
HAL Id: hal-00793583
https://hal.science/hal-00793583

Submitted on 24 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Thin and Thick Timed Regular Languages
Nicolas Basset, Eugene Asarin

To cite this version:
Nicolas Basset, Eugene Asarin. Thin and Thick Timed Regular Languages. FORMATS, Sep 2011,
Netherlands. pp.113-128, �10.1007/978-3-642-24310-3_9�. �hal-00793583�

https://hal.science/hal-00793583
https://hal.archives-ouvertes.fr

Thin and thick timed regular languages

Nicolas Basset1 and Eugene Asarin2

1 LIGM, Université Paris-Est and CNRS, nbasset@dptinfo.ens-cachan.fr
2 LIAFA, Université Paris Diderot and CNRS, asarin@liafa.jussieu.fr

Abstract. In previous literature on timed automata, it was noticed that
they are in several aspects too precise, which leads sometimes to strange
artifacts, mathematical pathologies or unrealistic models. In particular,
some timed automata are non-implementable, non-robust, behave badly
under discretization, have many Zeno runs etc. In this paper, we propose
a unifying approach to most of these issues for deterministic timed au-
tomata. We classify these automata either as thin or as thick. In thin
automata, all the infinite trajectories are, in some weak sense, Zeno; the
discretization of long trajectories is difficult, since it requires very small
discretization step. In thick automata, most of trajectories are non-Zeno
and behave well under discretization; such automata satisfy a sort of
pumping lemma. Formally, the thin-thick alternative is based on the no-
tion of entropy of timed regular languages introduced by E. Asarin and
A. Degorre in [3, 4]. Thin languages have the entropy = −∞ while thick
have a larger one. An important application of thin-thick alternative is
again the entropy theory of timed languages. We show that the entropy
can be computed with a desired precision using discretization and thus
it is computable, which closes a question left open in [3, 4].

1 Introduction

Timed automata [2] using exact continuous clocks, exact guards and resets are a
beautiful mathematical object and a useful model of real-time systems. However,
from the very beginning of the timed automata research, it was clear that they
are in several aspects too precise, which leads sometimes to strange artifacts,
mathematical pathologies or unrealistic models. Several lines of research have
partially elucidated these issues.

Thus, the state space of a timed automaton being infinite, some long (or
infinite) runs never revisit the same state. For this reason, as stated in [7], usual
pumping lemmata do not hold, and should be replaced by rather involved
analogues. In a run, infinitely many events can happen during a finite amount of
time, or two events can happen again and again with the time interval between
them tending to 0. Such a run reminds of Zeno’s aporias and is often called a
Zeno run, see [12] and reference therein. Pathological runs do not support well
discretization of clocks, see [14, 6].

In order to rule out bad behaviors, restricted classes of timed automata and
alternative semantics were considered by several authors. Thus, in [13, 15], a
tube language semantics is introduced. In [19] a robust semantics, based

on small imprecisions is considered. It reappears in a different flavor as imple-
mentability, see [22, 21], and in another version in [1].

With the same objective to rule out bad behaviors, restrictions are often put
on all the cycles in the automaton, by requiring that each cycle takes at least
one time unit (strongly non-Zeno condition), or resets all the clocks (progress
cycle condition), or even resets all the clocks at one and the same transition
(regeneration or synchronization condition).

In this paper, we propose a unifying approach to most of these issues for
deterministic timed automata. We classify each automaton either as thin or as
thick (the classification is decidable).

In thin automata all the infinite trajectories, are, in some weak sense Zeno;
the digitization of long trajectories is difficult, since it requires very small
discretization step.

In thick automata most of trajectories are non-Zeno, behave well under dig-
itization and satisfy a sort of pumping lemma.

The main technical tool used to characterize thin and thick timed languages
is their (volumetric) entropy introduced in [3, 4]. Let us briefly recall this notion:
a timed language L, for a given number of events n, can be seen as several
polytopes in IRn, their total volume is denoted by Vn. In most cases, for n → ∞
this volume behaves exponentially: Vn ≈ 2nH. The growth rate (i.e.H) is referred
to as entropy, and characterizes the size and the information contents of the
timed language. With the notion of entropy, the definition of thin and thick
languages is simple: a language is thin if its entropy equals −∞ (that is the
volume Vn decays faster than any exponent), and thick otherwise.

We identify a novel notion of a forgetful cycle, that is a cyclic path allowing
forgetting the clock values. We state that any path in a timed automaton which
is thick and long (in some precise sense), necessarily contains a forgetful cycle
(Thm. 1), which can be seen as a weak version of pumping lemma. Based on
this pumping lemma, we obtain our first main result (Thm. 2): thickness of
a language is equivalent to many other nice properties briefly described above
(good discretization, existence of forgetful cycle etc.).

The proof of Thms. 1-2 is rather technical, and uses together with “timed”
techniques inspired by [19, 1], the monoid version of Ramsey theory, namely
Simon factorization forests [20].

The thin-thick alternative leads to a more precise analysis of a timed automa-
ton when applied to its strongly connected components. In general, a timed au-
tomaton can be decomposed into several strongly connected components (some
of them are thin, others thick) and acyclic pathways between them. We show
that most of the long enough runs spend most of the time in thick components,
and only few pathological runs wander in thin components (Thm. 3).

Finally, we apply the thin-thick alternative to the analysis of entropy of
timed languages. In [4] it was shown that the entropy of a timed language can
be lower and upper bounded using entropies of two discrete languages L−

ε and
L+
ε , corresponding to a shrunk and a bloated discretizations of L:

h(L−
ε) + log(ε) ≤ H ≤ h(L+

ε) + log(ε).

Here (Thm. 4) we strengthen this result and establish that on a thick component
the entropy of a timed language can be approximated with a good precision using
the entropy h(Lε) of the discretized language:

H = h(Lε) + log(ε) + o(1).

As a corollary we obtain a converging algorithm allowing computation of H for
any timed regular language with any precision required. This answers the open
question from [4]: H is always a computable real number.

Paper organization. In Sect. 2, we recall some basic definitions, define thin and
thick languages and give some motivating examples. In Sect. 3 we describe three
more involved constructions: polytopes associated to paths in timed automata
as in [18], region split automaton as in [3] and monoid of orbit graphs inspired by
[19]. In the central Sect. 4 we state the thin-thick alternative for timed automata
and a sort of pumping lemma for thick automata (Thm. 1). In Sect. 5 we apply
these results to entropy of timed languages. We conclude with some perspectives
in Sect. 6.

2 Preliminaries

2.1 Timed languages and their measures

A timed word α = (t1, a1) . . . (tn, an) is a word on the alphabet IR+ × Σ where
Σ is a finite alphabet of events. Times ti represent delays between events ai−1

and ai. Throughout this paper, delays will be bounded3 by an integer constant
M . We will sometimes write the same timed word α as (t, w) with t ∈ [0,M]n

and w ∈ Σn. A timed language L is a set of timed words. We will denote by Ln

the language L restricted to words of length n.

Volume and volumetric entropy. Let L be a timed language. For each word of
events w ∈ Σn, let L(w) be the set {t ∈ [0,M]n | (t, w) ∈ L}. This subset of IRn

has a volume4 (Lebesgue’s measure) denoted by Vol(L(w)). The volume of Ln

is Vol(Ln) =
∑

w∈Σn Vol(L(w)). Bounding the delays by M leads to a volume
bounded by (|Σ|M)n.

In this paper, we will work with factor closed languages5, i.e. such that if
(t1, a1) . . . (tn, an) ∈ L then for all 1 ≤ i ≤ j ≤ n (ti, ai) . . . (tj , aj) ∈ L. For each
couple of words w1, w2 ∈ Σ∗ the language inclusion L(w1 · w2) ⊆ L(w1)L(w2)
holds, and then Vol(L(w1 · w2)) ≤ Vol(L(w1))Vol(L(w2)). The volumetric en-
tropy of a timed language is a number in [−∞,+∞) defined as

H(L) = lim
n→+∞

1

n
log2(Vol(Ln)).

3 Our approach to timed languages is based on volumes, and does not apply, in its
present form, to unbounded delays which lead to infinite volumes.

4 under the condition that the set is measurable; timed languages considered in this
paper are all measurable as unions of polytopes.

5 This roughly corresponds to automata where all states are both initial and final.

The limit (finite or −∞) exists due to subadditivity of log2 Vol(Ln) wrt n and is
upper bounded by log2(|Σ|M). A timed language L is called thin if H(L) = −∞
ant thick otherwise.

To deal with finite objects, one can discretize all the previous continuous
languages. Given an ε = 1

N
, (N ∈ IN) called discretization step, let us define

Lε,n = Ln ∩ (εIN×Σ)n, i.e. the set of words in Ln with all delays multiple of ε,
Lε =

⋃

n∈IN Lε,n, Lε(w) = L(w) ∩ (εIN)n. The ε-entropy hε is defined as

hε(L) = lim
n→∞

1

n
log2(|Lε,n|).

We will relate the discrete entropy hε to the continuous one H in Sect. 5.

Open, closed and punctual languages. A language is said to be open if for all n,
the set Ln is an open subset (for the product topology) of IRn × Σn. In other
words, Ln should be a finite union of O × {w} where w is a word of events and
O an open subset of IRn. Interior and closure of L, denoted int(L) and L are
defined in a natural way.

Taking closure or interior of a finite union of polytopes of IRn has no effect on
its volume. Nevertheless the number of discrete points can drastically change if
punctuality is allowed (see [5]). We call a language to be punctual if int(L) 6= L.

2.2 Timed automata and their languages

Clocks, zones and regions. Let X be a finite set of variables called clocks. Clocks
have non negative values bounded by a constant Mc. A rectangular constraint
is a formula of the form x ∼ c where x ∈ X, c ∈ IN, ∼∈ {≤, <,=, >,≥}.
A diagonal constraint is a formula of the form x − y ∼ c where x, y ∈ X . A
guard is a finite conjunction of rectangular constraints. We denote by G the set
of all guards. A zone is a set of clock vectors x ∈ [0,Mc]

X satisfying a finite
conjunction of rectangular and diagonal constraints. A region is an inclusion-
minimal zone. A region (which is always a simplex) is uniquely defined by a
point with integer coordinates ⌊x⌋ ∈ {0, . . . ,Mc}X giving integer part of clocks
and an order on the fractional part of clocks 0 ∼0 {xi1} ∼1 {xi2} ∼2 · · · ∼|X| 1
where ∼0, . . . , ∼|X|∈ {<,=}. The closure of a region (abusively called closed
region) can be obtained by replacing < by ≤ and > by ≥ in its definition.

Timed automata. A timed automaton is a tuple (Q,X,Σ,E,L, I, F) with Q a
finite set of locations ; X a set of bounded clocks; E ⊆ Q ×G× 2X ×Q a finite
set of edges; L : E → Σ a labeling function on edges; I ⊆ Q × [0,Mc]

X the set
of initial states; F ⊆ Q× [0,Mc]

X the set of final states.
By default all the states (elements of Q × [0,Mc]

X) are initial and final,
otherwise they are given by union of zones.

The clocks grow with the same (unit) speed and some of them are re-
set to 0 when passing through an edge. More formally, there is a transition

(q,x)
(t,a)
−−−→ (q′,x′) if there is an edge e = (q, g, R, q′) ∈ E with L(e) = a

such that x + (t, . . . , t) satisfies the guard g and for each clock x ∈ X , its new
value x′ = 0 iff x ∈ R, or x′ = x + t otherwise. A run on the timed word

α = (t1, a1) . . . (tn, an) is a sequence of consecutive transitions (q0,x0)
(t1,a1)
−−−−→

(q1,x1) · · ·
(tn,an)
−−−−→ (qn,xn), where x0, . . . ,xn ∈ [0,M]X , q0, . . . , qn ∈ Q. A

timed word is recognized by the automaton if there exists a run on it from an
initial state to a final state. The timed language L(A) consists of all the recog-
nized words. We will be interested in its entropy H(L(A)), that will be abusively
denoted H(A).

We call a TA right resolving if any two edges leaving the same location and
having the same label have disjoint guards. Adding the condition that there is
only one initial state gives the usual definition of determinism. In the rest of the
paper, we work with right resolving TA.

Paths and reachability relation. We call a path in an automaton any sequence
of edges. The “useful” paths are sequences of consecutive edges (such that the
starting location of the (i+1)th edge is the ending one of the ith), but we allow
arbitrary words of E∗ and all objects associated to a non-consecutive sequence
will be empty.

Given two clock vectors x,x′, a path π ∈ En and a sequence of delays of the

same length t = (t1, . . . , tn), we write that x
t,π
−−→ x

′ whenever exists a run in

the automaton of the form (q0,x)
(t1,a1)
−−−−→ (q1,x1) · · ·

(tn,an)
−−−−→ (qn,x

′) following
the sequence of edges π.

Several objects are naturally associated with a path. Given a path and two
clock vectors, a language (a polytope of all the timings of the path) can be

defined: L(π,x,x′) = {t | x
t,π
−−→ x

′}. If we are not interested in clock values,

we get a polytope depending only on the path: L(π) = {t | ∃x,x′,x
t,π
−−→ x

′}.
The other way around, if we do not care about timing, we get the reachability

predicate: Reach(π) = {(x,x′) | ∃t,x
t,π
−−→ x

′}.
A path π ∈ En is said to be punctual if L(π) is not empty but has dimension

less than n. The closure (resp. interior) of a path π denoted by π (resp. int(π))
is the path obtained from π by taking closure (resp. interior) of all guards of
edges in π (i.e. changing strict inequalities in non-strict ones (resp. vice versa)).
There is a limit cycle (resp. strong limit cycle) along π if there exists a clock

vector x and time sequence t such that x
t,π
−−→ x (resp. x

t,int(π)
−−−−−→ x). Given

ε > 0, in ε-discrete limit cycles all the components of x and t should be multiple
of ε.

2.3 Thinness, simplices and examples

Our analysis of thin languages will start with a simple observation that the
volume of k-dimensional simplices tends to 0 faster than any exponent:

Lemma 1. The volume of a simplex of “type 1” described by inequalities 0 ≤
t1 + · · · + tk ≤ 1, ti ≥ 0 or of a simplex of “type 2” described by inequalities
0 ≤ t1 ≤ · · · ≤ tk ≤ 1 is 1

k! .

x ≤ 1

a, x ∈ [0; 1]

p
0 ≤ x ≤ 1
y = 0

q
0 ≤ y ≤ 1
x = 0

a, x ∈ [0; 1]/x := 0

b, y ∈ [1; 2]/y := 0

p
0 ≤ x ≤ 1
y = 0

q
0 ≤ y ≤ 1
x = 0

a, x ∈ [0; 1]/x := 0

b, y ∈ [0; 1]/y := 0

x, y ∈ [0, 1]

a, x ∈ [0; 1], y := 0

a, y ∈ [0; 1], x := 0
Fig. 1. First row: thin automata A1, A2. Second row: thick ones A3, A4. Initial states
are given by conditions in nodes

By change of coordinates the lemma can be extended to more general polytopes:

Corollary 1. Let P be a subset of {t1, . . . , tn | 0 ≤ ti ≤ M}. If there exists a
subsequence of indices s(1), . . . , s(k) of 1, . . . , n and new coordinates us(i) func-

tions of ts(1), . . . , ts(i) with 0 ≤ us(1) ≤ us(2) ≤ · · · ≤ us(k) ≤ 1 and
∣

∣

∣

∂us(i)

∂ts(i)

∣

∣

∣
≥ 1

then Vol(P) ≤ Mn−k

k! .

The automata on Fig. 1 illustrate the concepts of thin and thick. Ln(A1) =
{t1, . . . , tn |

∑

i≤n ti ≤ 1} is a simplex of type 1, and thus L(A1) is thin.
Ln(A2, q) = {t1, . . . , tn | ∀i, t2i + t2i+1 ≤ 1 ∧ t2i+1 + t2i+2 ≥ 1}, by inter-
changing even and odd indices we obtain Ln(A2, p). Posing u2i+1 = 1 − t2i+1

and u2i = t2i yields a simplex 0 ≤ u1 ≤ . . . un ≤ 1. This change of coordinates
preserves volume and so Vol(Ln(A2, q)) =

1
n! . This is an example of automaton

satisfying the progress cycle condition (i.e. resetting all clocks along each cycle)
and nevertheless thin.

Third and fourth examples are thick, their entropies can be computed sym-
bolically because they are 1 1

2 clock (see [3]), they are respectively log2
2
π

and
log2 log2(e). Note that A4 does not satisfy the progress cycle condition.

3 More on paths and cycles

3.1 Region graph and state split automata

Timed variants of the region graph [2] are extensively used in the literature. Here
we use so-called region-split automaton given in [3], add several new conditions
and modify those concerning initial states. A timed automaton is in region-split
form if

0 ≤ x ≤ 1
y = 0

0 ≤ y ≤ 1
x = 0

a1, y ∈ [0; 1]/x := 0

b1, x ∈ [0; 1]/y := 0

b2, x ∈ [0; 1], y := 0 a2, y ∈ [0; 1], x := 0

Fig. 2. The closed region-split version of A4

B1. For every location q ∈ Q a unique region rq (called its entry region) exists,
such that the set of clock values with which q is entered is exactly rq.

B2. The guard g of every transition δ = (q, g, R, q′) ∈ E is just one region.
B3. All the states of entry regions (and only these states) are both initial and

final.
B4. For any location there exists a path leading to some cycle and a path coming

from some cycle.
B5. For every transition δ its guard g has no constraints of the form x = c in

its definition.
B6. The labeling function on edges is identity (and so every two distinct edges

have different labels).

Proposition 1. Given a right resolving TA A with bounded clocks and all states
initial and final, one can construct an automaton RS(A) called the region-split
automaton of A which satisfies B1−B6 and such that H(RS(A)) = H(A).

In the following, we replace w.l.o.g. for the computing of H, A by RS(A)
obtained from RS(A) by taking non-strict inequalities instead of strict ones.

Proposition 2. For region split automata:

– words, paths, and region paths are in natural bijection;
– volume of any path is less or equal to 1;
– every path of consecutive edges has a non empty and non punctual language.

As for our running examples, A1,A2,A3 are already region split automata.
RS(A4) is depicted in Fig. 2.

3.2 Paths and polytopes

Let us describe languages associated with paths as polytopes in IRn, following
[18].

Contiguous polytopes. Let Tn = {t1, . . . , tn} be an ordered set of real variables

bounded by M. A sum Sj..k =
∑k

i=j ti is called a contiguous sum (of length
k− j +1). A temporal inequality is a constraint of the form Sj..k ∈ [A,B] where
A,B ∈ IN, A ≥ 0 and B ≤ M . A contiguous polytope is a bounded subset of

IRn which is composed by all the points satisfying a conjunction of temporal
inequalities. We say that the polytope is d-contiguous if the length of all sums
in the inequalities is bounded by d.

Proposition 3. For each path π ∈ E∗, L(π) is a contiguous polytope.

The inequality
∑k

i=j ti ∈ [A,B] comes from testing the guard x ∈ [A,B] during

the kth transition, provided that the last reset of x took place in the jth tran-
sition. The subclass of d-contiguous polytopes corresponds to automata with
progress cycle condition, where the number of transitions between two resets is
bounded by d.

Given a polytope P , we denote by NP its N -fold dilated copy, i.e. {Nt | t ∈
P} and by E(P) = P ∩ ZZn the set of points with integer coordinates in P . A
contiguous polytope is said to be N -fat if there exists an integer point in the
interior of NP (called an internal point): E(int(NP)) 6= ∅.

3.3 Point to point reachability: algebraic characterization

In this section, we characterize the relation Reach(π̄) in terms of an algebraic
object: monoid of orbit graphs. Our analysis is less detailed than those in [10,
11, 16] and follows the lines of [19].

For a closed region r, let us denote by V (r) = {S1, . . . , Sp} its vertices.
Any point x in the region is uniquely described by its barycentric coordinates
λ1, . . . , λp, i.e. nonnegative numbers such that

∑p
i=1 λi = 1; x =

∑p
i=1 λiSi.

Given two regions r and r′, we call orbit graph any graph G with vertices
V (r)

⊎

V (r′) if r and r′ are different and V (r) otherwise, and with edges going
from V (r) to V (r′). Informally, an edge from S to S′ means that the clock vector
at the vertex S can reach the clock vector at S′ along some transition or path.

Orbit graphs compose in the natural way: for G1 on regions r1 and r′1, and
G2 on regions r2 and r′2, their product G = G1 ·G2 is defined if r′1 = r2. In this
case, G is an orbit graph on r1 and r′2. There is an edge from S to S′′ in G if
and only if there exists S′ such that (S, S′) and (S′, S′′) are edges of G1 and G2.
Whenever r′1 6= r2, we put G1 · G2 equal to some special (absorbing) element
0. The set G of orbit graphs, augmented with 0 and a neutral element 1 has a
structure of finite monoid.

An orbit graph G can be represented by its adjacency matrix M of size
|V (r)| × |V (r′)|. Products in the monoid of orbit graphs are easy to compute
using matrices: M(G1G2) = M(G1)⊗M(G2) where the “product” ⊗ is defined
by

(A⊗B)ij = max
k

min(Aik, Bkj).

There exists a natural morphism γ : E∗ → G from paths to orbit graphs
defined as follows. For a transition e between r and r′, we define the orbit graph

γ(e) on r and r′ with edges {(S, S′) ∈ V (r)× V (r′) | ∃t, S
(e,t)
−−−→ S′}. For a path

π = e1 . . . en, we define γ(π) = γ(e1) . . . γ(en) (it will be called the orbit graph of
the path π). For the empty path we have γ(ε) = 1, and for any non-consecutive
path γ(π) = 0.

For example, the orbit graphs of cycles ab and ba of A3 and A4 are complete,
the orbit graphs of the other running examples are given in Fig. 3.

The orbit graph is crucial for reachability analysis.

Proposition 4. The orbit graph of a path γ(π) determines its reachability re-
lation Reach(π̄). In particular, γ(π) is complete iff Reach(π̄) = r× r′, or equiv-
alently iff Reach(int(π)) = r× r′.

The proof of the first criterion is based on the following remarkable characteri-
zation of Reach(π̄) in terms of the orbit graph due to Puri [19].

Lemma 2. 6 Let x and x
′ be two clock vectors with barycentric coordinates

λ and λ
′. Then (x,x′) ∈ Reach(π̄) iff there exists a stochastic matrix P �

M(γ(π)), such that λP = λ
′.

Here matrix “inequality” A � B means that Bij = 0 ⇒ Aij = 0 for all i, j.

Adding clock resets. For future use, we must enrich the monoid of orbit graphs
by adding information on clock resets. Elements of the monoid M are couples
(orbit graph, subset of clocks) (and also, as before, two special elements 0,1),
the product rule is:

(G1, X) · (G2, Y) =

{

(G1 ·G2, X ∩ Y), if G1 ·G2 6= 0
0, otherwise.

For each π ∈ E∗ we denote by ν(π) the set of clocks not reset along the path π.
We define a morphism µ : E∗ → M as follows: µ(π) = (γ(π), ν(π)).

Idempotents. An idempotent of a monoid is an element m such that m ·m = m.
Every finite monoid contains an idempotent. In our case, an idempotent orbit
graph is always associated to a cyclic path, it is a graph G equal to its transitive
closure G+ = ∪n∈IN+Gn.

4 The thin-thick alternative and its consequences

In this central section, we characterize thin and thick paths and languages, based
on a new notion of a forgetful cycle.

4.1 Forgetful cycles, and the others

After reading a timed path π × t from a state s0, the reached state s depends
only on s0 and on the delays t. We will say that π is forgetful if s and s0 are
independent, i.e. all the following equivalent conditions hold: Reach(int(π)) =
r× r′, Reach(π̄) = r̄× r̄′, γ(π) is complete.

If a cycle is non-forgetful, and moreover its orbit graph is not strongly con-
nected, then it is possible to find a linear Lyapunov function:

6 An intuition behind this lemma could be as follows. A clock vector with barycentric
coordinates λ in a region can be seen as a probabilistic distribution over vertices
of this region (with probabilities λ). The lemma says that this distribution, at each
cycle, evolves exactly as in some Markov chain.

λ1 λ2 λ1 λ3

0.6
10.3

λ2

0.2
0.8 0.1

I

I

Fig. 3. Two non strongly connected orbit graphs, the first one is the orbit graph of the
cycle of A1, of the cycle ab of A2 and of the cycles a and b of A4. States move from initial
SCC I to final one. By choosing the convex combination of paths given by the Markov
chain on the second orbit graph we pass from state (λ1 = 0.2, λ2 = 0.5, λ3 = 0.3) to
state (λ′

1 = 0.46, λ′

2 = 0.02, λ′

3 = 0.52). The sum λ1 + λ2 can only decrease.

Lemma 3. For a cycle π, if γ(π) is not strongly connected then there exists
a non empty I ({1, . . . , p} such that

∑

i∈I λ
′
i ≤

∑

i∈I λi whenever (x,x′) ∈
Reach(π̄), where λ and λ

′ stand for barycentric coordinates of x and x
′.

In this lemma, as before, {1, . . . , p} are indices of the vertices of the region where
π starts (and ends).

In fact I corresponds to an initial strongly connected component (SCC) of
the orbit graph, i.e. an SCC without incoming edges from other SCC. According
to the lemma, the state moves from the facet spanned by I towards other vertices
of the region and cannot come back.

Comparing to other types of cycles. Two other kinds of cycles are often con-
sidered in the literature: in a progress cycle each clock should be reset at some
edge; in a synchronizing cycle all the clocks are reset along one and the same
edge of the cycle.

Proposition 5. progress cycles) forgetful cycles) synchronizing cycles.

A remark is in order, in most works using progress or synchronizing cycles, all
the cycles are required to be like that. In our work, existence of a forgetful
cycle appears naturally in “non degenerate” (i.e. thick) automaton.

The condition of progress cycle can be seen as a weaker kind of forgetting:
the state after such a cycle is exactly determined by the delays (see following
lemma). Nevertheless the orbit graph of a progress cycle can be not strongly
connected (e.g. cycle ab of A2 depicted in Fig. 3); in that case starting states
and ending states are still dependent.

Lemma 4. If all clocks have been reset during reading of π × (t1, . . . , tm) then
for all non empty I ({1, . . . , p}, there exists α1 . . . αm ∈ {−p, . . . , p} and an
integer constant C such that

∑

i∈I λi = C +
∑m

j=1 αjtj. Moreover one of the αj

is not zero.

4.2 Pumping lemma for long thick paths

For a given real η > 0, we say that a path π is η-thick if Vol(L(π)) ≥ η|π|. The
following “pumping lemma” will play the key role in characterization of thick
languages below and can be interesting by itself.

Theorem 1. For every timed automaton A and every η > 0, there exists Nη

such that any η-thick path longer than Nη contains a forgetful cycle.

The rest of this section is devoted to the proof of this result.
Elements of the monoid M associated to forgetful cycles will be referred to

as forgetful, they are idempotent. We will first see how repeating a non forgetful
idempotent induces a subexponential volume (like the simplex example), then
we will use Simon’s theorem on factorization forests to factorize paths and find
some repeated idempotent. Absence of forgetful cycles in a path will then imply
thinness.

Proposition 6. Let π1, . . . , πk be k cycles of E∗ such that µ(π1), . . . , µ(πk) are
all equal to a same non forgetful idempotent of M, then Vol(L(π1 . . . πk)) ≤
Mn−k

k! where n = |π1|+ · · ·+ |πk|.

Proof. If G is an idempotent orbit graph (thus equal to its transitive closure),
G is complete if and only if G is strongly connected. Thus we will distinguish
two disjoint kinds of non forgetful idempotents, those associated to non progress
cycles and those associated to progress cycles with non strongly connected orbit
graphs. In the former case a clock is not reset all along the path π1 . . . πk, thus
L(π1 . . . πk) is in a simplex of type 1 and the volume satisfies the inequality to
prove. In the latter case, we use Lem. 3,4, and Cor. 1. ⊓⊔

A factorization forest of a word π is an unranked labeled tree with leaves labeled
by the letters of π, with root labeled by π and with two types of internal nodes:

– binary node labeled by a word π1 ·π2 with two children labeled by the words
π1 and π2;

– idempotent node labeled by a word π1 . . . πk with all µ(πi) equal to a same
idempotent and with children labeled by the words π1, . . . , πk.

Theorem (Simon [20]). If µ is a morphism from E∗ to a finite monoid M,
then every word admits a factorization forest of height at most h(M) = 9|M|.

We suppose that there are no forgetful cycles on a long path π and consider
its factorization forest of height at most h(M). When its length n grows up,
the number of leaves also grows and since the height is bounded, branching of
nodes must get larger and larger. These hugely branched nodes are idempotent
and satisfy hypotheses of Lem. 6, thus their volume is very small, which implies
that Vol(L(π)) is also small. The Prop. 7 below quantifies this “smallness” of
Vol(L(π)) as function of the length of π and height of its factorization forest,
and Thm. 1 follows immediately from this proposition.

Let LVol be the function defined on paths by LVol(π) = log2 Vol(L(π)).
This function is subadditive and non-positive, i.e. LVol(π1 · π2) ≤ LVol(π1) +
LVol(π2) ≤ 0. Let L(n, h) be the maximum of LVol(π) over paths π of length
n that do not contain forgetful idempotents and admit a factorization forest of
height at most h.

Proposition 7. For any height h, for any C < 0, there exists Nh,C ∈ IN such
that for all n > Nh,C the inequality L(n, h) ≤ Cn holds.

Proof. We will define Nh,C by induction on the height h. Let a be a factorization
forest of height h with n leaves. We consider all the children of the root and their
subtrees (all these subtrees have heights ≤ h − 1), and distinguish two disjoint
cases:

1. There are more than k = n
2Nh−1,2C

subtrees having less than Nh−1,2C leaves.

2. There are less than k = n
2Nh−1,2C

subtrees with less thanNh−1,2C leaves. Here

the juicy part (sons with enough leaves to satisfy induction hypothesis) has
more than n

2 leaves.

In the first case: root is an idempotent node and we can apply Lem. 6:

LVol(π) ≤ (n− k) log2(M)− log2(k!) ≤ nC for n large enough.

In the second case: LVol(π) ≤
∑k

i=1 L(ni, hi) ≤
∑

ni≥Nh−1,2C
L(ni, hi). We apply

the induction hypothesis:

LVol(π) ≤ 2C
∑

ni≥Nh−1,2C

ni ≤ 2C
n

2
≤ nC (recall that C is negative). ⊓⊔

To conclude the proof of Thm. 1, given η > 0, let C = log2 η and h = h(M)
the bound on height of factorization forest. Using Prop. 7, we obtain that a path
longer than Nh,C without forgetful idempotents cannot be η-thick. ⊓⊔

4.3 Characterizing thick languages

We are ready to describe thick languages now.

Theorem 2. For a right resolving timed automaton in region split form the
following conditions are equivalent and define thick languages:

1. H > −∞;
2. there exists a forgetful cycle;
3. there exists a strong limit cycle;
4. there exists an ε-discrete strong limit cycle with ε > 0.

Equivalence between 3 and 4 can be found in [16]. 2 ⇒ 3 is straightforward.

Proof of 4 ⇒ 1. There exist q0, . . . , qd−1,x0, . . . ,xd−1, π ∈ Ed, u1, . . . , ud ∈

{ε, 2ε, . . . ,M − ε} such that (q0,x0)
(u1,w1)
−−−−−→ (q1,x1) . . .

(ud,wd)
−−−−−→ (q0,x0) along

π and all the xi are not on the frontier of regions and have discrete coordinates.
First we can see that all clocks have been reset at least once because any non-
reset clock would augment during the run, which contradicts its cyclicity. Then
for each n ∈ IN∗ the language L(πn) is a d-contiguous polytope with equation of

the form A ≤
∑k

i=j ti ≤ B. Extending u periodically permits to have a word in

L(πn) such that A + ε ≤
∑k

i=j ui ≤ B − ε. Taking ti ∈ [ui −
ε
d
, ui +

ε
d
] defines

a hypercube included in L(πn) whose volume is therefore greater than (2ε
d
)nd.

Then H(A) ≥ log2
2ε
d
> −∞. ⊓⊔

Proof of 1 ⇒ 2. We notice first that a thick language contains long thick paths.

Lemma 5. If H > −∞, there exists η > 0 such that for all n big enough, there
exists an η-thick path of length n.

Proof. Let β = 2H−1. For n large enough Vol(Ln) ≥ βn. Let πn,max be the path
of En of maximal volume, then Vol(Ln) ≤ Vol(L(πn,max))|E|n and so if we pose

η = β
|E| we have Vol(L(πn,max)) ≥ ηn. ⊓⊔

Combining Lem. 5 with Thm. 1 we find a required forgetful cycle. ⊓⊔

4.4 Thin and thick SCC

The theory developed above can be refined using a decomposition of A into
strongly connected components (SCC) A1,A2, . . . ,Ak.

Proposition 8. Volumetric entropy of A equals the maximal volumetric entropy
of its SCC. In particular, A is thin iff so are all the subautomata Ai.

It is easy to see that long and thick paths spend most of the time in thick SCC.

Theorem 3. For every timed automaton A and every η, α > 0, there exists
Nη,α such that for any η-thick path of length n > Nη,α at most nα states belong
to thin SCC.

5 Entropies of thick languages

In this section, we apply the results of the previous section to show that in thick
automata, volumes and entropies can be computed with a good precision using
discretization.

Theorem 4. For a thick strongly connected automaton A in region split form,
the discrete and the volumetric entropies are related as follows7:

hε = log2
1

ε
+H+ o(1).

7 It can be proved that o(1) is in fact O
(

ε1/3
(

log
2

1

ε

)2/3
)

.

Proof (≥ direction). To bound the volume of Ln by the number of discrete
points, we will use a beautiful theorem on counting points in polytopes:

Theorem (Ehrhart, see [8]). For integer N and an integer polytope P ⊂
IRn (i.e. whose vertices have integer coordinates), the number of integer points
|E(NP)| is a polynomial in N with non negative coefficients of degree n and
whose coefficient of the highest degree is the volume.

We deduce directly from this theorem that for each path π of length n and ε =
1
N

the following holds: Vol(L(π))Nn ≤ |E(NL(π))| = |Lε(π)|. Summing over all
words of length n and taking limn→∞

1
n
log2, we obtain that H+log2

1
ε
≤ hε. ⊓⊔

Proof (≤ direction of Thm. 4).

Upper bounding hε by H + log2
1
ε
+ o(1) is more involved, and we give only

a sketch of proof. We fix several integer parameters: a, b, c, d, e (they have to be
adjusted in order to obtain the required estimate). Let π be a path of a length
n > a. At every b transitions, we insert in π a forgetful cycle of length c (it exists
by virtue of Thm. 2, and can be made of the same fixed length everywhere for
an appropriate choice of c). Thus we obtain a slightly longer path π′ (its length
is n′ ≈ n(1 + c/b)), satisfying two additional conditions:

– every clock is reset at least every 2d transitions (and thus L(π′) is 2d-
contiguous polytope);

– the polytope L(π′) is e-fat.

We have three inequalities:

1. The first one:

|Lε(π)| ≤ |Lε(π
′)|

can be proved by constructing an injection from the left-hand side discrete
language to the right-hand side one.

2. We choose ε′ slightly smaller than ε (another parameter to adjust) and con-
sider the polytope L− obtained from L(π′) by pushing all its facets inside
by the amount δ = ε′d 8. Using fatness of L(π′), it is possible to build an
injection from its ε-discrete points to ε′-discrete points of L− (the latter is
a bit smaller but its discrete points are slightly denser).

|Lε(π
′)| ≤

∣

∣L−
ε′

∣

∣ .

3. Taking an ε′-cube at every ε′-discrete point of L−, we get a set included in
L(π′) (this requires 2d-contiguity of L(π′)). Passing to volumes we conclude
that

ε′
n′ ∣

∣L−
ε′

∣

∣ ≤ Vol(L(π′)).

8 i.e. by replacing each constraint Sj..k ∈ [A,B] in the definition of L(π′) as a contigu-
ous polytope by Sj..k ∈ [A+ δ,B − δ] (see [4]).

Combining the three inequalities we get:

|Lε(π)| ≤
(

ε′−n′

Vol(L(π′))
)

,

and with an appropriate choice of parameters, ε′ and n′ can be made very close to
ε and n. Summing up over π and taking limn→∞

1
n
log2 in the previous inequality,

we obtain the required result. ⊓⊔

Corollary 2. For right resolving TA with bounded clocks, H(A) is computable
as function of A. Consequently, H(A) is a computable real (i.e. one can compute
its approximation with any wanted precision).

Proof. First compute RS(A). Then compute by fixpoint method the submonoid
of orbit graphs γ(E∗) ⊂ G and see whether there is a complete graph. If there
is none, the automaton is thin and H = −∞. Otherwise, the automaton is thick
and it just remains to compute the discrete entropy of Lε(RS(A)) for the wanted
precision (similarly to [4]). ⊓⊔

6 Conclusion and future work

We have identified the class of thick timed automata (those with non-vanishing
language volume). Most runs in such automata are thick and exhibit a nice
behavior, they spend most of the time in thick strongly connected components
(Thm. 3) and visit from time to time forgetful cycles (Thm. 1). Thick runs are
captured (both qualitatively and quantitatively) by ε-discretized automata.

We believe that the notions of thick languages and forgetful cycles will be
useful in the operator approach to volume and entropy of [3] and will imply
some good properties of operators associated to these forgetful cycle. Similarly,
we believe that thickness hypothesis is exactly what is needed for the analysis of
probabilistic timed systems in the spirit of [9] but for an unbounded time horizon.
Another direction of future work is to extend the thin-thick dichotomy to the
case of punctual paths and to find when the two size measures of [5] are defined.
We hope also to relate thinness with the notion of mean topological dimension
[17]. In the verification context, we believe that when analyzing a thick timed
automaton, it suffices to check that the thick paths satisfy the specification,
while thin ones can violate it.

Acknowledgements. The authors are thankful to Thomas Colcombet for a key
advise: to use Simon factorization forests, and to Dominique Perrin and Aldric
Degorre for inspiring discussions.

References

1. Abdulla, P.A., Krcál, P., Yi, W.: Sampled semantics of timed automata. Logical
Methods in Computer Science 6(3) (2010)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126, 183–235
(1994)

3. Asarin, E., Degorre, A.: Volume and entropy of regular timed languages: Analytic
approach. In: FORMATS. LNCS, vol. 5813, pp. 13–27. Springer (2009)

4. Asarin, E., Degorre, A.: Volume and entropy of regular timed languages: Discretiza-
tion approach. In: CONCUR. LNCS, vol. 5710, pp. 69–83. Springer (2009)

5. Asarin, E., Degorre, A.: Two size measures for timed languages. In: FSTTCS.
LIPIcs, vol. 8, pp. 376–387. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2010)

6. Asarin, E., Maler, O., Pnueli, A.: On discretization of delays in timed automata
and digital circuits. In: CONCUR. LNCS, vol. 1466, pp. 470–484. Springer (1998)

7. Beauquier, D.: Pumping lemmas for timed automata. In: FoSSaCS. LNCS, vol.
1378, pp. 81–94. Springer (1998)

8. Beck, M., Robins, S.: Computing the continuous discretely: Integer-point enumer-
ation in polyhedra. Springer (2007)

9. Carnevali, L., Grassi, L., Vicario, E.: State-density functions over DBM domains in
the analysis of non-Markovian models. IEEE Trans. Software Eng. 35(2), 178–194
(2009)

10. Comon, H., Jurski, Y.: Timed automata and the theory of real numbers. In: CON-
CUR. LNCS, vol. 1664, pp. 242–257. Springer (1999)

11. Dima, C.: Computing reachability relations in timed automata. In: LICS. pp. 177–.
IEEE Computer Society (2002)

12. Gómez, R., Bowman, H.: Efficient detection of Zeno runs in timed automata. In:
FORMATS. LNCS, vol. 4763, pp. 195–210. Springer (2007)

13. Gupta, V., Henzinger, T.A., Jagadeesan, R.: Robust timed automata. In: HART.
LNCS, vol. 1201, pp. 331–345. Springer (1997)

14. Henzinger, T.A., Manna, Z., Pnueli, A.: What good are digital clocks? In: ICALP.
LNCS, vol. 623, pp. 545–558. Springer (1992)

15. Henzinger, T.A., Raskin, J.F.: Robust undecidability of timed and hybrid systems.
In: HSCC. LNCS, vol. 1790, pp. 145–159. Springer (2000)

16. Krcál, P.: Infinite Structures in Timed Systems. Ph.D. thesis, University of Upp-
sala, Dept. of Information Technology (May 2009)

17. Lindenstrauss, E., Weiss, B.: Mean topological dimension. Israel J. Math 115, 1–24
(2000)

18. Maler, O., Pnueli, A.: On recognizable timed languages. In: FoSSaCS. LNCS, vol.
2987, pp. 348–362. Springer (2004)

19. Puri, A.: Dynamical properties of timed automata. Discrete Event Dynamic Sys-
tems 10(1-2), 87–113 (2000)

20. Simon, I.: Factorization forests of finite height. Theor. Comput. Sci. 72(1), 65–94
(1990)

21. Wulf, M.D., Doyen, L., Markey, N., Raskin, J.F.: Robust safety of timed automata.
Formal Methods in System Design 33(1-3), 45–84 (2008)

22. Wulf, M.D., Doyen, L., Raskin, J.F.: Almost ASAP semantics: from timed models
to timed implementations. Formal Asp. Comput. 17(3), 319–341 (2005)

A Proofs and minor results

A.1 Region split automaton

We assume w.l.o.g. that there is a special clock T in the automaton A to be split
with a trivial behavior: in every transition, guards are of the form 0 ≤ T ≤ M
and T is reset at each transition.

The volume of a path in the region split automaton is less or equal to
1. In the region split automaton the special clock T is reset at every transition
and verify guards of the form T ∈ (A,A+ 1). Thus times ti vary in intervals of
length 1. The language of each path is then included in a hypercube of side 1.
Volume is therefore less or equal to 1.

Proof of proposition 1. We will construct step by step automata Ai such
that B1 to Bi is true for Ai and such that H(A) = H(Ai). To construct A2

we refer to the procedure of [3] without the two last points (because we want
to keep all states initial). A4 can be constructed from A2 by removing loca-
tions that do not satisfy B4 and by setting the initial and final states to be
the entry regions. We must show that H(A4) = H(A2). First we have that
H(A4) ≤ H(A2) as L(A4) ⊆ L(A2). We call internal locations which satisfy B4

and external the others. Let k be the maximal length of a consecutive path com-
posed exclusively with edges involving external locations (we speak of external
path). We factorize every path of A2 with length greater than 2k as π(1)π(2)π(3)

with π(1), π(3) ∈ Ek. By definition of k, π(2) is a path of A4. Moreover we have

Vol(L(π)) ≤ Vol(L(π(1)))Vol(L(π(2)))Vol(L(π(3))) ≤ M2k
Vol(L(π(2))). Then

Vol(Ln+2k(A2)) ≤ Vol(Ln(A4))M2k and we are done by taking limn→∞
1
n
log2.

A5 is constructed from A4 by deleting edges which do not satisfy B5 (one has
also to delete locations which no more satisfy B3, B4). By doing this we delete
punctual paths, their volumes are null and do not contribute to H.

A6 is constructed from A5 by taking identity as labeling function.
For each w we have L(w) = ∪π∈L−1(w)L(π) and then

Vol(Ln(A
5)) =

∑

w∈Σn

Vol(L(w)) ≤
∑

w∈Σn

∑

π∈L−1(w)

Vol(L(π)) = Vol(Ln(A
6)).

For the converse inequality, everything would be very simple if the above union
were disjoint but this is not the case due to freedom on the initial state. How-
ever from one state s the languages L(π(2), s), L(π′

(2), s) starting from s and

associated with two distinct paths π(2) 6= π′
(2) are disjoint (as guards and

regions of π(2) and π′
(2) are disjoint at a moment). Then, if all clocks have

been reset during a path π(1), for every two distinct paths π(2), π
′
(2) we have

L(π(1)π(2))∩L(π(1)π
′
(2)) = ∅. We divide in two groups the set of paths of a given

length l (l is a parameter that we will tune later):

– the set R(l) of paths which have reset all its clocks;
– the set of other paths which have a volume Vol(L(π)) ≤ 1

l!

∑

π∈En

Vol(L(π)) =
∑

π(1)∈R(l)

∑

π(2)∈En−l

Vol(L(π(1)π(2)))+

∑

π(1) 6∈R(l)

∑

π(2)∈En−l

Vol(L(π(1)π(2))).

We will denote by S1 and S2 the two sums above. S2 is upper bounded by |E|n

l! .
For each w ∈ Σn we have

L(w) =
⋃

π(1)∈R(l)

⊎

π(2)∈En−l

π(1)π(2)∈L−1(w)

L(π(1)π(2))

and then

Vol(L(w)) ≥ max
π(1)∈R(l)

∑

π(2)∈En−l

π(1)π(2)∈L−1(w)

Vol(L(π(1)π(2))) ≥

1

|E|l

∑

π(1)∈R(l)

∑

π(2)∈En−l

π(1)π(2)∈L−1(w)

Vol(L(π(1)π(2)))

We sum over all w and deduce S1 ≤ |E|lVol(Ln(A5)). Then Vol(Ln(A6)) ≤

Vol(Ln(A5))(|E|l+ |E|n

l!Vol(Ln(A5))). We can find l such that l = o(n) and |E|n

l!Vol(Ln(A5)) =

O(1) (e.g. n =
√

log2 l! ∼
√

l log2 l). With such an l the quantity 1
n
log2(|E|l +

|E|n

l!Vol(Ln(A5))) tends to 0 and then H(A5) ≥ H(A6).

Proof of proposition ??. A part of the previous proof is easy to adapt to
show that hε(A) = hε(A

4).
The following lemma says that L(A5) is the non punctual part of L(A4) and

thus hε(L(A4)) = hε(L(A5)) if and only if L(A4) is not punctual i.e. L(A4) =
int(L(A4)).

Lemma 6. L(A5) = int(L(A4))

Proof. Let NPin(w) (resp. Pin(w)) be the set of non punctual (resp. punctual)
paths π such that L(π) = w. NPin(w) is exactly the set of paths of L(A5)
labeling w. Thus we have to show that for each w, int(L(w)) ⊂ ∪π∈NPin(w)L(π)
(the converse inclusion is straightforward as ∪π∈NPin(w)L(π) is an open subset

of L(w)). Let x be a point in int(L(w)). Suppose by contradiction that x 6∈
∪π∈NPin(w)L(π), then for ε small enough x is ε far from ∪π∈NPin(w)L(π). x is less
than ε

2 far from a point y in int(L(w)). y is then in the interior of ∪π∈Pin(w)L(π)
which is absurd as this set has empty interior. ⊓⊔

As in the proof of the previous proposition, for each w we have L(w) =

∪π∈L−1(w)L(π) and then
∣

∣

∣
Ln,ε(A5)

∣

∣

∣
=

∑

w∈Σn |Ln,ε(w)| ≤
∑

w∈Σn

∑

π∈L−1(w) |Ln,ε(π)| =
∣

∣

∣
Ln,ε(A6)

∣

∣

∣
. We deduce that hε(A5) ≤ hε(A6)

Lemma 7. hε(A6) ≤ hε(A5)

Proof. For a path π and a vector of delays t, one can show that the set of states
from which π × t can be read is a polytope of IR|X|. Let us denote this set by

Start(π, t) = {x | ∃x′, x
(t1,π1)(t2,π2)...(tn,πn)
−−−−−−−−−−−−−−−→ x

′}. We denote by Sε the set of
ε

|X|+1 -discrete and internal states. By lemma 2 of [6] if t is ε-discrete, one can find

a state in Start(π, t)∩Sε. We deduce that
∣

∣Ln,ε(A5)
∣

∣ ≤ |Sε|maxx∈Sε
|L(π,x)| ≤

|Sε|
∣

∣Ln,ε(A6)
∣

∣. As |Sε| ≤ |Q| (|X|+1)Mc

ε
which is a constant in n, by taking

limn→∞
1
n
log2 we conclude the proof. ⊓⊔

We have the chain

hε(A
6) ≤ hε(A

5) ≤ hε(A
4) ≤ hε(L(A4)) = hε(L(A5)) ≤ hε(A6).

The remaining inequalities are straightforward due to language inclusion.
We close the cycle with the following lemma which is shown using the theory

of section 5 (it should be read before the next proof).

Lemma 8. For non punctual automaton hε(RS(A)) = hε(RS(A)) + o(1)

Proof. With the notation of the proof of theorem 4 we have :

|Ln,ε| ≤
∣

∣

∣
L−
n′,ε′

∣

∣

∣
≤ |int(L)n′,ε′ | ≤ |Ln′,ε′ | .

n′ and ε′ are designed in such a way that taking limn→∞
1
n
log2 we obtain the

result (see computations at the end of the proof of theorem 4).

A.2 Polytope of paths

Proof of proposition 3. We suppose that π1, . . . , πn are consecutive and then
form a region path, otherwise L(π) is empty and thus a contiguous polytope.
We denote by x1, . . . , x|X| the clocks and by xl

k the value of the clock xl after
the kth transition. We call a mixed condition on t1, . . . , tn a condition of the

form ∃x1
0, . . .∃x

|X|
0 (

∧

i Ii(x
1
0, . . . , x

|X|
0)) where Ii(x

1
0, . . . , x

|X|
0) are inequalities of

three types:

– inequalities between two clocks without time: xl
0 ≤ B + xp

0;
– inequality between a clock and a contiguous sum starting from index 1:

xl
0 ≤ B − S1..j , A− S1..j ≤ xl

0;
– inequalities without clocks (which are temporal inequalities): A ≤ Sj..k,

Sj..k ≤ B.

We will proceed in two steps: first we show that L(π) verifies a mixed condition,
then we show that any mixed condition describes a contiguous polytope by
eliminating (projecting) clock variables with the Fourier-Motzkin procedure:

First step: Starting clock values satisfy the condition of the starting region:
xl
0 ≤ B + xp

0, A ≤ xl
0 ≤ B. For all k between 1 and n− 1, the guard xl ∈ [A,B]

of the kth transition will be translated in xl
k−1 + tk ∈ [A,B]. There are two

cases, either xl has not been reset and then xl
k−1 + tk = xl

0 + S1..k, we add the

inequality A−S1..k ≤ xl
0 ≤ B−S1..k; or x

l has been reset for the last time in the
jth transition and then xl

k−1 + tk = Sj..k, we add the inequality A ≤ Sj..k ≤ B.

Second step: Suppose by induction that we have found a mixed condition de-
scribing L(π) without clocks x1

0, .., x
l−1
0 , we will show how to get rid of the clock

xl
0. Let us divide inequalities in five groups:

1. inequality without xl
0;

2. inequalities of type: A− S1..i ≤ xl
0;

3. inequalities of type: xl
0 ≤ B − S1..j;

4. inequalities of type: xp
0 ≤ C + xl

0;
5. inequalities of type: xl

0 ≤ D + xq
0.

We keep inequalities of the first group, we replace others by a conjunction of
equivalent inequalities:

– A− S1..i ≤ B − S1..j formed with groups 2 and 3;
– A− S1..i ≤ D + xq

0 formed with groups 2 and 5;
– xp

0 ≤ C +B − S1..j formed with groups 3 and 4;
– xp

0 ≤ C +D + xq
0 formed with groups 2 and 4.

Inequalities are of the expected form(first is equivalent to A−B ≤ Si+1..j or
A ≤ B or Sj+1..i ≤ B − A whether i < j, i = j or i > j). At the end there is
only a conjunction of temporal inequalities i.e. a contiguous polytope.

A.3 Point to point reachability

Proof of proposition 4. We use lemma 2 to show that G(π) is complete iff
Reach(π̄) = r × r′. Suppose that G(π) is complete. For all x,x′, we denote by
Λ,Λ′ vectors with corresponding convex coordinates. We define P as the matrix
with rows equal to Λ′, we have ΛP = Λ′, then x,x′ ∈ Reach(π̄). We conclude
that G(π) ⇒ Reach(π̄) = r× r′. The reciprocal is trivial.

Reach(π̄) and Reach(int(π)) are polytopes obtained by quantifier elimination

(projection) in the formula ∃t1, . . . tn,x
(t1,π1)(t2,π2)...(tn,πn)
−−−−−−−−−−−−−−−→ x

′. The result is a
finite conjunction of exactly the same equalities and inequalities in both cases
except that inequalities in π̄ are non-strict and strict in int(π). By flipping the
nature of inequalities one can change r× r′ in r× r′ and vice versa.

Proof of proposition 5. Synchronizing cycles are by definition particular for-
get cycles. We do the other inclusion by contrapositive : if a cycle is not pro-
gressing then there is a clock x which is not reset and thus in the orbit graph of
the cycle there is no edge from vertices in the hyperplane x = A+ 1 to vertices
in the hyperplane x = A where A is the integer part of x in the region where
the cycle starts and ends. The graph is not complete and thus the cycle is not
forgetting.

More on synchronization cycle The stringent condition of synchronization
cycle seems too strong for us but is a simpler interesting subcase, in fact if πa
is a synchronizing cycle with a the synchronizing edge then Vol(L((πa)n)) =
(Vol(L(πa)))n and so H ≥ 1

|πa|Vol(L(πa)) > −∞. This strong condition has

been used in [9].

Proof of lemma 4. Modulo a reordering of the clocks and a fusion of equal
clocks we can suppose that the ending p-dimensional region r̄′ is

⌊x̄⌋+ {({x1}, . . . , {xp}) | 0 ≤ {x1} ≤ {x2} ≤ · · · ≤ 1},

where ⌊x̄⌋ = (⌊x1⌋, . . . , ⌊xp⌋). We have the following lemma to pass from carte-
sian coordinates (x1, . . . , xp) to barycentric coordinates (λ1, . . . , λp+1):

Lemma 9. for i ≥ 2, λi = {xp+2−i} − {xp+1−i}.

Proof. Vertices of the region are S1 = ⌊x⌋ + (0, . . . , 0), S2 = ⌊x⌋ + (0, . . . , 1),
Sp+1 = ⌊x⌋+(1 . . . 1). Therefore (x1, . . . , xp) =

∑

i∈I λiSi = ⌊x̄⌋+(λp+1, λp+1+
λp, . . . , λp+1+λp+..+λ2) and then for i ≥ 2 we have λi+(⌊xp+2−i⌋−⌊xp+1−i⌋) =
xp+2−i − xp+1−i.

For each i ∈ {2, . . . , p}, λi + (⌊xp+2−i⌋ − ⌊xp+1−i⌋) = xp+2−i − xp+1−i is the
sum of all delays between reset of xp+2−i and xp+1−i with a negative coefficient
if xp+2−i < xp+1−i. Therefore every λi (i ∈ {2, . . . , p}) is of the form −Ci±

∑

tj
with Ci ∈ IN. If 1 6∈ I then

∑

i∈I λi is of the expected form else as λ1 =
1−

∑

i≥2 λi, there exists J ⊆ {2, . . . , p} such that
∑

i∈I λi = 1+
∑

i∈J ±λi ; the
sum is also of the expected form. Moreover, there is one coefficient distinct from
0 because

∑

i∈I λi is not constant (otherwise dimension of the region would be
less than p).

Proof of lemma 3. Let P be the matrix such that ΛP = Λ′. There exists an
SCC I of G(π) without incoming edges from other SCCs. Modulo a change of
indices, we can suppose that indices of I are minimal and then matrix P has the
following form:

P =

(

PI→I PI→Ī

0 PĪ→Ī

)

.

If we decompose Λ in (ΛI , ΛĪ) and Λ′ in (Λ′
I , Λ

′
Ī
) we have ΛIPI→I = Λ′

I .

∑

j∈I

λ′
j =

∑

j∈I

∑

i∈I

λiPij =
∑

i∈I

λi

∑

j∈I

Pij ≤
∑

i∈I

λi.

A.4 Thin and thick SCCs

Proof of proposition 8. First, if all subautomata are thin, as cycle are in-
cluded in SCC, there is no forgetful cycle in the whole automaton which is

therefore thin. Let us denote by Hmax the maximal volumetric entropy ob-
tained for a subautomaton Aimax . As L(Aimax) is a sublanguage of L(A) then
Hmax ≤ H(A). For the converse inequality we use a straightforward consequence
of the definition of volumetric entropy:H is the least real such that ∀σ > 0, ∃A >
0, ∀n ≥ 0, Vol(Ln) ≤ A2n(H+σ). Therefore, in each subautomaton we have ∀σ >
0, ∃A > 0, ∀n ≥ 0, Vol(Ln) ≤ A2n(Hmax+σ). One can decompose Ln in a finite
disjoint union of languages of the form Ln1(Ai1) ·L

i1→i2 ·Ln2(Ai2) · · ·Lnm
(Aim)

where i1 < · · · < im, n − c ≤ n1 + · · · + nm ≤ n (for some constant c) and
Lij→ij+1 are finite languages going from Aij to Aij+1 and thus with bounded
volume. Volume V of such a language verifies ∀σ > 0, ∃A′ > 0, ∀n ≥ 0, V ≤
A′2(n1+ dots+nm)(Hmax+σ) ≤ A′′2n(Hmax+σ) where A′′ = max(2−c(Hmax+σ), 1)
(with some constant c). Summing over elements of the finite disjoint union of lan-
guages gives the expected result ∀σ > 0, ∃A > 0, ∀n ≥ 0, Vol(Ln) ≤ A2n(Hmax+σ)

and then Hmax ≥ H(A).

Proof of theorem 3. Let λ, α > 0 and π a λ-thick path of length n. Let r
be the number of SCC in the automaton. We suppose by contradiction that π
wanders more than αn transitions on thin SCCs and thus has a factor π′ of
length greater than αn

r
in one thin SCC. In thin SCC, for every γ, for m large

enough i.e. greater than a constant Nγ , every path π′′ of length m is γ-thin :

Vol(π′′) < γm. If n is greater than
Nγr

α
then Vol(π) ≤ Vol(π′) < γ

α
r n which

contradict the λ-thickness when choosing γ such that γ
α
r = λ.

Proposition 9. In a thick SCC Ai, there exists a constant c such that there is
a forgetful cycle of length c on each location of Ai.

Proof. Let π be some forgetful cycle and r be the region where π starts and ends.
Let r′ be a region in the same SCC as r. There is a path π(1) from r to r′ and a
path π(2) from r′ to r. We will show that π(1)ππ(2) is a forgetful cycle on r′. As
Puri stated in [19], in an orbit graph, there is an outgoing edge from each vertex
of the starting region and an incoming edge to each vertex of the ending region.
Let S, S′ be two vertices of r′, let S1, S2 be two vertices of r such that (S, S1)
and (S2, S

′) are respectively edges of G(π(1)) and G(π(2)). As G(π) is complete
there is an edge between S1 and S2 and so there is an edge between S and S′

in G(π(1)ππ(2)). To sum up there is a forgetful cycle πr
′ on each region r′ of the

strongly connected subautomaton, the least common multiple of all length of πr
′

gives an appropriate constant c.

A.5 Proof of theorem 4, more details for ≤ direction

We begin by some auxiliary results used in the core of the proof.

Remark 1. An e-fat contiguous polytope is eM contiguous.

Proof. Let t1, . . . , tn an 1
e
discrete and intern point of the polytope. Equations

of the polytopes are of the form A ≤ Sj..k ≤ B with B ≤ M . As for every

i ∈ {1, . . . , n}, ti > 0 and ti is multiple of 1
e
then ti ≥

1
e
and k−j+1

e
≤ Sj..k ≤ M .

We deduce the result: lengths k− j +1 of contiguous sums are bounded by eM .

The following two discretization lemmata are from [6].

Lemma 10. If x,x′ are ε-discrete and L(π,x,x′) 6= ∅ then Lε(π,x,x
′) 6= ∅.

Lemma 11. Every contiguous polytope P of dimension n has an 1
m
-discrete

internal point for all m > n.

The core of the proof of 4 Let c be a constant such that there is a progress
cycle of length c from everywhere in the automaton (see proposition 9 above).
Let π be a path of length n = mb, we will insert in π at every b letters a
forgetful cycle fi such that polytopes associated to the created word are e-fat
with e = (b + 1)(c+ 1) (and thus contain more discrete points).

Let π = π(1)π(2) . . . π(m) where π(1), . . . , π(m) are words of length b. For all i ∈
{1, . . . ,m−1}, there exists a forgetful cycle fi of length c on the region ri between
π(i) and π(i+1). We define π′ = φ(π) by φ(π) = π(1)f1π(2) . . . π(m−1)fm−1π(m).

Function φ is an injection from En = Emb to Emb+(m−1)c = En′

with n′ defined
as n(1+ c

b
)− c . This injection can be extended to ε-discrete words because with

lemma 10, for each couple of ε-discrete states of ri we can chose delays labeling
fi to join each other. Therefore we have a first inequality

|Lε(π)| ≤ |Lε(π
′)| .

By lemma 11, for each i one can find a 1
b+1 -discrete and internal run on

π(i) starting from a state si and ending in a state s′i. One can also find a 1
e
=

1
(b+1)(c+1) -discrete and internal run on fi from s′i to si+1. We have described a
1
e
-discrete and internal run on π′ which is thus e-fat.

Moreover an e-fat polytope is eM contiguous by remark 1. We pose 2d = eM
and we have that π′ is 2d contiguous.

Let ε′ = ε
α
where α = 1+deε. L−(π′) is defined by shrinking the inequalities

defining L(π′) by the amount ε′d i.e. changing Sj..k ∈ [A,B] into Sj..k ∈ [A +
dε′, B − dε′].

Second inequality : |Lε(π
′)| ≤

∣

∣

∣
L−
n′,ε′

∣

∣

∣
. To simplify we pose N = 1

ε
and N ′ =

1
ε′

= αN , We give an injection from E(NL(π′)) to E(N ′L−(π′)), these two sets
are respectively in bijection with Lε(π) and Lε(π

′). As L(π′) is e-fat, there exists

(u1, . . . , un) ∈ INn such that eA + 1 ≤
∑k

i=j ui ≤ eB − 1 (where Sj..k ∈ [A,B]
is one of the equations defining L(π′)). We multiply by d and use the fact that

de = (α − 1)N : (α − 1)NA + d ≤
∑k

i=j dui ≤ (α − 1)NB − d. If (t1, . . . , tn)

verifies NA ≤
∑k

i=j ti ≤ NB then (t1 + du1, . . . , tn + dun) verifies αNA + d ≤
∑k

i=j(ti + dui) ≤ αNB − d and thus it is in E(N ′L−(π′)). The translation of

vector (du1, . . . , dun) is an injection from E(NL(π′)) to E(N ′L−(π′)) and then
we are done.

Third inequality : ε′
n′ ∣

∣L−
ε′(π

′)
∣

∣ ≤ Vol(L(π′)). ∀t = (t1, . . . , tn) ∈ L−
ε′(π

′), ∀v =

(v1, . . . , vn) ∈ [− ε′

2 ,
ε′

2], for all equations Sj..k ∈ [A,B] defining L(π′), we have

A + dε′ ≤
∑k

i=j(ti + vi) ≤ B − dε′ and |
∑k

i=j vi| ≤
ε′

2 (k − j + 1) ≤ d, thus

A ≤
∑k

i=j(ti + vi) ≤ B i.e. t + v ∈ L(π′). The set of cubes of side ε′ centered

in point of L−
ε′(π

′) has volume ε′
n′ ∣

∣L−
ε′(π

′)
∣

∣, it is contained in L(π′), this prove
the third inequality.

End of the proof. Combining the three inequalities we get:

|Lε(π)| ≤
(

ε′−n′

)

Vol(L(π′)).

Recall that φ : π → π′ is an injection and thus

|Ln,ε| =
∑

π∈En

|Lε(π)| ≤
(

ε′−n′

)

∑

π′∈En′

Vol(L(π′)) =
(

ε′−n′

)

Vol(Ln′).

If we take limn→∞
1
n
log2 in the previous inequality we obtain

hε ≤
(

1 +
c

b

)

(

log2

(

1

ε′

)

+H

)

.

The right hand side is equal to log2
1
ε
+ H + log2 α + c

b
O(log2

1
ε
). Let b =

ε−
1
3 (log2

1
ε
)

1
3 , then log2 α and c

b
log2

1
ε
are O

(

ε
1
3 (log2

1
ε
)

2
3

)

.

