lemma.

Lemma 5.2. (i) There exists a constant C depending on m 2 (f 0 ) and additionally on

sup s∈[0,T ] J γ+1 (f s ) if γ ∈ (-3, -1) such that for 0 ≤ t ≤ t ≤ T with t -t < 1, E |V t -V t | 2 ≤ C(t -t ).
The same bound holds for

E |Y t -Y t | 2 and E α | Ỹt -Ỹt | 2
with C depending on m 2 (g 0 ) and additionally on sup s∈[0,T ] J γ+1 (g s ) if γ ∈ (-3, -1).

(ii) For all t ∈ [0, T ], we have

E |V t -V ρn(t) | 2 + E |Y t -Y ρn(t) | 2 + E α | Ỹt -Ỹρn(t) | 2 ≤ C n .
Proof. Recalling that t -ρ n (t) ≤ 1/n, we observe that (ii) immediately follows from (i) taking t = ρ n (t). Let's prove (i). Observing that

V t -V t = t t ∞ 0 2π 0 1 0 c(V s-, Ṽs (α), z, ϕ) Ñ (ds, dz, dϕ, dα) -k t t 1 0 |V s -Ṽs (α)| γ V s -Ṽs (α) dsdα,
and using (5.4), we get

E |V t -V t | 2 ≤ 2 t t ∞ 0 2π 0 1 0 E |c(V s , Ṽs (α), z, ϕ)| 2 dsdzdϕdα + 2k 2 E t t 1 0 |V s -Ṽs (α)| γ V s -Ṽs (α) dsdα 2 ≤ 2k t t E E α [|V s -Ṽs | γ+2 ] ds + 2k 2 E t t E α [|V s -Ṽs | γ+1 ]ds 2 =: A + B.
We first deal with A. If γ ∈ [-2, 0), using that |a| γ+2 ≤ 1 + |a| 2 and recalling that

E(|V s | 2 ) = E α (| Ṽs | 2 ) = m 2 (f 0 ), we have A ≤ 4k t t E E α [1 + |V s | 2 + | Ṽs | 2 ] ds ≤ 4k(1 + 2m 2 (f 0 ))(t -t ), and if γ ∈ (-3, -2), then a.s., E α [|V s -Ṽs | γ+2 ] ≤ 1+E α [|V s -Ṽs | γ+1 ] = 1+ R 3 |V s - v * | γ+1 f s (dv * ) ≤ 1 + J γ+1 (f s ) (recall (1.9)), so that A ≤ 2k t t (1 + J γ+1 (f s ))ds ≤ C(t -t ),
where C depends on sup s∈[0,T ] J γ+1 (f s ). We now deal with B. If γ ∈ [-1, 0), using first the Cauchy-Schwarz inequality and then that |a| 2γ+2 ≤ 1 + |a| 2 , we get

B ≤ 2k 2 E (t -t ) t t E α [|V s -Ṽs | 2γ+2 ]ds ≤ 4k 2 (t -t ) t t E E α [1 + |V s | 2 + | Ṽs | 2 ] ds ≤ 4k 2 (1 + 2m 2 (f 0 ))(t -t ) 2 ,
and if γ ∈ (-3, -1), as previously, we have

B ≤ 2k 2 t t J γ+1 (f s )ds 2 ≤ C(t -t ) 2 .

This finally gives

E |V t -V t | 2 ≤ C(t -t ),
where C depends on m 2 (f 0 ) and on sup s∈[0,T ] J γ+1 (f s ). The computation of E |Y t -Y t | 2 is very similar and we leave it for the reader. Since (L α Ỹt ) t≥0 = (L(Y t ) t≥0 , we have 2 and that concludes the proof.

E α | Ỹt -Ỹt | 2 = E |Y t -Y t |
The following lemma states as follows.

Lemma 5.3. There exists a constant C depending on m 2 (f 0 ), m 2 (g 0 ), T 0 J γ (f s + g s )ds and additionally on sup [0,T ] J γ+1 (f s + g s ) if γ ∈ (-3, -1), such that, if t ∈ [a 0 , T ],

E |V t -V n t | 2 ≤ C 1 n + t a0 J γ (f s + g ρn(s) ) E[|V s -Y s | 2 ] + E α [| Ṽs -Ỹs | 2 ] ds .
Proof. We have

V t -V n t = a0 0 ∞ 0 2π 0 1 0 c(V s-, Ṽs (α), z, ϕ) Ñ (ds, dz, dϕ, dα) + t a0 ∞ 0 2π 0 1 0 c(V s-, Ṽs (α), z, ϕ) -c(Y ρn(s) , Ỹρn(s) (α), z, ϕ + Φ n (s, α)) Ñ (ds, dz, dϕ, dα).
Consequently,

E |V t -V n t | 2 ≤ 2 a0 0 ∞ 0 2π 0 1 0 E |c(V s , Ṽs (α), z, ϕ)| 2 dsdzdϕdα + 2 t a0 ∞ 0 2π 0 1 0 E c(V s , Ṽs (α), z, ϕ) -c Y ρn(s) , Ỹρn(s) (α), z, ϕ + Φ n (s, α) 2 dsdzdϕdα.
So using (5.4) and Fournier-Guérin [14, Lemma 2.3], we have

E |V t -V n t | 2 ≤ C a0 0 1 0 E[|V s -Ṽs (α)| γ+2 ]dsdα + C t a0 1 0 E |V s -Y ρn(s) | 2 + | Ṽs (α) -Ỹρn(s) (α)| 2 |V s -Ṽs (α)| γ + |Y ρn(s) -Ỹρn(s) (α)| γ dsdα.
Since for any x ≥ 0,

x γ+2 ≤ C γ (1 + x 2 ) if γ ∈ [-2, 0) and E α [|V s -Ṽs | γ+2 ] ≤ 1 + E α [|V s -Ṽs | γ+1 ] ≤ 1 + R 3 |V s -v| γ+1 f s (dv) ≤ 1 + J γ+1 (f s ) a.s. if γ ∈ (-3, -2), we get (recall that a 0 < 1/n) a0 0 1 0 E[|V s -Ṽs (α)| γ+2 ]dsdα = a0 0 E α [E[|V s -Ṽs | γ+2 ]]ds ≤ C n .
We thus have

E |V t -V n t | 2 ≤ C n + C t a0 E |V s -Y ρn(s) | 2 E α |V s -Ṽs | γ + |Y ρn(s) -Ỹρn(s) | γ ds + C t a0 E α | Ṽs -Ỹρn(s) | 2 E |V s -Ṽs | γ + |Y ρn(s) -Ỹρn(s) | γ ds ≤ C n + C t a0 E[|V s -Y ρn(s) | 2 ]J γ (f s + g ρn(s) )ds + C t a0 E α [| Ṽs -Ỹρn(s) | 2 ]J γ (f s + g ρn(s) )ds. Using first that E[|V s -Y ρn(s) | 2 ] ≤ 2E[|V s -Y s | 2 ] + 2E[|Y s -Y ρn(s) | 2 ], E α [| Ṽs - Ỹρn(s) | 2 ] ≤ 2E α [| Ṽs -Ỹs | 2 ]+2E α [| Ỹs -Ỹρn(s) | 2 ]
, next Lemma 5.2 and (5.3) concludes the proof.

We next estimate V n t -I n t .

Lemma 5.4. There exists a constant C depending on T , γ,

T 0 J γ (f s )ds, m 2 (f 0 ), m 2 (g 0 ) and additionally on sup [0,T ] J γ+1 (f s + g s ) if γ ∈ (-3, -1) such that, if t ∈ [a 0 , T ], E |V n t -I n t | 2 ≤ C π 0 θ 4 β(θ)dθ.
Proof. We have (recall (2.5))

V n t -I n t = t a0 ∞ 0 2π 0 1 0 c(Y ρn(s) , Ỹρn(s) (α), z, ϕ + Φ n (s, α)) -d(Y ρn(s) , Ỹρn(s) (α), z, ϕ + Φ n (s, α)) Ñ (ds, dz, dϕ, dα) -(k -2) t 0 1 0 |V s -Ṽs (α)| γ V s -Ṽs (α) dsdα.
Recalling (4.1) and that

π 0 θ 2 β(θ)dθ = 4 π , we first observe that |k -2| = π π 0 (1 -cos θ - θ 2 2 )β(θ)dθ ≤ π 24 π 0 θ 4 β(θ)dθ.
So recalling (5.5), we get (recall that

π 0 θ 4 β(θ)dθ ≤ 1) E[|V n t -I n t | 2 ] ≤ 2 t a0 ∞ 0 2π 0 1 0 E |c(Y ρn(s) , Ỹρn(s) (α), z, ϕ + Φ n (s, α)) -d(Y ρn(s) , Ỹρn(s) (α), z, ϕ + Φ n (s, α))| 2 dsdzdϕdα + 2(k -2) 2 E t 0 1 0 |V s -Ṽs (α)| γ+1 dsdα 2 ≤ C π 0 θ 4 β(θ)dθ t a0 E E α [|Y ρn(s) -Ỹρn(s) | γ+2 ] ds + E t 0 E α [|V s -Ṽs | γ+1 ]ds 2 .
We conclude using the same arguments as in the proof of Lemma 5.2 (recall that Y ρn(s) ∼ g ρn(s) ).

The following lemma is the key point of the proof of Theorem 3.1.

Lemma 5.5. Assume that m p+2 (g 0 ) < ∞ for some p ≥ 5. We can couple the Poisson measure N and the white noise W in such a way that there exists a constant C depending on γ, T , m p+2 (g 0 ), H(g 0 ), and additionally on sup [0,T ] J γ+1 (f s + g s ) if γ ∈ (-3, -2) such that for any M > 2m 2 (g 0 ), any η ∈ (0, π), any t ∈ [a 0 , T ], 

E[|I n t -J n t | 2 ] ≤ C η 2 M 2 n log 2 (r η ) + log 2 (nη 2 ) + M + π η θ 2 β(θ)dθ + 1 M p . Using that ∞ 0 G 2 (z/x)1 {G(z/x)≤η} dz = x η 0 θ 2 β(θ)dθ = 4x π r η ,
1 {| Ỹu(α)|<M } dαdϕdzds = 1 4 u u ∞ 0 2π 0 1 0 G 2 (z/|y -Ỹu (α)| γ )Γ(y -Ỹu (α), ϕ)Γ * (y -Ỹu (α), ϕ) 1 {G(z/|y-Ỹu(α)| γ )≤η} 1 {| Ỹu(α)|<M } dαdϕdzds = r η π (u -u) 1 0 |y -Ỹu (α)| γ 2π 0 Γ(y -Ỹu (α), ϕ)Γ * (y -Ỹu (α), ϕ)dϕ 1 {| Ỹu(α)|<M } dα = (u -u)r η 1 0 l y -Ỹu (α) 1 {| Ỹu(α)|<M } dα = (u -u)ζ u (y).
Step 2: the aim of this step is to prove that 

W 2 2 µ u u (y), ν u u (y) ≤ Cη 2 M 2 (1 + |y| 7 ) log 2 (u -u)r η η 2 + M . ( 5 
W 2 2 µ u u (y), ν u u (y) ≤ Cκ 2 u (y)|ζ u (y)| max 1, log u -u κ 2 u (y) 2 (5.7) ≤ C|ζ u (y)|ψ κ 2 u (y) , where ψ(x) = x 1 + log 2 u -u x for any x > 0. Let's first deal with ζ u (y). Setting lh (v) = R 3 l(v -v * )h(v * )dv * for a nonnegative function h, we observe that ζ u (y) = λ M,u r η lg M,u (y), with λ M,u = R 3 g u (v)1 {|v|<M } dv and g M,u (v) = λ -1 M,u g u (v)1 {|v|<M } (recall that L α ( Ỹu ) = g u ). Observing that λ M,u ≥ 1 -m 2 (g u )/M 2 = 1 -m 2 (g 0 )/M 2 , we have λ M,u > 1/2 for any u ∈ [0, T ] since M > 2m 2 (g 0 ) by assumption. We thus have m 2 (g M,u ) = λ -1 M,u R 3 |v| 2 g u (v)1 {|v|<M } dv ≤ 2 R 3 |v| 2 g 0 (v)dv =: E 0 , and 
H(g M,u ) = λ -1 M,u R 3 g u (v)1 {|v|<M } log λ -1 M,u g u (v) dv = λ -1 M,u R 3 g u (v)1 {|v|<M } log λ -1 M,u + log g u (v) dv ≤ log λ -1 M,u + 2 R 3 g u (v) log g u (v) 1 {|v|<M } dv ≤ log(2) + 2 R 3 g u (v)| log g u (v)|dv ≤ log(2) + 2H(g u ) + C(1 + m 2 (g u )) ≤ log(2) + 2H(g 0 ) + C(1 + m 2 (g 0 )) =: H 0 .
We first used that classically

R 3 g(v)| log g(v)|dv ≤ H(g) + C(1 + m 2 (g))
for any g ∈ P 2 (R 3 ) and we then used (2.8)-(2.9). So using Proposition A.3, there is c = c(γ, E 0 , H 0 ) such that for all u ∈ [0, T ], all ξ ∈ R 3 ,

( lg M,u (y)ξ).ξ ≥ c(1 + |y|) γ |ξ| 2 ,
and thus

ζ u (y)ξ .ξ ≥ cr η 1 + |y| γ |ξ| 2 .
This gives

|ζ u (y) -1/2 | 2 ≤ Cr -1 η 1 + |y| |γ| ,
and we thus get (recall that d(y, Ỹu (α), z, ϕ)

= 1 2 G z/|y -Ỹu (α)| γ Γ(y -Ỹu (α), ϕ) and that |Γ(X, ϕ)| = |X| for any X ∈ R 3 ) κ 2 u (y) ≤ Cr -1 η 1 + |y| |γ| η 2 sup α∈[0,1] |y -Ỹu (α)| 2 1 {| Ỹu(α)|<M } (5.8) ≤ Cr -1 η 1 + |y| |γ| η 2 (|y| 2 + M 2 ).
We also have

|ζ u (y)| ≤ r η 1 0 |y -Ỹu (α)| γ+2 dα (5.9) = r η R 3 |y -v| γ+2 g u (dv) ≤ Cr η |y| γ+2 + m 2 (g u ) 1 γ∈[-2,0) + Cr η J γ+2 (g u )1 γ∈(-3,-2) ≤ Cr η (1 + |y| γ+2 1 {γ∈[-2,0)} ),
where C depends on sup [0,T ] J γ+1 (g s ) if γ ∈ (-3, -2) (of course, J γ+2 (g u ) is controlled by J γ+1 (g u ) since γ + 1 < γ + 2 < 0) or on m 2 (g 0 ) if γ ∈ [-2, 0). Coming back to (5.7), observing that ψ is an increasing function of x and using (5.8) and (5.9), we get

W 2 2 µ u u (y), ν u u (y) ≤ C(1 + |y| γ+2 1 {γ∈[-2,0)} ) 1 + |y| |γ| η 2 (|y| 2 + M 2 ) 1 + log 2 (u -u)r η 1 + |y| |γ| η 2 (|y| 2 + M 2 ) ≤ Cη 2 (1 + |y| γ+2 1 {γ∈[-2,0)} ) 1 + |y| |γ| (|y| 2 + M 2 ) 1 + log 2 (u -u)r η η 2 + log 2 1 + |y| |γ| (|y| 2 + M 2 ) , since log 2 (a/b) ≤ 2 log 2 (a) + 2 log 2 (b). Observing that x log 2 x ≤ C(1 + x 1.1
) for any x ≥ 0, we have

1 + |y| |γ| (|y| 2 + M 2 ) log 2 1 + |y| |γ| (|y| 2 + M 2 ) ≤ C(1 + 1 + |y| 1.1|γ| (|y| 2 + M 2 ) 1.1 ).
Using that

(1 + |y| γ+2 1 {γ∈[-2,0)} ) 1 + |y| |γ| ≤ C(1 + |y| 3 )
and

(1 + |y| γ+2 1 {γ∈[-2,0)} ) 1 + |y| 1.1|γ| ≤ C(1 + |y| 4 )
(recall that γ ∈ (-3, 0)), we finally get

W 2 2 µ u u (y), ν u u (y) ≤ Cη 2 (1 + |y| 3 )(|y| 2 + M 2 ) 1 + log 2 (u -u)r η η 2 + (1 + |y| 4 )(|y| 2 + M 2 ) 1.1 ≤ Cη 2 M 2 (1 + |y| 3 )(1 + |y| 2 ) 1 + log 2 (u -u)r η η 2 + M 3 (1 + |y| 4 )(1 + |y| 3 ) ≤ Cη 2 M 2 (1 + |y| 7 ) log 2 (u -u)r η η 2 + M .
Step 3: recall that the white noise W is fixed. In this step we want to build the Poisson measure N in order to have E[|I n t -J n t | 2 ] as small as possible. For any i ∈ {0, ..., 2nT -1}, we build a

(F t ) t∈[0,T ] -Poisson measure N * ,i on [a i , a i+1 ) × [0, ∞) × [0, 2π] × [0, 1] with intensity measure dsdzdϕdα such that a.s. W 2 2 µ ai+1 ai (Y ai ), ν ai+1 ai (Y ai ) (5.10) = E ai+1 ai ∞ 0 2π 0 1 0 d(Y ai , Ỹai (α), z, ϕ) 1 {G(z/|Ya i -Ỹa i (α)| γ )<η} 1 {| Ỹa i (α)|<M } Ñ * ,i (ds, dz, dϕ, dα) - √ r η ai+1 ai 1 0 σ Y ai -Ỹai (α) 1 {| Ỹa i (α)|<M } W (ds, dα) 2 |F ai .
We are able to do this because Y ai is F ai -measurable. We now consider a

(F t ) t∈[0,T ] - Poisson measure N * ini on [0, a 0 ) × [0, ∞) × [0, 2π] × [0, 1] with intensity measure dsdzdϕdα. For any [u, u ] ⊂ [0, T ] and A ⊂ [0, ∞)×[0, 2π]×[0, 1], we set N * ([u, u ]× A) := N * ini (([u, u ] ∩ [0, a 0 ) × A) + 2nT -1 i=0 N * ,i (([u, u ] ∩ [a i , a i+1 )) × A) (observe that N * is a (F t ) t∈[0,T ] -Poisson measure on [0, T ] × [0, ∞) × [0, 2π] × [0, 1] with intensity measure dsdzdϕdα).
Recalling that Φ n (s, α) ∈ [0, 2π), we set (ϕ -Φ n (s, α) should be interpreted modulo 2π)

ψ : [u, u ] × [0, ∞) × [0, 2π] × [0, 1] → [u, u ] × [0, ∞) × [0, 2π] × [0, 1] (t, z, ϕ, α) → (t, z, ϕ -Φ n (s, α), α).
We consider the image N of N * by ψ. Using a remark of Tanaka [START_REF] Tanaka | Probabilistic treatment of the Boltzmann equation of Maxwellian molecules[END_REF], since

Φ n (s, α) = ϕ 0 (V s -Ṽs (α), Y ρn(s) -Ỹρn(s) (α)) is predictable, we get that N is also a (F t ) t∈[0,T ] -Poisson measure on [0, T ] × [0, ∞) × [0, 2π] × [0, 1] with intensity measure dsdzdϕdα.
Step 4: we set

A = E t a0 ∞ 0 2π 0 1 0 d(Y ρn(s) , Ỹρn(s) (α), z, ϕ + Φ n (s, α)) 1 {G(z/|Y ρn (s) -Ỹρn(s) (α)| γ )≤η} 1 {| Ỹρn(s) (α)|<M } Ñ (ds, dz, dϕ, dα) - √ r η t a0 1 0 σ Y ρn(s) -Ỹρn(s) (α) 1 {| Ỹρn(s) (α)|<M } W (ds, dα) 2 .
The aim of this step is to show that (5.11) where C depends on γ, T , m 7 (g 0 ) and additionally on sup [0,T ] J γ+1 (g s ) if γ ∈ (-3, -2). By construction of N , we have

A ≤ Cη 2 M 2 n log 2 (r η ) + log 2 (nη 2 ) + M ,
A = E t a0 ∞ 0 2π 0 1 0 d(Y ρn(s) , Ỹρn(s) (α), z, ϕ) 1 {G(z/|Y ρn (s) -Ỹρn(s) (α)| γ )≤η} 1 {| Ỹρn(s) (α)|<M } Ñ * (ds, dz, dϕ, dα) - √ r η t a0 1 0 σ Y ρn(s) -Ỹρn(s) (α) 1 {| Ỹρn(s) (α)|<M } W (ds, dα) 2 ,
and setting for any 0 < u < u < T and y ∈ R 3 ,

X u u (y) := u u ∞ 0 2π 0 1 0 d y, Ỹu (α), z, ϕ 1 {G(z/|y-Ỹu(α)| γ )≤η} 1 {| Ỹu(α)|<M } Ñ * (ds, dz, dϕ, dα),
we have

A ≤ E 2nT -1 i=0 X ai+1 ai (Y ai ) - √ r η ai+1 ai 1 0 σ Y ai -Ỹai (α) 1 {| Ỹa i (α)|<M } W (ds, dα) 2 = 2nT -1 i=0 E X ai+1 ai (Y ai ) - √ r η ai+1 ai 1 0 σ Y ai -Ỹai (α) 1 {| Ỹa i (α)|<M } W (ds, dα) 2 , since for i = j, N * |[ai,ai+1) , W |[ai,ai+1) and N * |[aj ,aj+1) , W |[aj ,aj+1) are indepen- dent, which gives E X ai+1 ai (Y ai ) - √ r η ai+1 ai 1 0 σ Y ai -Ỹai (α) 1 {| Ỹa i (α)|<M } W (ds, dα) . X aj+1 aj (Y aj ) - √ r η aj+1 aj 1 0 σ Y aj -Ỹaj (α) 1 {| Ỹa j (α)|<M } W (ds, dα) = 0.
First taking the conditional expectation with respect to F ai for each term of the sum, and then using (5.10) and (5.6), we have

A ≤ 2nT -1 i=0 E E X ai+1 ai (Y ai ) - √ r η ai+1 ai 1 0 σ Y ai -Ỹai (α) 1 {| Ỹa i (α)|<M } W (ds, dα) 2 |F ai = 2nT -1 i=0 E W 2 2 µ ai+1 ai (Y ai ), ν ai+1 ai (Y ai ) ≤ C 2nT -1 i=0 η 2 M 2 1 + E[|Y ai | 7 ] log 2 r η (a i+1 -a i ) η 2 + M ≤ Cη 2 M 2 n log 2 r η nη 2 + M ≤ Cη 2 M 2 n log 2 (r η ) + log 2 (nη 2 ) + M ,
where we used that 1/4n < a i+1 -a i < 1/n by construction (recall Proposition A.5) and that E[|Y ai | 7 ] ≤ Cm 7 (g 0 ).

Step 5: we finally compute E[|I n t -J n t | 2 ]. We have

I n t -J n t = t a0 ∞ 0 2π 0 1 0 d(Y ρn(s) , Ỹρn(s) (α), z, ϕ + Φ n (s, α)) Ñ (ds, dz, dϕ, dα) - t a0 1 0 σ Y ρn(s) -Ỹρn(s) (α) W (ds, dα).
This gives

E[|I n t -J n t | 2 ] ≤ 4(A + B + D) with B = ( √ r η -1) 2 E t a0 1 0 σ Y ρn(s) -Ỹρn(s) (α) 1 {| Ỹρn(s) (α)|<M } W (ds, dα) 2 ,
and

D = E t a0 ∞ 0 2π 0 1 0 d(Y ρn(s) , Ỹρn(s) (α), z, ϕ + Φ n (s, α)) 1 {G(z/|Y ρn(s) -Ỹρn(s) (α)| γ )>η}∪{| Ỹρn(s) (α)|>M } Ñ (ds, dz, dϕ, dα) - t a0 1 0 σ Y ρn(s) -Ỹρn(s) (α) 1 {| Ỹρn(s) (α)|>M } W (ds, dα) 2 .
Using that

3 i,k=1 σ 2 ik (Y ρn(s) -Ỹρn(s) (α)) = 2|Y ρn(s) -Ỹρn(s) (α)| γ+2 (recall (4.7)), B = ( √ r η -1) 2 t a0 1 0 E 3 i,k=1 σ 2 ik (Y ρn(s) -Ỹρn(s) (α)) 1 {| Ỹρn(s) (α)|<M } dsdα (5.12) ≤ 2( √ r η -1) 2 t a0 1 0 E |Y ρn(s) -Ỹρn(s) (α)| γ+2 dsdα ≤ C π η θ 2 β(θ)dθ 2 t1 {γ∈[-2,0)} + t a0 J γ+2 (g ρn(s) )ds1 {γ∈(-3,-2)} ≤ Ct π η θ 2 β(θ)dθ,
where C depends on m 2 (g 0 ) and on sup [0,T ] J γ+2 (g s ) if γ ∈ (-3, -2) (which is controlled by sup [0,T ] J γ+1 (g s )). We used that | √ r η -1| ≤ C|r η -1| and that (5.13) where C depends on m p+2 (g 0 ). If γ ∈ (-3, -2)

r η -1 = -π
θ 2 β(θ)E[|Y ρn(s) -Ỹρn(s) (α)| γ+2 ]1 {θ>η}∪{| Ỹρn(s) (α)|>M } dαdθds + C t a0 1 0 E[|Y ρn(s) -Ỹρn(s) (α)| γ+2 ]1 {| Ỹρn(s) (α)|>M } dαds. If γ ∈ [-2, 0), we have D ≤ C π η θ 2 β(θ)dθ t a0 1 + E[|Y ρn(s) | 2 ] + E α [| Ỹρn(s) | 2 ] ds + C t a0 E α 1 + E[|Y ρn(s) | 2 ] + | Ỹρn(s) (α)| 2 1 {| Ỹρn(s) (α)|>M } ds ≤ Ct π η θ 2 β(θ)dθ + C t a0 1 + E α [| Ỹρn(s) | p ] + E α [| Ỹρn(s) | 2+p ] M p ≤ Ct π η θ 2 β(θ)dθ + Ct M p ,
D ≤ C π η θ 2 β(θ)dθ t a0 J γ+2 (g ρn(s) )ds + C t a0 J γ+2 (g ρn(s) )E α [1 {| Ỹρn(s) (α)|>M } ]ds (5.14) ≤ C π η θ 2 β(θ)dθ t a0 J γ+2 (g ρn(s) )ds + C M p t a0 J γ+2 (g ρn(s) )ds ≤ Ct π η θ 2 β(θ)dθ + Ct M p ,
where C depends on m p (g 0 ) and on sup [0,T ] J γ+1 (g s ). It suffices to use (5.11), (5.12), (5.13) and (5.14) to conclude.

We finally state the last lemma needed to conclude the proof of Theorem 3.1.

Lemma 5.6. There exists a constant C depending on γ, T ,

T 0 J γ (f s + g s )ds, m 2 (g 0 ) and additionnally on sup [0,T ] J γ+1 (g s ) if γ ∈ (-3, -1) such that, if t ∈ [a 0 , T ], E[|J n t -Y t | 2 ] ≤C E[|V 0 -Y 0 | 2 ] + 1 n + t 0 E[|V s -Y s | 2 ] + E α [| Ṽs -Ỹs | 2 ] J γ (f s + g s )ds .
Proof. We have

J n t -Y t =V 0 -Y 0 - a0 0 1 0 σ Y s -Ỹs (α) W (ds, dα) + t a0 1 0 σ Y ρn(s) -Ỹρn(s) (α) -σ Y s -Ỹs (α) W (ds, dα) + t 0 1 0 b V s -Ṽs (α) -b Y s -Ỹs (α) dsdα.
Using Itô's formula and taking expectations, we get

E[|J n t -Y t | 2 ] = E[|V 0 -Y 0 | 2 ] + a0 0 1 0 E 3 i,k=1 σ 2 ik (Y s -Ỹs (α)) dsdα + t a0 1 0 3 i,k=1 E σ ik Y ρn(s) -Ỹρn(s) (α) -σ ik Y s -Ỹs (α) 2 dsdα + 2 t 0 1 0 E b V s -Ṽs (α) -b Y s -Ỹs (α) . J n s -Y s dsdα =: E[|V 0 -Y 0 | 2 ] + 2 a0 0 1 0 E[|Y s -Ỹs (α)| γ+2 ]dsdα + A + B, since 3 i,k=1 σ 2 ik (Y s -Ỹs (α)) = 2|Y s -Ỹs (α)| γ+2 (recall (4.7)). Using that |a| γ+2 ≤ 1 + |a| 2 if γ ∈ [-2, 0) (recall also that E(|Y s | 2 ) = E α (| Ỹs | 2 ) = m 2 (g 0 )) and that E[|Y s -Ỹs (α)| γ+2 ] ≤ J γ+2 (g s ) ≤ 1 + J γ+1 (g s ) if γ ∈ (-3, -2), we have (recall that a 0 ≤ 1/n) a0 0 1 0 E[|Y s -Ỹs (α)| γ+2 ]dsdα ≤ C n .
Using Fournier-Guérin [15, Remark 2.2], we get

A ≤ C t a0 1 0 E |Y ρn(s) -Y s + Ỹs (α) -Ỹρn(s) (α)| 2 |Y ρn(s) -Ỹρn(s) (α)| γ + |Y s -Ỹs (α)| γ dsdα ≤ C t a0 E |Y ρn(s) -Y s | 2 + E α | Ỹs -Ỹρn(s) | 2 J γ (g ρn(s) + g s )ds ≤ C n T 0 J γ (g s )ds + 1 ,
(recall Lemma 5.2 and (5.3)) and

B ≤ C t 0 1 0 E |V s -Y s + Ỹs (α) -Ṽs (α)| |V s -Ṽs (α)| γ + |Y s -Ỹs (α)| γ |J n s -Y s | dsdα ≤ C t 0 E |V s -Y s | 2 + |J n s -Y s | 2 E α [|V s -Ṽs (α)| γ + |Y s -Ỹs (α)| γ ] ds + C t 0 E α | Ṽs -Ỹs | 2 E[|V s -Ṽs (α)| γ + |Y s -Ỹs (α)| γ ] ds ≤ C t 0 E |V s -Y s | 2 + E |J n s -Y s | 2 + E α [| Ṽs -Ỹs | 2 ] J γ (f s + g s )ds.
We thus get

E[|J n t -Y t | 2 ] ≤ E[|V 0 -Y 0 | 2 ] + C n + C t 0 E |V s -Y s | 2 + E α | Ṽs -Ỹs | 2 + E |J n s -Y s | 2 J γ (f s + g s )ds,
and we conclude by Grönwall's lemma.

We can now prove Theorem 3.1.

Proof of Theorem 3.1. We couple the Poisson measure N and the white noise W as in Lemma 5.5. Recall that

E α [| Ṽs -Ỹs | 2 ] = W 2 2 (f s , g s ) ≤ E[|V s -Y s | 2 ] =: u(s) and E[|V 0 -Y 0 | 2 ] = W 2 2 (f 0 , g 0 ). We first observe that if t < a 0 , u(t) ≤ 4E[|V t -V 0 | 2 ] + 4E[|V 0 -Y 0 | 2 ] + 4E[|Y t -Y 0 | 2 ] ≤ C E[|V 0 -Y 0 | 2 ] + a 0 ≤ C W 2 2 (f 0 , g 0 ) + 1 n ,
by Lemma 5.2 and the result is proved when t < a 0 . Using Lemmas 5.3, 5.4, 5.5, 5.6 and (5.3), we have, for t ∈ [a 0 , T ],

u(t) ≤ C 1 n + t a0 J γ (f s + g ρn(s) ) E[|V s -Y s | 2 ] + E α [| Ṽs -Ỹs | 2 ] ds + C π 0 θ 4 β(θ)dθ + C η 2 M 2 n log 2 (r η ) + log 2 (nη 2 ) + M + π η θ 2 β(θ)dθ + 1 M p + C E[|V 0 -Y 0 | 2 ] + 1 n + t 0 E[|V s -Y s | 2 ] + E α [| Ṽs -Ỹs | 2 ] J γ (f s + g s )ds ≤ C W 2 2 (f 0 , g 0 ) + t 0 J γ (f s + g s + g ρn(s) 1 {s≥a0} )u(s)ds + π 0 θ 4 β(θ)dθ + 1 n + η 2 M 2 n log 2 (r η ) + log 2 (nη 2 ) + M + π η θ 2 β(θ)dθ + 1 M p ,
for all n ∈ N * , η ∈ (0, π) and M > 2m 2 (g 0 ). Using the generalized Grönwall Lemma and (5.3), we get

u(t) ≤ C W 2 2 (f 0 , g 0 ) + π 0 θ 4 β(θ)dθ + 1 n + η 2 M 2 n log 2 (r η ) + log 2 (nη 2 ) + M + π η θ 2 β(θ)dθ + 1 M p .
This concludes the proof since

W 2 2 (f t , g t ) ≤ E[|V t -Y t | 2 ] = u(t).

The Coulomb Case

This section is devoted to the proof of Theorem 1.2. We thus assume (AC) and consider f 0 ∈ P p (R 3 ) ∩ L ∞ (R 3 ) for some p ≥ 7. By Theorems 2.7 and 2.4 (iii), we can consider T > 0 and (f t ) t∈[0,T ] , (g t ) t∈[0,T ] solutions to (1.1) and (1.7) respectively, both starting from f 0 and lying in

L ∞ ([0, T ], L ∞ (R 3 )) ∩ L ∞ ([0, T ], P 2 (R 3 ))
(uniformly in for f ) with g which additionally lies in L ∞ ([0, T ], P p (R 3 )).

6.1. Some preliminary results. The main difficulty of the Coulomb case is the fact that |v|<1 |v| -3 dv is not finite. We will use the following lemma stated in the paper of Fournier [START_REF] Fournier | Uniqueness of bounded solutions for the homogeneous Landau equation with a Coulomb potential[END_REF]Lemma 4] in order to deal with this difficulty.

Lemma 6.1. Let α ∈ (-3, 0]. There is a constant C α such that for all h ∈ P(R 3 ) ∩ L ∞ (R 3 ), all ∈ (0, 1], sup v∈R 3 R 3 |v -v * | α h(v * )dv * ≤ 1 + C α ||h|| ∞ , R 3 R 3 |v -v * | α h(v)h(v * )dvdv * ≤ 1 + C α ||h|| ∞ , sup v,w∈R 3 |v-v * |≤ |w -v * | α h(v * )dv * ≤ C α ||h|| ∞ 3+α .
There is a constant C such that for all h ∈ P(R 3 ) ∩ L ∞ (R 3 ), all ∈ (0, 1], sup

v∈R 3 |v-v * |≥ |v -v * | -3 h(v * )dv * ≤ 1 + C||h|| ∞ log(1/ ).
We will need to use a generalisation of the Grönwall Lemma. To this aim, we consider the increasing continuous function ψ : [0, ∞) → R + defined by

ψ(x) = x(1 -1 x≤1 log x). (6.1) Setting ψ(x) := x(1 -log x)1 x∈[0,1/2] + (x log 2 + 1/2)1 x≥1/2
, we observe that ψ(x)/2 ≤ ψ(x) ≤ 2ψ(x) for any x ≥ 0. Since the function ψ : R + → R + is concave increasing, this last observation will almost allow us to apply the Jensen inequality to the function ψ.

As mentioned before, we only need the parameter h in order to have easily existence and uniqueness of solutions of (1.1). In order to point out that we do not need this cutoff parameter in quite all calculus, we consider (recall (2.3) and (2.10))

c (v, v * , z, ϕ) = a(v, v * , G (z/|v -v * | -3 ), ϕ), (6.2) and c h , (v, v * , z, ϕ) = a(v, v * , G (z/(|v -v * | + h ) -3 ), ϕ). (6.3) Lemma 6.2. (i) For any v, v * ∈ R 3 , ∞ 0 2π 0 |c (v, v * , z, ϕ)| 2 dzdϕ = k |v -v * | -1 ,
where

k = π π 0 (1 -cos θ)β (θ)dθ. (6.4) We also have k ≤ 2. (ii) For any v, v * ∈ R 3 , ∞ 0 2π 0 |(c h , -c )(v, v * , z, ϕ)| 2 dzdϕ ≤ Ch |v -v * | -2 . (iii) For any v, v * , ṽ, ṽ * ∈ R 3 , ∞ 0 2π 0 c (v, v * , z, ϕ) -c (ṽ, ṽ * , z, ϕ + ϕ 0 (v -v * , ṽ -ṽ * )) 2 dzdϕ ≤ C min |v -v * | -1 + |ṽ -ṽ * | -1 , (|v -ṽ| 2 + |v * -ṽ * | 2 )(|v -v * | -3 + |ṽ -ṽ * | -3 ) + 1 log 1 [|v -v * | -2 + |ṽ -ṽ * | -2 + |v -v * | 2 + |ṽ -ṽ * | 2 ] .
Proof. We easily get the first part of Point (i) from (5.4). The fact that k ≤ 2 comes from (1.5), just observing that 1 -cos θ ≤ θ 2 /2.

We now prove (ii). Recalling (2.10) and using that for any X ∈ R 3 , the vectors X and Γ(X, ϕ) are orthogonal, and |Γ(X, ϕ)| = |X|, we have

|(c h , -c )(v, v * , z, ϕ)| 2 = 1 2 1 -cos G z |v -v * | + h -3 -1 -cos G z |v -v * | -3 (v -v * ) + 1 2 sin G z |v -v * | + h -3 -sin G z |v -v * | -3 Γ(v -v * , ϕ) 2 = 1 4 cos G z |v -v * | + h -3 -cos G z |v -v * | -3 2 |v -v * | 2 + 1 4 sin G z |v -v * | + h -3 -sin G z |v -v * | -3 2 |v -v * | 2 ≤ 1 2 G z |v -v * | + h -3 -G z |v -v * | -3 2 |v -v * | 2 , since (cos θ -cos θ ) 2 + (sin θ -sin θ ) 2 ≤ 2(θ -θ ) 2 , which gives ∞ 0 2π 0 |(c h , -c )(v, v * , z, ϕ)| 2 dzdϕ ≤ π|v -v * | 2 ∞ 0 G z |v -v * | + h -3 -G z |v -v * | -3 2 dz ≤ π|v -v * | 2 κ 2 (|v -v * | + h ) -3 -|v -v * | -3 2 (|v -v * | + h ) -3 + |v -v * | -3 + |v -v * | -3 log 1 log |v -v * | -3 (|v -v * | + h ) -3 ,
by (A5). Now using that for any x, h > 0,

x 2 (x + h) -3 -x -3 2 (x + h) -3 + x -3 = x 2 x 3 -(x + h) 3 2 (x + h) 6 x 6 (x + h) 3 x 3 x 3 + (x + h) 3 = h 2 (3x 2 + 3xh + h 2 ) 2 x(x + h) 3 x 3 + (x + h) 3 ≤ C h x 2 h(x 4 + x 2 h 2 + h 4 ) (x + h) 5 ≤ C h x 2
, and

x -1 log x -3 (x + h) -3 ≤ 3x -1 log 1 + h x ≤ 3hx -2 ,
we get

∞ 0 2π 0 |(c h , -c )(v, v * , z, ϕ)| 2 dzdϕ ≤ C h + h log 1 |v -v * | -2 ≤ Ch |v -v * | -2 .
We finally prove (iii). First, by Point (i), we have

∞ 0 2π 0 c (v, v * , z, ϕ) 2 dzdϕ = ∞ 0 2π 0 c (v, v * , z, ϕ + ϕ 0 (v -v * , ṽ -ṽ * )) 2 dzdϕ = k |v -v * | -1 ,
with k ≤ 2 and we thus get the first bound in the min. For the second bound, we set ∆ := c (v, v * , z, ϕ) -c (ṽ, ṽ * , z, ϕ + ϕ 0 (v -v * , ṽ -ṽ * ))

2

. Looking at the proof of Fournier-Guérin [14, Lemma 2.3], we get

∆ ≤ C |(v -v * ) -(ṽ -ṽ * )| 2 G 2 z |v -v * | -3 + G 2 z |ṽ -ṽ * | -3 + min(|v -v * | 2 , |ṽ -ṽ * | 2 ) G z |v -v * | -3 -G z |ṽ -ṽ * | -3 2 . Using the substitution θ = G (z/Φ(|v -v * |)) or θ = G (z/Φ(|ṽ -ṽ * |)), we have ∞ 0 2π 0 G 2 z |v -v * | -3 + G 2 z |ṽ -ṽ * | -3 dzdϕ = 2π π 0 θ 2 β (θ)dθ |v -v * | -3 + |ṽ -ṽ * | -3 = 8 |v -v * | -3 + |ṽ -ṽ * | -3 . We set a = |v -v * | and b = |ṽ -ṽ * |. Using (A5) (observe that log max(x,y) min(x,y) ≤ | log x| + | log y|), we get min(a 2 , b 2 ) ∞ 0 2π 0 G z a -3 -G z b -3 2 dzdϕ ≤ C min(a, b) 2 (a -3 -b -3 ) 2 a -3 + b -3 + 1 log 1 max(a -3 , b -3 )[| log a -3 | + | log b -3 |] ≤ C(a -b) 2 (a -3 + b -3 ) + C log 1 min(a, b) -1 [| log a| + | log b|] ≤ C(a -b) 2 (a -3 + b -3 ) + C log 1 [a -2 + b -2 + a 2 + b 2 ],
where we used that

min(a, b) 2 (a -3 -b -3 ) 2 a -3 + b -3 ≤ 9 min(a, b) 2 (a -b) 2 min(a, b) -8 a -3 + b -3 ≤ 9(a -b) 2 min(a, b) -3 ≤ 9(a -b) 2 (a -3 + b -3 ), and that (observe that | log a| ≤ a -1 + a) min(a, b) -1 [| log a| + | log b|] ≤ 1 2 [a -1 + b -1 ] 2 + 1 2 [| log a| + | log b|] 2 ≤ C(a -2 + b -2 + a 2 + b 2 ).
We thus have

∞ 0 2π 0 ∆dzdϕ ≤C|(v -v * ) -(ṽ -ṽ * )| 2 |v -v * | -3 -|ṽ -ṽ * | -3 + C log 1 [|v -v * | -2 + |ṽ -ṽ * | -2 + |v -v * | 2 + |ṽ -ṽ * | 2 ],
which concludes the proof. 6.2. Definition of the processes. We consider a random variable V 0 with law f 0 . We fix a white noise W on [0, T ] × [0, 1] with covariance measure dsdα and we consider a process (Y t ) t∈[0,T ] and an α-process ( Ỹt ) t∈[0,T ] such that for any t ∈ [0, T ],

L(Y t ) = L α ( Ỹt ) = g t , such that L α ( Ỹt ) t∈[0,T ] = L (Y t ) t∈[0,T ]
and such that (4.6) is satisfied with γ = -3 (see Proposition 4.4). For any t ∈ [0, T ], we consider an α-random variable Ṽ t with law

f t such that W 2 2 (f t , g t ) = E α [| Ṽ t -Ỹt | 2 ] and we consider the solution (V t ) t∈[0,T ] to (4.5) (with Φ(|v -v * |) = (|v -v * | + h ) -3
) for some (F t ) t∈[0,T ] -Poisson measure N as in Proposition 4.3. We will precise later the dependence of N with the white noise W . We recall the equations satisfied by (V t ) t∈[0,T ] and (Y t ) t∈[0,T ] , and we introduce some intermediate processes (here n ∈ N * is fixed) 

V t =V 0 + t 0 ∞ 0 2π 0 1 0 c h , (V s-, Ṽ s (α), z, ϕ) Ñ (ds, dz, dϕ, dα) -k t 0 1 0 |V s -Ṽ s (α)| + h -3 V s -Ṽ s (α) dsdα, W t =V 0 + t 0 ∞ 0 2π 0 1 0 c (V s-, Ṽ s (α), z, ϕ) Ñ (ds, dz, dϕ, dα) -k t 0 1 0 |V s -Ṽ s (α)| -3 V s -Ṽ s (α) dsdα, V n, t =V 0 + t 0 ∞ 0 2π 0 1 0 c (Y ρn(s) , Ỹρn(s) (α), z, ϕ + Φ n (s, α)) Ñ (ds, dz, dϕ, dα) -k t 0 1 0 |V s -Ṽ s (α)| -3 V s -Ṽ s ( 
+ t 0 1 0 b V s -Ṽ s (α) dsdα, J n, t =V 0 + t 0 1 0 σ Y ρn(s) -Ỹρn(s) (α) W (ds, dα) + t 0 1 0 b V s -Ṽ s (α) dsdα, Y t =V 0 + t 0 1 0 σ Y s -Ỹs (α) W (ds, dα) + t 0 1 0 b Y s -Ỹs (α) dsdα,
where (recall Lemma 4.2)

Φ n (s, α) = ϕ 0 (V s -Ṽ s (α), Y ρn(s) -Ỹρn(s) (α)), (6.5)
and d is defined by replacing γ by -3 and G by G in (5.2). Recall that b(v) = -2|v| -3 v and that k is defined in (6.4). Finally, ρ n is defined as follows.

We consider some subdivision 0 = a n 0 < ... < a n 2nT -1 < a n 2nT = T of [0, T ] such that 1/4n < a n i+1 -a n i < 1/n. In order to lighten notation, we write a i = a n i .

For s ∈ [0, T ], we set

ρ n (s) = 2nT -1 i=0 a i 1 s∈[ai,ai+1) .
Observe that by construction, we have sup [0,T ] |s -ρ n (s)| ≤ 1/n.

6.3. The proof. The ideas will be the same as for Theorem 3.1. The proofs will thus be very similar to those used for Lemmas 5.2, 5.3, 5.4, 5.5 and 5.6. So instead of rewriting all the proofs, we will only point out the modifications that we have to handle.

We start by a lemma where we compute the error due to the parameter h in the collision kernel. Observe that after this lemma, we will use a collision kernel which corresponds to the real Coulomb case (without the parameter h ) for our computations. Furthermore, the errors that we will get after this lemma will not depend on h . This confirms the fact that the parameter h is not useful to get a rate of convergence for the grazing collisions limit for the Coulomb potential.

Here again, we recall that we only introduce this parameter in order to get easily existence and uniqueness of (f t ) t∈[0,T ] (and of the process (V t ) t∈[0,T ] ). Lemma 6.3. There exists a constant C depending on sup [0,T ] ||f s || ∞ such that for any t ∈ [0, T ], any ∈ (0, 1),

E[|V t -W t | 2 ] ≤ Ch e -C .
Proof. We have

V t -W t = t 0 ∞ 0 2π 0 1 0 (c h , -c ) V s , Ṽ s (α), z, ϕ Ñ (ds, dz, dϕ, dα) -k t 0 1 0 |V s -Ṽ s (α)| + h -3 -|V s -Ṽ s (α)| -3 V s -Ṽ s (α) dsdα.
Using Itô's formula and taking expectations, we thus get

E[|V t -W t | 2 ] = t 0 ∞ 0 2π 0 1 0 E (c h , -c ) V s , Ṽ s (α), z, ϕ 2 dsdzdϕdα -2k t 0 1 0 E |V s -Ṽ s (α)| + h -3 -|V s -Ṽ s (α)| -3 V s -Ṽ s (α) . V s -W s dsdα =: A + B.
Using Point (ii) of Lemma 6.2, we get

A ≤ Ch t 0 E E α [|V s -Ṽ s (α)| -2 ] ds ≤ Ch t 0 (1 + ||f s || ∞ )ds,
by Lemma 6.1. For B, we first observe that for any x, h, y > 0

x -3 -(x + h) -3 xy ≤ 1 y≥1 x -3 xy + 1 y≤x x -3 -(x + h) -3 ) x 2 + 1 y 2 ≤x≤y<1 x -3 y 2 + 1 x<y 2 <1 x -3 xy ≤ 1 y≥1 x -2 y 2 + 31 y≤x hx -2 + 1 y 2 ≤x≤y<1 x -3 y 2 + 1 x<y 2 <1 x -2 .
We thus get (recall that k ≤ 2)

B ≤ C t 0 E E α [1 |V s -W s |≥1 |V s -W s | 2 |V s -Ṽ s | -2 + 1 |V s -W s |≤|V s -Ṽ s | h |V s -Ṽ s | -2 + 1 |V s -W s | 2 ≤|V s -Ṽ s |≤|V s -W s |<1 |V s -W s | 2 |V s -Ṽ s | -3 + 1 |V s -Ṽ s |<|V s -W s | 2 <1 |V s -Ṽ s | -2 ] ds.
Using that L α ( Ṽ s ) = f s and Lemma 6.1, we have

B ≤ C t 0 E (1 + ||f s || ∞ )|V s -W s | 2 + (1 + ||f s || ∞ )h + 1 |V s -W s |<1 |V s -W s | 2 1 -||f s || ∞ log(|V s -W s | 2 ) + ||f s || ∞ |V s -W s | 2 ds ≤ C t 0 (1 + ||f s || ∞ )E |V s -W s | 2 + h + ψ(|V s -W s | 2 ) ds,
where ψ was defined in (6.1). Using that x ≤ ψ(x) for any x ≥ 0 and the approximate Jensen inequality (recall the paragraph just after (6.1)), we thus get (ii) For all t ∈ [0, T ], we have

E[|V t -W t | 2 ] ≤ Ch + C t 0 ψ(E[|V s -W s | 2 ])
E |V t -V ρn(t) | 2 + E |Y t -Y ρn(t) | 2 + E α | Ỹt -Ỹρn(t) | 2 ≤ C n .
Proof. Since t -ρ n (t) ≤ 1/n, (ii) immediately follows from (i). To prove (i) (for example for (V t ) t∈[0,T ] ), we follow the line of the proof of Lemma 5.2, and we get (observe that (a + h) -3 ≤ a -3 ) 

E |V t -V t | 2 ≤ 2k t t E E α [|V s -Ṽ s | -1 ] ds + 2k 2 E t t E α [|V s -Ṽ s | -2 ]ds 2 ≤ 2k t t (1 + ||f s || ∞ )ds + 2k
E[|W t -V n, t | 2 ] ≤ C log 1 + C t 0 log n n + ψ(E[|V s -Y s | 2 ]) + ψ(E α [| Ṽ s -Ỹs | 2 ]) ds.
Proof. Observing that

W t -V n, t = t 0 ∞ 0 2π 0 1 0 c (V s-, Ṽ s (α), z, ϕ)
-c Y ρn(s) , Ỹρn(s) (α), z, ϕ + Φ n (s, α) Ñ (ds, dz, dϕ, dα),

we have

I := E |W t -V n, t | 2 = t 0 ∞ 0 2π 0 1 0 E c (V s , Ṽ s (α), z, ϕ) -c Y ρn(s) , Ỹρn(s) (α), z, ϕ + Φ n (s, α) 2 dsdzdϕdα.
We set

δ = ∞ 0 2π 0 c (V s , Ṽ s (α), z, ϕ) -c Y ρn(s) , Ỹρn(s) (α), z, ϕ + Φ n (s, α) 2 dzdϕ.
Setting

a s := |V s -Y ρn(s) | + | Ṽ s (α) -Ỹρn(s) (α)|, v s := |V s -Ṽ s (α)|
, y s := |Y ρn(s) -Ỹρn(s) (α)| and using Lemma 6.2, we get

δ ≤ C1 as≥1 v -1 s + y -1 s + C1 as≤1 1 vs≥|V s -Y ρn (s) | 2 ,ys≥|V s -Y ρn (s) | 2 |V s -Y ρn(s) | 2 v -3 s + y -3 s + 1 log 1 [v -2 s + y -2 s + v 2 s + y 2 s ] + C1 as≤1 1 vs≥| Ṽ s (α)-Ỹρn(s) (α)| 2 ,ys≥| Ṽ s (α)-Ỹρn(s) (α)| 2 | Ṽ s (α) -Ỹρn(s) (α)| 2 v -3 s + y -3 s + 1 log 1 [v -2 s + y -2 s + v 2 s + y 2 s ] + C1 as≤1 1 vs≤|V s -Y ρn (s) | 2 v -1 s + y -1 s + C1 as≤1 1 ys≤|V s -Y ρn (s) | 2 v -1 s + y -1 s + C1 as≤1 1 vs≤| Ṽ s (α)-Ỹρn(s) (α)| 2 v -1 s + y -1 s + C1 as≤1 1 ys≤| Ṽ s (α)-Ỹρn(s) (α)| 2 v -1 s + y -1 s =: C 7 i=1 δ i .
We thus have I ≤ 7 i=1 I i where

I i = t 0 1 0 E[δ i ]dsdα.
Using that 1 as≥1 ≤ a 2 s , we have

I 1 ≤ t 0 1 0 E |V s -Y ρn(s) | + | Ṽ s (α) -Ỹρn(s) (α)| 2 |V s -Ṽ s (α)| -1 + |Y ρn(s) -Ỹρn(s) (α)| -1 dsdα ≤ 2 t 0 E |V s -Y ρn(s) | 2 E α |V s -Ṽ s | -1 + |Y ρn(s) -Ỹρn(s) | -1 ds + 2 t 0 E α | Ṽ s -Ỹρn(s) | 2 E |V s -Ṽ s | -1 + |Y ρn(s) -Ỹρn(s) | -1 ds ≤ C t 0 E |V s -Y ρn(s) | 2 + E α | Ṽ s -Ỹρn(s) | 2 1 + ||f s || ∞ + ||g ρn(s) || ∞ ds,
by Lemma 6.1. We thus get, using the triangular inequality and Lemma 6.4,

I 1 ≤ C t 0 1 n + E |V s -Y s | 2 + E α | Ṽ s -Ỹs | 2 ds, (6.6)
where C depends on sup s∈[0,T ] ||f s + g s || ∞ . Using Lemma 6.1, we have

I 2 ≤ t 0 E |V s -Y ρn(s) | 2 1 |V s -Y ρn (s) |≤1 E α [|V s -Ṽ s | -3 1 |V s -Ṽ s |≥|V s -Y ρn (s) | 2 + |Y ρn(s) -Ỹρn(s) | -3 1 |Y ρn (s) -Ỹρn(s) |≥|V s -Y ρn(s) | 2 ] ds + C log 1 t 0 E E α [|V s -Ṽ s | -2 + |Y ρn(s) -Ỹρn(s) | -2 + |V s -Ṽ s | 2 + |Y ρn(s) -Ỹρn(s) | 2 ] ds ≤ t 0 E |V s -Y ρn(s) | 2 1 |V s -Y ρn (s) |≤1 1- C||f s + g ρn(s) || ∞ log |V s -Y ρn(s) | 2 ds + C log 1 t 0 (1 + ||f s + g ρn(s) || ∞ + m 2 (f 0 ))ds.
Recalling (6.1) and using the (approximate) Jensen inequality for the function ψ, the fact that ψ(a + b) ≤ ψ(a) + ψ(b) and that the function ψ is increasing, and the Lemma 6.4 we get

I 2 ≤ C t 0 E ψ(|V s -Y ρn(s) | 2 ) ds + C log 1 (6.7) ≤ C t 0 ψ( C n ) + ψ(E[|V s -Y s | 2 ]) ds + C log 1 ≤ C t 0 log n n + ψ(E[|V s -Y s | 2 ]) ds + C log 1 ,
where C depends on sup s∈[0,T ] ||f s + g s || ∞ . Using the same ideas, we also have

I 3 ≤ C t 0 log n n + ψ(E α [| Ṽ s -Ỹs | 2 ]) ds + C log 1 . (6.8)
We now deal with I 4 .

I 4 ≤ t 0 E E α [1 as≤1 1 [V s -Ṽ s |≤|V s -Y ρn (s) | 2 (|V s -Ṽ s | -1 + |Y ρn(s) -Ỹρn(s) | -1 )] ds.
Using Lemma 6.1, we first observe that

E α 1 as≤1 1 [V s -Ṽ s |≤|V s -Y ρn (s) | 2 |V s -Ṽ s | -1 ≤ C1 |V s -Y ρn(s) |≤1 ||f s || ∞ |V s -Y ρn(s) | 4 ≤ C|V s -Y ρn(s) | 2 .
Next, using the Hölder inequality with p = 3 and q = 3/2, and then Lemma 6.1, we get

E α 1 [V s -Ṽ s |≤|V s -Y ρn(s) | 2 |Y ρn(s) -Ỹρn(s) | -1 ≤ E α 1 [V s -Ṽ s |≤|V s -Y ρn (s) | 2 1 3 E α |Y ρn(s) -Ỹρn(s) | -3 2 2 3 ≤ C||f s || ∞ |V s -Y ρn(s) | 6 1 3 1 + C||g ρn(s) || ∞ 2 3 ≤ C(1 + ||f s + g ρn(s) || ∞ )|V s -Y ρn(s) | 2 .
We thus have

I 4 ≤ C t 0 E[|V s -Y ρn(s) | 2 ]ds ≤ C t 0 1 n + E[|V s -Y s | 2
] ds (6.9) by Lemma 6.4. With the same arguments,

I 5 ≤ C t 0 1 n + E[|V s -Y s | 2 ]
ds, (6.10) and

I 6 + I 7 ≤ C t 0 1 n + E α [| Ṽ s -Ỹs | 2 ] ds. (6.11)
It suffices to use (6.6), (6.7), (6.8), (6.9), (6.10), (6.11) and to observe that x ≤ ψ(x) for any x ≥ 0 to conclude the proof. Lemma 6.6. There exists a constant C depending on sup s∈[0,T ] ||f s + g s || ∞ and on T such that for any n ≥ 2, ∈ (0, 1) and t ∈ [0, T ],

E[|V n, t -I n, t | 2 ] ≤ C π 0 θ 4 β (θ)dθ.
Proof. As in the proof of Lemma 5.4, we have

E[|V n, t -I n, t | 2 ] ≤ C π 0 θ 4 β (θ)dθ t 0 E E α [|Y ρn(s) -Ỹρn(s) | -1 ] ds + E t 0 E α [|V s -Ṽ s | -2 ]ds 2 ≤ C π 0 θ 4 β (θ)dθ t 0 (1 + ||g ρn(s) || ∞ )ds + E t 0 (1 + ||f s || ∞ )ds 2 ≤ C π 0 θ 4 β (θ)dθ,
by Lemma 6.1.

The following lemma states as follows.

Lemma 6.7. Assume that m p+2 (f 0 ) < ∞ for some p ≥ 5. We can couple the Poisson measure N and the white noise W in such a way that there exists a constant C depending on T , m p+2 (f 0 ), H(f 0 ), and sup s∈[0,T ] ||f s + g s || ∞ such that for any

M > 2m 2 (f 0 ), η ∈ [ , π], n ≥ 2 and t ∈ [0, T ], E[|I n, t -J n, t | 2 ] ≤ C η 2 M 2 n log 2 (r η ) + log 2 (nη 2 ) + M + π η θ 2 β (θ)dθ + 1 M p ,
where

r η = π 4 η 0 θ 2 β (θ)dθ.
Proof. It suffices to follow the line of the proof of Lemma 5.5, recalling that

E[|Y ρn(s) -Ỹρn(s) | -1 ] ≤ (1 + C||g ρn(s) || ∞ ) ≤ C,
by Lemma 6.1.

We now give the last lemma needed to prove Theorem 1.2.

Lemma 6.8. There exists a constant C depending on sup s∈[0,T ] ||f s + g s || ∞ and on T such that for any n ≥ 2, ∈ (0, 1) and t ∈ [0, T ],

E[|J n, t -Y t | 2 ] ≤ C log n n + C t 0 ψ(E[|V s -Y s | 2 ]) + ψ(E α [| Ṽ s -Ỹs | 2 ]) + ψ(E[|J n, s -Y s | 2 ]) ds.
Proof. The Itô formula gives

E[|J n, t -Y t | 2 ] = t 0 1 0 E |σ Y ρn(s) -Ỹρn(s) (α) -σ Y s -Ỹs (α) | 2 dsdα + t 0 1 0 E b V s -Ṽ s (α) -b Y s -Ỹs (α) .(J n, s -Y s ) dsdα =: A + B.
Using Fournier [17, Lemma 6], we get

A ≤ 2 t 0 E α E[|σ(Y ρn(s) -Ỹρn(s) ) -σ(Y ρn(s) -Ỹs )| 2 ] ds + 2 t 0 E E α [|σ(Y ρn(s) -Ỹs ) -σ(Y s -Ỹs )| 2 ] ds ≤ C t 0 (1 + ||g ρn(s) || ∞ )E α ψ(| Ỹρn(s) -Ỹs | 2 ) ds + C t 0 (1 + ||g s || ∞ )E ψ(|Y ρn(s) -Y s | 2 ) ds ≤ C t 0 ψ(C/n)ds ≤ C log n n ,
where we used the (approximate) Jensen inequality for ψ, Lemma 6.4 and the fact that ψ is increasing (recall (6.1)). For B, we first set

R = | b V s -Ṽ s (α) -b Y s - Ỹs (α) .(J n, s -Y s )| and E s = {|J n, s -Y s | ≥ |V s -Y s | + | Ṽ s (α) -Ỹs (α)|}. Using [17, Lemma 3], we have R ≤ 1 E c s (|V s -Y s | + | Ṽ s (α) -Ỹs (α)|)|b V s -Ṽ s (α) -b Y s -Ỹs (α) | + C1 Es 1 |J n, s -Ys|≥1 |J n, s -Y s | 2 (|V s -Ṽ s (α)| -2 + |Y s -Ỹs (α)| -2 ) + C1 Es 1 |J n, s -Ys|≤1 1 |V s -Ṽ s (α)|>|J n, s -Ys| 4 1 |Ys-Ỹs(α)|>|J n, s -Ys| 4 |J n, s -Y s | 2 (|V s -Ṽ s (α)| -3 + |Y s -Ỹs (α)| -3 ) + C1 Es 1 |J n, s -Ys|≤1 1 |V s -Ṽ s (α)|≤|J n, s -Ys| 4 (|V s -Ṽ s (α)| -2 + |Y s -Ỹs -2 ) + Es 1 |J n, s -Ys|≤1 1 |Ys-Ỹs(α)|≤|J n, s -Ys| 4 (|V s -Ṽ s (α)| -2 + |Y s -Ỹs (α)| -2 ) =: 5 i=1 R i .
We thus have B ≤

5 i=1 B i where B i := t 0 E E α [R i ] ds. Using [17, Lemma 7], we get B 1 ≤ C t 0 (1 + ||f s + g s || ∞ ) ψ(E[|V s -Y s | 2 ]) + ψ(E α [| Ṽ s -Ỹs | 2 ]) ds.
For B 2 , we easily get by Lemma 6.1,

B 2 ≤ C t 0 E[|J n, s -Y s | 2 ](1 + ||f s || ∞ + ||g s || ∞ )ds.
Using Lemma 6.1, we have

B 3 ≤ C t 0 E |J n, s -Y s | 2 1 |J n, s -Ys|<1 E α [1 |V s -Ṽ s |>|J n, s -Ys| 4 |V s -Ṽ s (α)| -3 ] + 1 |Ys-Ỹs|>|J n, s -Ys| 4 |Y s -Ỹs | -3 ds ≤ C t 0 E |J n, s -Y s | 2 1 |J n, s -Ys|<1 (1 + (||f s || ∞ + ||g s || ∞ ) log 1 |J n, s -Y s | 4 ) ds.
Recalling (6.1), observing that log(x 4 ) = 2 log(x 2 ) and using the (approximate) Jensen inequality for ψ, we get

B 3 ≤ C t 0 ψ(E[|J n, s -Y s | 2 ])ds.
We also have by Lemma 6.1,

B 4 ≤C t 0 ||f s || ∞ E |J n, s -Y s | 4 1 |J n, s -Ys|≤1 ds + C t 0 E 1 |J n, s -Ys|≤1 E α [1 |V s -Ṽs|≤|J n, s -Ys| 4 |Y s -Ỹs | -2 ] ds.
Using first the Hölder inequality with p = 5 and q = 5/4, and then Lemma 6.1, we get 5 . We thus get

E α [1 |V s -Ṽ s |≤|J n, s -Ys| 4 |Y s -Ỹs | -2 ] ≤ E α [1 |V s -Ṽ s |≤|J n, s -Ys| 4 ] 1 5 E α [|Y s -Ỹs | -5 2 ] 4 5 ≤ (C||f s || ∞ |J n, s -Y s | 12 ) 1 5 (1 + C||g s || ∞ ) 4 5 ≤ C(1 + ||f s + g s || ∞ )|J n, s -Y s | 12 
B 4 ≤ t 0 E (|J n, s -Y s | 4 + |J n, s -Y s | 12 5 )1 |J n, s -Ys|≤1 ds ≤ C 1 0 E[|J n, s -Y s | 2 ]ds.
We have the same bound for B 5 and thus (recalling that x ≤ ψ(x) for any x ≥ 0)

B ≤ C t 0 ψ(E[|V s -Y s | 2 ]) + ψ(E α [| Ṽ s -Ỹs | 2 ]) + ψ(E[|J n, s -Y s | 2 ]) ds,
which concludes the proof.

6.4. Proof of Theorem 1.2. We set u(t

) := E[|V t -Y t | 2 ] and v(t) := E[|V t - W t | 2 ] + E[|W t -V n, t | 2 ] + E[|V n, t -I n, t | 2 ] + E[|I n, t -J n, t | 2 ] + E[|J n, t -Y t | 2 ]
. We have u(t) ≤ Cv(t) and using Lemmas 6.3, 6.5, 6.6, 6.7 and 6.8, we get

v(t) ≤Ch e -C + C log 1 + C t 0 log n n + ψ(E[|V s -Y s | 2 ]) + ψ(E α [| Ṽ s -Ỹs | 2 ]) ds + C π 0 θ 4 β (θ)dθ + C η 2 M 2 n log 2 (r η ) + log 2 (nη 2 ) + M + π η θ 2 β (θ)dθ + 1 M p + C log n n + C t 0 ψ(E[|V s -Y s | 2 ]) + ψ(E α [| Ṽ s -Ỹs | 2 ]) + ψ(E[|J n, s -Y s | 2 ]) ds. Since E[|J n, s -Y s | 2 ] ≤ v ( 
s) and u(s) ≤ Cv(s) for any s ∈ (0, T ], using that the function ψ (recall (6.1)) is increasing, we get (recall that

E α [| Ṽ s -Ỹs | 2 ] = W 2 2 (f s , g s ) ≤ u(s) for any s ∈ [0, T ]) v(t) ≤Ch e -C + C log n n + C log 1 + C π 0 θ 4 β (θ)dθ + C t 0 ψ v(s) ds + C η 2 M 2 n log 2 (r η ) + log 2 (nη 2 ) + M + π η θ 2 β (θ)dθ + 1 M p .
Setting, for ∈ (0, 1) fixed, η

= 1 log 1 , n ≈ log 1 2p 2p+3 , M = 2m 2 (f 0 ) log 1 2 2p+3
and observing that

π 0 θ 4 β (θ)dθ ≤ C log 1 , π η θ 2 β (θ)dθ ≤ C log log 1 log 1
, lim →0 r η = 1 (whence log 2 r η is bounded for ∈ (0, 1)) and

η 2 M 2 n log 2 (r η ) + log 2 (nη 2 ) + M ≤ C log 1 2p+2 2p+3 1 + log 2 log 1 + log 1 2 2p+3 ≤ C log 1 2p 2p+3 , we get v(t) ≤ Ch e -C + C log log 1 log 1 2p 2p+3 + C log 1 + C log 1 2p 2p+3 + C log log 1 log 1 + C t 0 ψ v(s) ds ≤ Ch e -C + C log 1 2p-1 2p+3 + C t 0 ψ v(s) ds. By Lemma A.4, if is small enough (such that Ch e -C + C log 1 2p-1 2p+3 ≤ 1) we finally have v(t) ≤ C h e -C + 1 log 1 2p-1 2p+3 e -C ≤ Ch a + C log 1 a ,
for some a > 0. This concludes the proof since W Using this result, we estimate the distance between a compensated Poisson integral and a Gaussian variable.

Proposition A.2. Let A be a measurable space endowed with a non negative σfinite measure ν and N be a Poisson measure on [0, ∞) × A with intensity measure dtν(dz). We consider h : A → R d and we set Z t = t 0 A h(z) Ñ (ds, dz), µ t = L(Z t ) and Γ = A h(z)h * (z)ν(dz). If κ := max z∈A |Γ -1/2 h(z)| ∈ (0, ∞), then Proof. For n ∈ N * to be chosen later and i ∈ {1, ..., n}, we consider

ξ i = n t Γ -1/2
it/n (i-1)t/n A h(z) Ñ (ds, dz).

We want to use Theorem A.1. We first observe that the random variables ξ i are i.i.d., E(ξ i ) = 0 and Cov(ξ i ) = I d . We now prove that ξ 1 ∈ A d (τ ) for some τ ≥ 1.

For u ∈ R d , we have E exp(u.ξ 1 ) = exp(ϕ(u)), with ϕ(u) = t n A exp n t (Γ -1/2 h(z)).u -1 -n t (Γ -1/2 h(z)).u ν(dz).

For (x, y) ∈ R d × R d , d x d 2 y 2 ϕ(u) = n t A exp n t (Γ -1/2 h(z)).u [(Γ -1/2 h(z)).y] 2 (Γ -1/2 h(z)).x ν(dz).

We now search for τ > 0 such that |d x d So we have ξ i ∈ A d (τ ) with τ = 2dκ n t . Thus choosing n ≥ t 4d 2 κ 2 so that τ ≥ 1, we can apply Theorem A.1: one can construct on some probability space a sequence of independent random vectors X 1 , ..., X n such that L(X k ) = L(ξ k ) for any k = 1, ..., n and a sequence of independent random vectors Y 1 , ..., Y n ∼ N (0, I d ) such that

E exp a 2d √ t κ 1 √ n n i=1 X i - n i=1 Y i ≤ exp b max(1, log t 4d 2 κ 2 ) .
Then setting R t := A.2. Ellipticity of the diffusion matrix. In this article, we need some ellipticity hypothesis for the diffusion matrix l, recall (1.8). To this aim, we will extend some result stated in Desvillettes-Villani [START_REF] Desvillettes | On the spatially homogeneous Landau equation for hard potentials. I. Existence, uniqueness and smoothness[END_REF] for γ ≥ 0. Recalling that ψ(y) = y(1 -1 y≤1 log y), we get that M (x) = log(1 -log x) for

x ∈ [0, 1] and M (x) = -log x for x > 1. Let t ∈ [0, T ] be fixed.

If a ≤ 1 and ρ(t) ≤ 1, we have log 1-log a 1-log ρ(t) ≤ K which gives ρ(t) ≤ e 1-e -K a e -K .

If a ≤ 1 and ρ(t) > 1, we have log (1-log a)ρ(t) ≤ K which gives ρ(t) ≤ e K 1-log a and thus necessarily (since ρ(t) > 1) a > e 1-e K . Thus ρ(t) ≤ e K ≤ e K e e K -1 a.

If a > 1 and ρ(t) > 1, we have log ρ(t) a ≤ K which gives ρ(t) ≤ e K a. If a > 1 and ρ(t) ≤ 1, we have ρ(t) ≤ 1 < a, which concludes the proof.

A.4. Construction of a subdivision. We end this paper with the following result.

Proposition A.5. For T > 0 fixed, we consider h ∈ L 1 ([0, T ]) with h(s) ≥ 0 for any s ∈ [0, T ]. For any n ∈ N * , there exist a subdivision 0 < a n 0 < ... < a n 2nT -1 < a n 2nT = T such that a n 0 < 1/n and for any i ∈ {0, ..., 2nT -1}, 1/4n < a n i+1 -a n i < 1/n and Proof. We take a n i ∈ i 2n , 2i+1 4n such that h(a n i ) ≤ h(s) + 1/T for any s ∈ i 2n , 2i+1 4n . We set g(s) =

2nT -1 i=0

h(a n i )1

s∈ i 2n , 2i+1 4n 
. We have g(s) ≤ h(s) + 1/T , 1/4n < a n i+1 -a n i < 3/4n and thus 
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 51 For any v, v * ∈ R 3 , we have (recall (4.1), (4.2) and (5.2))∞ 0 2π 0 |c(v, v * , z, ϕ)| 2 dzdϕ = k|v -v * | γ+2 ,(5.4) 

  Ỹu (α), z, ϕ d * y, Ỹu (α), z, ϕ 1 {G(z/|y-Ỹu(α)| γ )≤η}

  d y, Ỹu (α), z, ϕ 1 {G(z/|y-Ỹu(α)| γ )≤η} 1 {| Ỹu(α)|<M } |, where the supremum is taken over all α ∈ [0, 1], z ∈ [0, ∞) and ϕ ∈ [0, 2π]. By Step 1 and Proposition A.2, we have

4 π η θ 2

 42 β(θ)dθ by (A2). We removed the square of π η θ 2 β(θ)dθ because it will appear without square in the computation of D. Using first that |a -b| 2 ≤ 2|a| 2 + 2|b| 2 , and then the substitution θ = G(z/|Y ρn(s) -Ỹρn(s) (α)| γ ) for which dz = |Y ρn(s) -Ỹρn(s) (α)| γ β(θ)dθ (recall (5.2)) for the Poisson integral, we get

  ρn(s) , Ỹρn(s) (α), z, ϕ + Φ n (s, α)) Ñ (ds, dz, dϕ, dα)

2 2 ( 1 .

 21 f t , g t ) ≤ E[|V s -Y s | 2 ] = u(t) ≤ Cv(t) and since for greater, we have W2 2 (f t , g t ) ≤ 2m 2 (f 0 ).Appendix A. AppendixA.Distance between a compensated Poisson integral and a Gaussian variable. We first recall a result of Zaitsev[START_REF] Zaitsev | Estimates for the strong approximation in multidimensional central limit theorem[END_REF]. For τ ≥ 0 and d ∈ N, let A d (τ ) be the class of probability distributions F on R d for which the function ϕ(z) = log R d e z.x F (dx) is analytic on {z ∈ C d , |z|τ < 1} and |d u d 2 v ϕ(z)| ≤ |u|τ Dv.v for all u, v ∈ R d and |z|τ < 1,where D is the covariance matrix of F , and d u ϕ is the derivative of ϕ in the direction u.Theorem A.1. (Zaitsev [32, Theorem 2]) Suppose that τ ≥ 1 and that ξ 1 , ..., ξ n are independent random vectors with distributionsL(ξ k ) ∈ A d (τ ), E(ξ k ) = 0, Cov(ξ k ) = I d , k = 1, ..., n.Then one can build on some probability space a family of independent random vectors X 1 , ..., X n such that L(X k ) = L(ξ k ) for any k = 1, ..., n and a family of independent random vectors Y 1 , ..., Y n ∼ N (0,I d ) such that E exp a∆ n (X, Y ) τ ≤ exp b max(1, log n/τ 2 ) ,where∆ n (X, Y ) = max 1≤k≤n k i=1 X i -k i=1 Y i ,and a, b are positive quantities depending only on d.

W 2 2 κ 2 2 ,

 22 (µ t , N (0, tΓ)) ≤ Cκ 2 |Γ| max 1, log t where C depends only on d and where N (0, tΓ) is the Gaussian distribution on R d with mean 0 and covariance matrix tΓ.

A|Γ - 1 /(Γ - 1 )

 11 2 h(z)| 2 ν(dz) = A h * (z)Γ -1 h(z)ν(dz) = d i,j=1 A h i (z)(Γ -1 ) ij h j (z)ν(dz) ij Γ ij = d i=1 ( d j=1 (Γ -1 ) ij Γ ji ) = d i=1 (Γ -1 Γ) ii = d.Setting τ = 2dκ n t , we thus have |d x d 2 y 2 ϕ(u)| ≤ |x||y| 2

Proposition A. 3 .A. 3 . 1 x

 331 Let γ ∈ [-3, 0) and E 0 , H 0 > 0 be two constants. Consider a nonnegative function f such that R 3 f (v)dv = 1, m 2 (f ) ≤ E 0 and H(f ) ≤ H 0 . There exists a constant c = c(γ, E 0 , H 0 ) such that for any v ∈ R 3 and any ξ ∈ R 3 ,( lf (v)ξ).ξ ≥ c(1 + |v|) γ |ξ| 2 , where lf (v) = R 3 l(v -v * )f (v * )dv * . Proof. For γ ∈ [-2,0), it is easy to check that in the proof of[START_REF] Desvillettes | On the spatially homogeneous Landau equation for hard potentials. I. Existence, uniqueness and smoothness[END_REF] Proposition 4], they only use that γ + 2 ≥ 0. For γ ∈ [-3, -2), we have to adapt a little bit their proof. In this case, estimate (44) of their proof still holds:for all v ∈ R 3 , θ ∈ (0, π/2) and R * > 0 ( lf (v)ξ).ξ ≥ R 3 \D θ,ξ (v) dv * 1 |v * |≤R * |v -v * | γ+2 f (v * ) sin 2 θ ≥ (|v| + R * ) γ+2 sin 2 θ R 3 \D θ,ξ (v) dv * 1 |v * |≤R * f (v * ), (recall that γ + 2 < 0) where D θ,ξ (v) = v * ∈ R 3 , v-v * |v-v * | .ξ ≥ cos θ is the cone centred at v, of axis directed by ξ, and of angle θ. Now following the scheme of their proof, we easily get that ( lf(v)ξ).ξ ≥ K|v| γ if |v| ≥ 2R * and that ( lf (v)ξ).ξ ≥ K if |v| < 2R * with R * = 2√ E 0 , which concludes the proof. Generalization of the Grönwall Lemma. In order to treat the Coulomb case, we need to use the following generalization of the Grönwall lemma.Lemma A.4. Let T > 0 and γ : [0, T ] → R + satisfy T 0 γ(s)ds < ∞. Let ψ be defined by(6.1). Consider a bounded function ρ : [0, T ] → R + such that, for some a ≥ 0, for all t ∈ [0, T ], ρ(t) ≤ a + t 0 γ(s)ψ(ρ(s))ds. We set K := T 0 γ(s)ds. Then ρ(t) ≤ C(a e -K + a) for all t ∈ [0, T ], where C only depends on K.Proof. From Chemin [6, Lemme 5.2.1 p. 89], we get that M (a) -M (ρ(t)) ≤ t 0 γ(s)ds for all t ∈ [0, T ], where M (x) := (1/ψ(y))dy for x > 0.

  ds + 3, which concludes the proof.

  see e.g. Desvillettes-Mouhot [12, Section 2]. Following the line of [12, proof of Proposition 3.2], we get

  by Fournier-Mouhot [14, Step 3 of the proof of Corollary 2.4]. Looking at Desvillettes-Mouhot [12, paragraph before Equation (3.2)], we see that to prove (2.18), it suffices to check that

  ds, where C depends on sup [0,T ] ||f s || ∞ . The conclusion follows by Lemma A.4. Lemma 6.4. (i) There exists a constant C depending on sup s∈[0,T ] ||f s || ∞ and on m2 (f 0 ) such that for 0 ≤ t ≤ t ≤ T with t -t < 1, for any ∈ (0, 1), E |V t -V t | 2 ≤ C(t -t ). same bound holds for E |Y t -Y t | 2 and E α | Ỹt -Ỹt | 2 with C depending onm 2 (g 0 ) and on sup [0,T ] ||g s || ∞ .

	The

  Lemma 6.5. There exists a constant C depending on sup s∈[0,T ] ||f s + g s || ∞ and on m 2 (f 0 ) such that, for any n ≥ 2, ∈ (0, 1) and t ∈ [0, T ]

	2	t	(1 + ||f s || ∞ )ds	2
	t			
	≤ C(t -t ),			
	by Lemma 6.1 and we conclude the proof as for Lemma 5.2.	

  2 y 2 ϕ(u)| ≤ |x|τ |y| 2 for any u satisfying |u| < 1 τ . We have, recalling that κ:= max z∈A |Γ -1/2 h(z)|, |Γ -1/2 h(z)||u| |Γ -1/2 h(z)| 2 |y| 2 |Γ -1/2 h(z)||x|ν(dz)

	|d x d 2 y 2 ϕ(u)| ≤	n t A	exp		n t
	≤	n t	exp	n t	κ τ	|y| 2 κ|x|

A |Γ -1/2 h(z)| 2 ν(dz), since |u| < 1 τ .

We have, observing that Γ is symetric,

  (observe that L(R t ) = L((tΓ) -1/2 Z t )) and Y :=

	1 √ n i=1 X i 1 n √ n n i=1 Y E exp a 2d √ t κ |R a 2d ≤ exp -a 2d	√ κ t √ t κ √ |R t -Y | ≥ exp x exp b max(1, log a 2d √ κ t t κ 2 ) . √ x
	We consider x 0 verifying a 2d	√ κ t	√	x 0 = b max(1, log t κ 2 ).
	= x 0 + = x 0 + 2 = x 0 + 2	+∞ x0 x -√ exp -x 0 ) dx x 0 ) exp -a 2d √ t ( √ κ a 2d √ t y dy κ 2d exp -+∞ +∞ x0 0 (y + √ 4d 2 κ 2 a 2 t + √ x 0 κ a √ t	a 2d	√ κ t	√	x dx
	≤ C	κ 2 t	max 1, log	t κ 2	2	.
	We thus have					
	W 2 2 (R t , N (0, I d )) ≤ C	κ 2 t	max 1, log	t κ 2	2	,
	and finally, since Z t has the same law as	√	tΓ 1/2 R t ,
	W 2 2 (Z					

i (observe that L(Y ) = N (0, I d )), we get t -Y | ≤ exp b max(1, log t κ 2 ) .

For x ≥ 0, we have

P(|R t -Y | 2 ≥ x) = P exp E(|R t -Y | 2 ) = ∞ 0 P(|R t -Y | 2 ≥ x)dx ≤ x 0 + exp b max(1, log t κ 2 ) t , N (0, tΓ)) ≤ Cκ 2 |Γ| max 1, log t κ 2 2

.
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It is because of this lemma that we do not have an optimal rate of convergence (recall that we obtain here a bound in 1/2-for W 2 (f t , g t ) while we get a bound in for the Kac equation, see [START_REF] Fournier | Asymptotic of grazing collisions and particle approximation for the Kac equation without cutoff[END_REF]). More precisely, it is due to the fact that we need to partition the interval [0, T ] in order to use Proposition A.2.

Proof. We fix η ∈ (0, π) and M > 2m 2 (g 0 ) for the whole proof, which we divide in several steps.

Step 1: For 0 < u < u and y fixed, we set

1 {| Ỹu(α)|<M } Ñ (ds, dz, dϕ, dα) , and

We have

where

We thus observe that ν u u (y) = N 0, (u -u)ζ u (y) . Now in order to compute Cov µ u u (y) , we first observe that for v ∈ R 3 (recall (2.10))