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Quasilinear and singular elliptic systems

Jacques Giacomoni, Jesús Hernandez and Paul Sauvy

Abstract. In this paper, we investigate the following quasilinear elliptic and singular sys-
tem (P):

−∆pu = f1(x, u, v) in Ω ; u|∂Ω = 0, u > 0 in Ω,

−∆qv = f2(x, u, v) in Ω ; v|∂Ω = 0, v > 0 in Ω,

where Ω is a bounded domain with smooth boundary in R
N , 1 < p, q < ∞ and f1, f2 ∈

C 1 (Ω × R
∗

+ × R
∗

+) two positive functions. Under suitable conditions on f1 and f2, we
first give a general result on the existence of positive weak solutions pairs (u, v) ∈ W1,p

0 (Ω)×

W1,q
0 (Ω) to (P). Next, we give some applications to Biology.

Keywords. Quasilinear singular elliptic systems, weak comparison principle, sub and
super solutions, cone condition, Schauder fixed point Theorem.

2010 Mathematics Subject Classification. 35J35, 35J50, 35R05.

1 Introduction

In this paper we are interested in the following quasilinear elliptic and singular
system,

(P)







−∆pu = f1(x, u, v) in Ω ; u|∂Ω = 0, u > 0 in Ω,

−∆qv = f2(x, u, v) in Ω ; v|∂Ω = 0, v > 0 in Ω.

Here, Ω is a bounded domain of R
N , N ≥ 2 with C

2 boundary ∂Ω, ∆ru
def
=

div(|∇u|r−2∇u) denotes the r -Laplace operator and 1 < p, q < ∞. In the right-
hand sides, f1 and f2 are two Carathéodory functions in Ω×

(

R
∗
+ × R

∗
+

)

possibly
singular. More precisely, for every (t1, t2) ∈ R

∗
+×R

∗
+ and for almost every x ∈ Ω,

we assume that
(H1) f1(·, t1, t2) and f2(·, t1, t2) are Lebesgue measurable in Ω,

(H2) f1(x, ·, ·) and f2(x, ·, ·) are in C 1(R∗
+ × R

∗
+).

We aim to establish the existence of a positive weak solutions pair to problem
(P) using the Schauder Fixed Point Theorem. Namely, if we can compose two
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order-reversing mappings,

(u, v) 7→ T1(u, v)
def
= ũ and (u, v) 7→ T2(u, v)

def
= ṽ, (1.1)

where ũ ∈ W1,p
0 (Ω) and ṽ ∈ W1,q

0 (Ω) are defined to be the (unique) positive weak
solution to the Dirichlet problems

−∆p ũ+h1(x, ũ) = f1 (x, u, v)+h1(x, u) in Ω; ũ|∂Ω=0, ũ > 0 in Ω, (1.2)

−∆q ṽ+h2(x, ṽ) = f2 (x, u, v)+h2(x, v) in Ω; ṽ|∂Ω=0, ṽ > 0 in Ω, (1.3)

respectively, in suitable conical shells of positive cones in W1,p
0 (Ω) and W1,q

0 (Ω),
with appropriate functions h1 and h2; then any fixed point of the mapping

(u, v) 7→ T (u, v)
def
= (T1(u, v), T2(u, v)) (1.4)

is a positive weak solution pair to (P) and conversely. To prove that T is well
defined and invariant in some conical shell, we use monotonicity methods together
with the existence of sub- and supersolutions which prescribe the behaviour of
the right-hand side singular non-linearities, namely f1 and f2, near the boundary
∂Ω. The continuity and the compactness in C 0,α(Ω)×C 0,α(Ω) for some suitable
0 < α < 1 follow from the regularity result Theorem 1.1 in [11] we recall in the
appendix (see Theorem A.1). We derive further uniqueness results in case where
the system (P) is competitive or cooperative (see Theorem 3.8). To establish the
uniqueness of a positive pair of solutions to (P), it is essential that the mapping T
is subhomogeneous. In the cooperative and "strong" singular case, we also prove
the existence of very weak solutions in W1,p

loc (Ω)× W1,q
loc(Ω) (see Theorem 2.3).

Quasilinear elliptic systems have been quite intensely investigated in the liter-
ature with various methods. In [23], the authors take advantage of the variational
structure of the problem to apply variational methods. In [3], a blow up argument
combined with a Liouville theorem yields universal a priori bounds. Then, the
existence of solutions is obtained by a topological degree argument (see also the
review article [5]). In [4], the key ingredients to prove existence of solutions are
the Strong Comparison Principle and Kreı̌n-Rutman theorem for homogeneous
non-linear mapping. While dealing with subhomogeneous systems, one usually
appeals the method of sub and supersolutions.

Related problems for singular quasilinear systems have been also studied in
[16] and [12]. Accordingly, we study in our paper a more general situation that
handle more singular cases. We point out additionally that in the present work
non-linearities f1 and f2 are not necessary non-negative.
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The case of singular semi-linear systems (p = q = 2) has been studied even
more frequently in [1], [2], [21], [14], [15] and [8]. We refer to [14] for additional
references on the subject.

Throughout this paper, we will use the following notations and definitions:

(i) To r ∈ (1,+∞) we associate r′
def
= r

r−1 > 1 and we denote by W−1,r′(Ω) the

dual space of W1,r
0 (Ω) with respect to the standard inner product in L2(Ω).

(ii) We denote by d(x)
def
= inf

y∈∂Ω

d(x, y), the distance from x ∈ Ω to ∂Ω.

(iii) We denote by D
def
= sup

x,y∈Ω

d(x, y), the diameter of the domain Ω.

(iv) Let f, g : Ω −→ [0,+∞] be two functions of L1
loc(Ω). Then, we write

f(x) ∼ g(x) in Ω

if there exist two positive constants C1 and C2 such that for almost every
x ∈ Ω,

C1g(x) ≤ f(x) ≤ C2g(x).

(v) The function ϕ1,r ∈ W1,r
0 (Ω) denotes the positive and Lr-renormalized eigen-

function corresponding to the first eigenvalue of −∆r,

λ1,r
def
= inf

{
∫

Ω

|∇v|rdx ∈ R, v ∈ W1,r
0 (Ω) and

∫

Ω

|v|rdx = 1

}

.

It is a weak solution of the following eigenvalue problem:

−∆rw = λ1,rw
r−1 in Ω; w|∂Ω = 0, w > 0 in Ω.

Using Moser iterations, ϕ1,r ∈ L∞(Ω) and using the Hölder regularity result
in LIEBERMAN [19], ϕ1,r ∈ C 1,α

(

Ω
)

for some 0 < α < 1. Moreover the
strong maximum and boundary principles from VÁSQUEZ [24], guarantee
that ϕ1,r satisfies

ϕ1,r(x) ∼ d(x) in Ω. (1.5)

(vi) We say that a Lebesgue measurable function f : Ω → R is locally uniformly

positive if essinfKf > 0 holds over every compact set K ⊂ Ω.

(vii) In this paper, we primarily look for positive weak solution pairs (positive

solutions, for short) of problem (P), that is, pairs of functions (u, v) ∈
W1,p

0 (Ω) × W1,q
0 (Ω) with both u and v locally uniformly positive and each

satisfying the respective equation in problem (P) in the weak sense. More
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precisely, given 1 < r < ∞ and f ∈ W−1,r′(Ω), we say that a function
u ∈ W1,r

0 (Ω) satisfies the equation

−∆ru = f in Ω (1.6)

in the weak sense if u is locally uniformly positive and satisfies

∀w ∈ W1,r
0 (Ω),

∫

Ω

|∇u|r−2∇u.∇w dx = 〈f,w〉W−1,r′(Ω)×W1,r
0 (Ω)

.

In the case where the existence of positive solutions of (P) cannot be es-
tablished, we discuss the existence of weaker solutions. Then, we say that
(u, v) ∈ W1,p

loc(Ω)× W1,q
loc(Ω) is a positive very weak solution pair of (P) if

both u and v are locally uniformly positive and satisfy the respective equation
in problem (P) in the sense of distributions.

In the three last points, for 1 < r < +∞, Ar(Ω) represents the space
W1,r

0 (Ω) or the space W1,r
loc(Ω).

(viii) Letw,w ∈ Ar(Ω), two locally uniformly positive functions such thatw ≤ w
a.e. in Ω. We define the convex set

[w,w]
def
=
{

w ∈ Ar(Ω) ∩ C
(

Ω
)

, w ≤ w ≤ w a.e. in Ω
}

.

(ix) Let u, u ∈ Ap(Ω) and v, v ∈ Aq(Ω) four locally uniformly positive func-
tions such that u ≤ u a.e. in Ω and v ≤ v a.e. in Ω. The couples (u, v)
and (u, v) are said to be sub and supersolutions pairs to (P) if the following
inequalities are satisfied in the distribution sense

−∆p u ≤ f1 (x, u, v) in Ω, for any v ∈ [v, v] , (1.7)

−∆q v ≤ f2 (x, u, v) in Ω, for any u ∈ [u, u] , (1.8)

−∆p u ≥ f1 (x, u, v) in Ω, for any v ∈ [v, v] , (1.9)

−∆q v ≥ f2 (x, u, v) in Ω, for any u ∈ [u, u] . (1.10)

(x) Let(u, v), (u, v) ∈ Ap(Ω) × Aq(Ω) be respectively sub and supersolutions
pairs to (P). Then, the conical shell [u, u]× [v, v] is denoted by C.

The paper is organised as follows. The next section (Section 2) contains the state-
ments and the proofs of our main results (Theorems 2.1 and Theorems 2.3). Dif-
ferent applications of Theorems 2.1 and 2.3 arising in population dynamics models
are given in Section 3. The appendix contains the regularity result (Theorem A.1)
used to prove Hölder continuity of solutions. Theorem A.1 is proved in [11].
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2 General results

Theorem 2.1. Let (u, v), (u, v) ∈ W1,p
0 (Ω)× W1,q

0 (Ω) be sub and supersolutions

pairs to (P) and assume in addition that the following conditions hold:

(i) there exist constants k1, k2 > 0 and δ1, δ2 ∈ R such that

|f1(x, u, v)| ≤ k1d(x)
δ1 and |f2(x, u, v)| ≤ k2d(x)

δ2 in Ω×C, (2.1)

(ii) there exist constants C1, C2 > 0 and b1, b2 > 0 such that

u ≤ C1d(x)
b1 and v ≤ C2d(x)

b2 in Ω, (2.2)

(iii) and there exist κ1, κ2 > 0 and α1, α2 > 0 such that

∣

∣

∣

∣

∂f1

∂u
(x, u, v)

∣

∣

∣

∣

≤ κ1d(x)
δ1−α1 in Ω × C, (2.3)

∣

∣

∣

∣

∂f2

∂v
(x, u, v)

∣

∣

∣

∣

≤ κ2d(x)
δ2−α2 in Ω × C, (2.4)

with the following conditions on the coefficients

δ1 > −2 +
1
p
+ (α1 − b1)

+, δ2 > −2 +
1
q
+ (α2 − b2)

+. (2.5)

Then, there exists a positive weak solutions pair (u, v) ∈ C.

Remark 2.2. Instead of conditions (2.3) and (2.4), as in [12], we can rather sup-
pose that there exist κ1, κ2 > 0 and α1, α2 > 0 such that for all (u, v) ∈ C,

w 7→ f1(x,w, v) + κ1d(x)
δ1−α1wp−1 is non decreasing on [u, u],

w 7→ f2(x, u,w) + κ2d(x)
δ2−α2wq−1 is non decreasing on [v, v].

Replacing condition (2.5) by

δ1 > −2 −
1
p
+ (α1 − (p− 1)b1)

+, δ2 > −2 +
1
q
+ (α2 − (q − 1) b2)

+ ,

we get the same result and the condition is sharper if p, q > 2. For that, it suffices
to replace the first equation of the problem (Q), given below, by

−∆pw + g̃1(x,w) = f1(x, u, v) + κ1d(x)
δ1−α1up−1 in Ω,
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with g̃1 : Ω ×R → R
∗
+ the cut-off function defined as follows:

g̃1(x, z)
def
=











κ1d(x)
δ1−α1up−1 if z ≥ u(x),

κ1d(x)
δ1−α1zp−1 if z ∈ [0, u(x)] ,

0 if z ≤ 0

(2.6)

and proceed similarly for the second equation of (P).

Proof. Let (u, v) ∈ C. We first prove the existence of T1(u, v) ∈ W1,p
0 (Ω), where

T1(u, v) is defined in (1.2) with h1(x, u)
def
= κ1d(x)

δ1−α1u in Ω × [u, u]. For that,
let us introduce the following problem :

(Q)







−∆pw + g1(x,w) = f1(x, u, v) + κ1d(x)
δ1−α1u in Ω,

w|∂Ω = 0, w > 0 in Ω,

with g1 : Ω ×R → R
∗
+ the cut-off function defined as follows:

g1(x, z)
def
=











κ1d(x)
δ1−α1u if z ≥ u(x),

κ1d(x)
δ1−α1z if z ∈ [0, u(x)] ,

0 if z ≤ 0.

(2.7)

Then, g1 is a Carathéodory function on Ω × R. Thus, for (x, s) ∈ Ω × R, setting

G1(x, s)
def
=

∫ s

0
g1(x, z)dz, we consider the following functional: ∀w ∈ W1,p

0 (Ω),

E(w)
def
=

1
p

∫

Ω

|∇w|p dx+

∫

Ω

G1(x,w) dx−

∫

Ω

(

f1(x, u, v) + κ1d(x)
δ1−α1u

)

w dx.

By assumption (2.5) and Hardy’s inequality, E is well defined in W1,p
0 (Ω) and for

all w ∈ W1,p
0 (Ω),

E(w) ≥
1
p
‖w‖p

W1,p
0 (Ω)

−C
∥

∥

(

f1(x, u, v) + κ1d(x)
δ1−α1u

)

d(x)
∥

∥

Lp′ (Ω)
‖w‖W1,p

0 (Ω). (2.8)

So, let us define

I
def
= inf

w∈W1,p
0 (Ω)

E(w) (2.9)

and let (wn)n∈N ⊂ W1,p
0 (Ω) be a minimizing sequence of E, i.e. lim

n→∞
E(wn) =

I . Using (2.8), (wn)n∈N is bounded in W1,p
0 (Ω), therefore there exists a subse-

quence (wnk
)k∈N and ũ ∈ W1,p

0 (Ω) such that wnk
−→
k→∞

ũ, weakly in W1,p
0 (Ω) and

a.e. in Ω. Therefore,

lim inf
k→∞

‖wnk
‖W1,p

0 (Ω)
≥ ‖ũ‖W1,p

0 (Ω)
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and using Fatou’s lemma,

lim inf
k→∞

∫

Ω

G1(x,wnk
)dx ≥

∫

Ω

lim inf
k→∞

G1(x,wnk
) dx =

∫

Ω

G1(x, ũ)dx.

Hence, E(ũ) = I and ũ is a solution to the Euler-Lagrange equation associated to
E0, that is:

∫

Ω

|∇ũ|p−2∇ũ.∇w dx+

∫

Ω

g1(x, ũ)wdx

=

∫

Ω

(

f1(x, u, v) + κ1d(x)
δ1−α1u

)

w dx, (2.10)

for any w ∈ W1,p
0 (Ω). Now let us prove that ũ ∈ [u, u]. Combining (1.7) and

(2.10), we get for all w ∈ W1,p
0 (Ω)+

def
= {w ∈ W1,p

0 (Ω), w ≥ 0 a.e in Ω},

∫

Ω

(

|∇ũ|p−2∇ũ− |∇u|p−2∇u
)

.∇w dx +

∫

Ω

(g1(x, ũ)− g1(x, u))w dx

≥

∫

Ω

[(

f1(x, u, v) + κ1d(x)
δ1−α1u

)

−
(

f1(x, u, v) + κ1d(x)
δ1−α1u

)]

w dx. (2.11)

By assumption (2.3), applying this inequality with w = (ũ − u)− ∈ W1,p
0 (Ω)+,

we get ũ ≥ u a.e. in Ω. Similarly, combining (1.9) and (2.10) we also get ũ ≤ u
a.e. in Ω. Then, ũ satisfies the equation

−∆pũ+ κ1d(x)
δ1−α1 ũ = f1(x, u, v) + κ1d(x)

δ1−α1u in Ω, (2.12)

in the weak sense. Moreover, using a classical local regularity result in [22], ũ ∈
C

1,γ (K) for some γ > 0 in any compact subset K of Ω. So using inequality
(2.2), ũ ∈ C

(

Ω
)

, which gives us that ũ ∈ [u, u]. Finally, by the weak maximum
principle, ũ is the unique function in the conical shell [u, u] satisfying (2.12). Then,
the mapping T1 : (u, v) 7→ ũ is well-defined from C to [u, u]. In the same spirit,
we get the existence of the mapping T2 : (u, v) 7→ ṽ defined from C to [v, v],
where ṽ is the unique weak solution in [v, v] of

−∆pṽ + κ2d(x)
δ2−α2 ṽ = f2(x, u, v) + κ2d(x)

δ2−α2v in Ω. (2.13)

This proves that the operator T defined in (1.4) is well-defined and makes invariant
the conical shell C.

Now, the continuity and the compactness of T follow from a regularity result in
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[11] we recall in appendix A. Indeed, let (un, vn)n∈N ⊂ C and (u, v) ∈ C such
that (un, vn) → (u, v) in C

(

Ω
)

× C
(

Ω
)

as n→ +∞. Then, from Theorem A.1
and assumptions (2.1), (T1(un, vn) = ũn)n∈N is bounded in C 0,α(Ω), for some
0 < α < 1. By Ascoli-Arzelà theorem, there exists a subsequence (ũnk

)k∈N and
ũ ∈ [u, u] such that ũnk

→ ũ uniformly in Ω as k → ∞. Moreover, using the local
regularity result in [22], (ũnk

)k∈N is bounded in C 1,γ (K) for some γ > 0 and for
any compact subset K of Ω which entails that up to a subsequence denoted again
(ũnk

)k∈N such that ∇ũnk
→ ∇ũ uniformly in K as k → +∞. Then, ũ satisfies

−∆pũ+ κ1d(x)
δ1−α1 ũ = f1(x, u, v) + κ1d(x)

δ1−α1u in Ω (2.14)

in the sense of distributions. Moreover, since ũ ≤ u a.e in Ω, f1(x, u, v) +
κ1d(x)

δ1−α1(u − ũ) ∈ W−1,p′(Ω), which implies that ũ ∈ W1,p
0 (Ω). Hence

ũ ∈ [u, u] and is a weak solution of (2.14). By uniqueness of a such solution
in [u, u], it follows that ũ = T1(u, v) and all the sequence (ũn)n∈N converges to
ũ in C (Ω). The same arguments hold to prove that T2(un, vn) → T2(u, v) uni-
formly in Ω as n→ +∞. Then, T : C → C is continuous. Finally, it easy from the
compact embedding of C 0,α(Ω) in C (Ω) to get the compactness of T . Applying
the Schauder Fixed Point Theorem to T in C, the proof of Theorem 2.1 is now
complete.

We now give a more general result which guarantees the existence of a "very
weak" positive solutions pair, in the cooperative case, when the inequalities (2.5)
may not be satisfied.

Theorem 2.3. Assume that (P) is a cooperative system, i.e.

∂f1

∂v
(x, u, v) > 0 and

∂f2

∂u
(x, u, v) > 0 in Ω × R

∗
+ ×R

∗
+. (2.15)

Let (u, v), (u, v) ∈
[

C (Ω) ∩ W1,p
loc(Ω)

]

×
[

C (Ω) ∩ W1,q
loc(Ω)

]

be sub and super-

solutions pairs to (P). Assume in addition that the following conditions hold:

(i) there exist constants C1, C2 > 0 and b1, b2 > 0 such that

u ≤ C1d(x)
b1 and v ≤ C2d(x)

b2 in Ω, (2.16)

(ii) there exist κ1, κ2 > 0 and δ1, δ2 ∈ R such that

∣

∣

∣

∣

∂f1

∂u
(x, u, v)

∣

∣

∣

∣

≤ κ1d(x)
δ1 and

∣

∣

∣

∣

∂f2

∂v
(x, u, v)

∣

∣

∣

∣

≤ κ2d(x)
δ2 in Ω×C. (2.17)
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Then, there exists a positive very weak solution pair (u, v) ∈
[

L∞(Ω) ∩ W1,p
loc(Ω)

]

×
[

L∞(Ω) ∩ W1,q
loc(Ω)

]

to (P) such that (u, v) ∈ C.

Remark 2.4. Since f1 and f2 are continuous with respect to the two last variables
in R

∗
+ × R

∗
+, assumptions (2.16) and (2.17) imply that for any K ⊂⊂ Ω, there

exist CK , C
′
K > 0 such that

|f1(x, u, v)| ≤ CK and |f2(x, u, v)| ≤ C ′
K in K × C. (2.18)

Proof. Since Ω is a smooth domain, we can introduce (Ωn)n∈N∗ ⊂ Ω an increas-
ing sequence of smooth subdomains of Ω such that Ωn −→

n→∞
Ω in the Hausdorff

topology with

∀n ∈ N
∗,

1
n+ 1

< dist(∂Ω, ∂Ωn) <
1
n
.

Then, for all n ∈ N
∗ we consider the following iterative scheme:

(Pn)



















−∆pun + κ1d(x)
δ1un = f1(x, ũn−1, ṽn−1) + κ1d(x)

δ1ũn−1 in Ωn,

−∆qvn + κ2d(x)
δ2vn = f2(x, ũn−1, ṽn−1) + κ2d(x)

δ2ṽn−1 in Ωn,

un|∂Ωn = u, vn|∂Ωn = v and un > 0, vn > 0 in Ωn,

with initial data u0 = u and v0 = v in Ω0 and for all n ∈ N,

ũn
def
= 1Ωn .un + 1Ω\Ωn

.u and ṽn
def
= 1Ωn .vn + 1Ω\Ωn

.v in Ω.

By induction on n ∈ N
∗, (Pn) has a solution (un, vn) ∈ W1,p(Ωn) × W1,q(Ωn)

satisfying for all n ∈ N
∗,

u ≤ ũn ≤ ũn+1 ≤ u and v ≤ ṽn ≤ ṽn+1 ≤ v a.e. in Ω. (2.19)

Indeed, using estimates (2.16) and (2.18),

f1(x, u, v) + κ1d(x)
δ1u ∈ L∞(Ω1) →֒ W−1,p′(Ω1)

and since u ∈ W1,p(Ω1) →֒ W1/p′,p(∂Ω1) in the sense of the traces, we get u1 ∈
W1,p(Ω1) as a minimum of the functional E1 defined for w ∈ W1,p(Ω1) by

E1(w)
def
=

1
p

∫

Ω1

|∇(w + u)|p dx+
κ1

2

∫

Ω1

d(x)δ1(w + u)2 dx

−

∫

Ω1

(f1(x, u, v) + κ1d(x)
δ1u)w dx. (2.20)
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Since the operator u 7→ −∆pu + κ1d(x)
δ1u is monotone in W1,p(Ω1), applying

the weak comparison principle we get

u ≤ u1 ≤ u a.e. in Ω1.

Using the same arguments as above, we prove the existence of v1 ∈ W1,q(Ω1)
satisfying v ≤ v1 ≤ v a.e. in Ω1. Now, let us fix n ∈ N

∗ and suppose that for all
k ≤ n, (Pk) has a solution (uk, vk) ∈ W1,p(Ωk) × W1,q(Ωk) satisfying (2.19).
The existence of positive solutions of (Pn+1), (un+1, vn+1) ∈ W1,p(Ωn+1) ×
W1,q(Ωn+1) satisfying

u ≤ un+1 ≤ u and v ≤ vn+1 ≤ v a.e. in Ωn+1,

can be established using similar techniques as above. To prove the monotonicity
of the sequences (ũm)m∈N∗ and (ṽm)m∈N∗ , we remark that ũn ∈ W1,p(Ωn+1) and
satisfies

−∆pũn + κ1d(x)
δ1ũn ≤ f1(x, ũn−1, ṽn−1) + κ1d(x)

δ1ũn−1 in Ωn+1, (2.21)

in the weak sense. Then, using (2.21) together with (2.18), we deduce from the
previous inequality that,

−∆pũn + κ1d(x)
δ1ũn ≤ f1(x, ũn−1, ṽn) + κ1d(x)

δ1ũn−1 in Ωn+1,

in the weak sense. Hence, by estimate (2.17) and from the weak comparison prin-
ciple applied in W1,p(Ωn+1), we obtain

ũn ≤ un+1 a.e. in Ωn+1.

Similarly, we get the existence and the behaviour of vn+1. Then, for almost every
x ∈ Ω, we define

u(x) = lim
n→∞

ũn(x) and v(x) = lim
n→∞

ṽn(x).

Moreover, using a classical local regularity result of SERRIN[22], ũn, ṽn ∈ C
1,γ
loc (Ωn)

for some 0 < γ < 1 and ∇ũn −→
n→∞

∇u and ∇ṽn −→
n→∞

∇v, uniformly in any com-

pact set K of Ω. Thus, (u, v) ∈ [u, u] × [v, v] and passing to the limit in (Pn),
(u, v) is a solution of (P) in the sense of distributions.
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3 Applications

3.1 Example 1

In this section we focus on the following quasilinear elliptic and singular system,

(P)







−∆pu = K1(x)u
a1vb1 in Ω ; u|∂Ω = 0, u > 0 in Ω,

−∆qv = K2(x)v
a2ub2 in Ω ; v|∂Ω = 0, v > 0 in Ω.

In this problem,

(i) The exponents a1 < p − 1, a2 < q − 1 and b1, b2 6= 0 satisfy the subhomo-
geneous condition

(p− 1 − a1)(q − 1 − a2)− |b1b2| > 0, (3.1)

which is equivalent to the existence of a positive constant σ > 0 such that

(p− 1 − a1)− σ|b1| > 0 and σ(q − 1 − a2)− |b2| > 0. (3.2)

(ii) K1,K2 are two positive functions in Ω satisfying

K1(x) = d(x)−k1L1(d(x)) and K2(x) = d(x)−k2L2(d(x)) in Ω, (3.3)

with 0 ≤ k1 < p, 0 ≤ k2 < q and for i = 1, 2, Li a lower perturbation in
C

2((0,D]) (D the diameter of the domain Ω), of the form:

∀t ∈ (0,D], Li(t) = exp

(
∫ 2D

t

zi(s)

s
ds

)

, (3.4)

with zi ∈ C ([0,D]) ∩ C
1((0,D]) and zi(0) = 0.

Remark 3.1. a. Let us notice that (3.4) implies that

∀ε > 0, lim
t→0+

t−εLi(t) = +∞ and lim
t→0+

tεLi(t) = 0. (3.5)

b. Definition (3.4) also implies that

lim
t→0+

tL′
i(t)

Li(t)
= 0 and lim

t→0+

tL′′
i (t)

L′
i(t)

= −1.

c. If L1, L2 are two functions satisfying (3.4), then for any α, β ∈ R, the
function L1

α.L2
β also satisfies (3.4).
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d. Such functions L1, L2 defined as above belong to the Karamata Class
[17].

Example 3.2. Let m ∈ N
∗ and A >> D large enough. Let us define

∀t ∈ (0,D], Li(t) =

m
∏

n=1

(

logn

(

A

t

))µn

,

where, logn
def
= log ◦ · · · ◦ log (n times) and µn > 0. Then Li satisfies (3.4).

In our study, b1 6= 0 and b2 6= 0. In the case where b1 > 0 and b2 > 0, the ex-
pression of the right-hand sides of the two coupled equations in system (P) define
a cooperative interaction between the two components (species) u and v:

∂

∂v

(

K1(x)u
a1vb1

)

= b1K1(x)u
a1vb1−1 > 0, (3.6)

∂

∂u

(

K2(x)v
a2ub2

)

= b2K2(x)v
a2ub2−1 > 0. (3.7)

In the case where b1 < 0 and b2 < 0, both partial derivative in (3.6) and (3.7) are
negative and the expression of the right-hand sides of the two coupled equations
of (P) defines a competitive interaction between u and v.

First, we discuss the existence of positive weak solutions pairs to problem (P).
For that, regarding Theorem 2.1, we take

f1(x, u, v) = K1(x)u
a1vb1 , f2(x, u, v) = K2(x)v

a2ub2

and construct suitable sub and supersolutions pairs of (P) in W1,p
0 (Ω)× W1,q

0 (Ω).
Then, in the cases where (P) is either competitive or cooperative, we investi-

gate the uniqueness of such positive weak solutions pairs. For that, it is essential
that the mappings T1 ◦ T2 and T2 ◦ T1 (where T1 and T2 are defined in (1.1)) is
subhomogeneous, which is equivalent to condition (3.1).

Preliminary results

Let 1 < r < ∞, δ < r − 1 and K : x 7−→ d(x)−kL(d(x)), with 0 ≤ k < r and
L a perturbation function satisfying (3.4). In view of constructing suitable pairs of
sub and supersolutions to (P), we first introduce the following problem:

−∆rw = K(x)wδ in Ω; w|∂Ω = 0, w > 0 in Ω. (3.8)
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Theorem 3.3. Under the above hypothesis, we have:

(i) If k − 1 < δ < r − 1, problem (3.8) has a unique positive weak solution

ψ ∈ W1,r
0 (Ω) that satisfies the following estimate:

ψ(x) ∼ d(x) in Ω. (3.9)

In addition, we have ψ ∈ C 1,α
(

Ω
)

, for some 0 < α < 1.

(ii) If δ = k−1, problem (3.8) has a unique positive weak solution ψ ∈ W1,r
0 (Ω)

that satisfies the following estimate:

ψ(x) ∼ d(x)

(

∫ 2D

d(x)
L(t)t−1 dt

)
1

r−k

in Ω. (3.10)

In addition, we have ψ ∈ C 0,α
(

Ω
)

, for some 0 < α < 1.

(iii) If k−2+ k−1
r−1 < δ < k−1, problem (3.8) has a unique positive weak solution

ψ ∈ W1,r
0 (Ω) that satisfies the following estimate:

ψ(x) ∼ d(x)
r−k

r−1−δL(d(x))
1

r−1−δ in Ω. (3.11)

In addition, we have ψ ∈ C 0,α
(

Ω
)

, for some 0 < α < 1.

(iv) If δ ≤ k − 2 + k−1
r−1 , problem (3.8) has at least one positive weak solution

ψ ∈ W1,r
loc(Ω) ∩ C0

(

Ω
)

that satisfies the following estimate:

ψ(x) ∼ d(x)
r−k

r−1−δL(d(x))
1

r−1−δ in Ω. (3.12)

Proof. See Lemma 3.3 in GIACOMONI, MÂAGLI, SAUVY[9].

Remark 3.4. In (iv) above, it can be proved that ∀ γ > (r−1)(r−1−δ)
r(r−k)

, ψγ
∈ W1,r

0 (Ω).

We give now a weak comparison principle used to establish the uniqueness of a
positive weak solutions pair of (P).

Theorem 3.5. Let K : Ω → R+ be a L1
loc(Ω) function and δ < r − 1. Assume

u, v ∈ W1,r
0 (Ω) ∩ L∞(Ω) are two locally uniformly positive functions satisfying

the sub and supersolution inequalities:

−∆ru ≤ K(x)uδ and − ∆rv ≥ K(x)vδ in Ω, (3.13)

in the sense of distributions (i.e. Radon measures) in W−1,r′(Ω). Then
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(i) If δ < 0, inequality u ≤ v holds a.e. in Ω.

(ii) If δ > 0 and if we suppose in addition that there exist C1, C2 > 0 and a

locally uniformly positive function w0 ∈ L∞(Ω) such that C1w0 ≤ u, v ≤
C2w0 a.e. in Ω and

∫

Ω

K(x)w0
δ+1 dx < +∞, (3.14)

inequality u ≤ v holds a.e. in Ω.

To prove this theorem, we use the well-known inequality in Lemma 3.6 and the
Díaz-Saa inequality (see DÍAZ-SAA[6]).

Lemma 3.6. There exists a constant Cr > 0 such that, for all x, y ∈ R
N ,

|x|r − |y|r − r|x|r−2x.(y − x) ≥







Cr|x− y|r if r ≥ 2,

Cr

|x− y|2

(|x|+ |y|)2−r
if 1 < r < 2.

Proof. See Lemma 4.2 in LINDQVIST [20].

Proof. (OF THEOREM 3.5)

(i) If δ < 0, we wish to prove that the function w = (u − v)+ satisfies w = 0
a.e. in Ω. First notice that 0 ≤ w ∈ W1,r

0 (Ω). Applying the duality between

W1,r
0 (Ω) and W−1,r′(Ω), respectively, to w and the the difference

−∆ru+ ∆rv ≤ K(x)
(

uδ − vδ
)

which is ≤ 0 on the set Ω+
def
= {x ∈ Ω, w(x) > 0}, we obtain

∫

Ω+

(

|∇u|r−2∇u− |∇v|r−2∇v
)

.(∇u−∇v) dx

=

∫

Ω

(

|∇u|r−2∇u − |∇v|r−2∇v
)

.∇w dx ≤ 0.

This forces ∇w = 0 a.e. in Ω+ and, consequently, also in Ω. Since w ∈
W1,r

0 (Ω), we conclude that w = 0 a.e. in Ω as claimed, that is, u ≤ v a.e. in
Ω.

(ii) If 0 < δ < r−1, following some ideas in LINDQUIST[20] (see also DRÁBEK-
HERNÁNDEZ[7]), we use the Díaz-Saa inequality.
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More precisely, for ε > 0, we set uε
def
= u + ε and vε

def
= v + ε in Ω and we

define

φ
def
=
uε

r − vε
r

uεr−1 and ψ
def
=
vε

r − uε
r

vεr−1 in Ω.

Then, uε

vε
, vεuε

∈ L∞(Ω) and φ,ψ ∈ W1,r
0 (Ω) with

∇φ =

[

1 + (r − 1)

(

vε
uε

)r]

∇u− r

(

vε
uε

)r−1

∇v in Ω, (3.15)

∇ψ =

[

1 + (r − 1)

(

uε
vε

)r]

∇v − r

(

uε
vε

)r−1

∇u in Ω. (3.16)

Setting Ω+
def
= {x ∈ Ω, u(x) > v(x)}, we have that φ > 0 and ψ < 0 in

Ω+ and

∫

Ω+

|∇u|r−2∇u.∇φdx ≤

∫

Ω+

K(x)uδφdx < +∞,

∫

Ω+

|∇v|r−2∇v.∇ψ dx ≤

∫

Ω+

K(x)vδψ dx < +∞.

Using equalities (3.15) and (3.16) and the fact that

|∇ ln uε| =
|∇u|

uε
and |∇ ln vε| =

|∇v|

vε
in Ω, (3.17)

we get

∫

Ω+

|∇u|r−2∇u.∇φdx+

∫

Ω+

|∇v|r−2∇v.∇ψ dx

=

∫

Ω+

(uε
r − vε

r)(|∇ lnuε|r − |∇ ln vε|r) dx

−

∫

Ω+

rvε
r|∇ ln uε|

r−2(∇ lnuε). (∇ ln vε −∇ ln uε) dx

−

∫

Ω+

ruε
r|∇ ln vε|r−2(∇ ln vε). (∇ ln uε −∇ ln vε) dx.
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a. If r ≥ 2, from Lemma 3.6, it follows that
∫

Ω+

|∇u|r−2∇u.∇φdx+

∫

Ω+

|∇v|r−2∇v.∇ψ dx

≥

∫

Ω+

(uε
r − vε

r)(|∇ lnuε|r − |∇ ln vε|r) dx

+

∫

Ω+

vε
r (|∇ ln uε|

r − |∇ ln vε|
r + Cr|∇ ln uε −∇ ln vε|

r) dx

+

∫

Ω+

uε
r (|∇ ln vε|r − |∇ ln uε|r + Cr|∇ ln uε −∇ ln vε|r) dx

= Cr

∫

Ω+

|uε∇vε − vε∇uε|
r

(

1
uεr

+
1
vrε

)

dx.

b. If 1 < r < 2, Lemma 3.6 entails
∫

Ω+

|∇u|r−2∇u.∇φdx+

∫

Ω+

|∇v|r−2∇v.∇ψ dx

≥ Cr

∫

Ω+

|uε∇vε − vε∇uε|
2

(uε|∇vε|+ vε|∇uε|)2−r

(

1
uεr

+
1
vεr

)

dx.

In the right-hand side, we get

∫

Ω+

K(x)
(

uδφ+ vδψ
)

dx =

∫

Ω+

K(x)

[

uδ

ur−1

(

u

uε

)r−1

−
vδ

vr−1

(

v

vε

)r−1
]

(uε
r − vε

r) dx.

Then, since u
uε

→ 1, v
vε

→ 1 as ε → 0+ a.e. in Ω, we get from (3.14) and
Lebesgue’s Theorem that

lim
ε→0+

∫

Ω+

K(x)
(

uδφ+ vδψ
)

dx ≤ 0.

By Fatou’s Lemma and using the above estimates, we obtain in the both cases
that |u∇v−v∇u| = 0 a.e. in Ω+, from which we get that on each connected
component set ω of Ω+, there exists k > 0 such that u = kv a.e. in ω. From
sub an supersolution inequalities (3.13) we have,

kr
∫

ω
K(x)vδ+1 dx ≤ kr

∫

ω
|∇v|r dx =

∫

ω
|∇u|r dx

≤

∫

ω
K(x)uδ+1 dx = kδ+1

∫

ω
K(x)vδ+1 dx. (3.18)
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Hence, k ≤ 1 which implies that u ≤ v a.e. in Ω+ and from the definition of
Ω+, u ≤ v a.e. in Ω.

Main results

Theorem 3.7. Assume that the exponents a1 < p − 1, a2 < q − 1 and b1, b2 6= 0
in problem (P) satisfy the hypothesis (3.1).

(i) Set

α1 =
q − 1 − a2

(p− 1 − a1)(q − 1 − a2)− b1b2
, α2 =

p− 1 − a1

(p− 1 − a1)(q − 1 − a2)− b1b2
,

β1 =
b1

(p− 1 − a1)(q − 1 − a2)− b1b2
, β2 =

b2

(p− 1 − a1)(q − 1 − a2)− b1b2
,

γ1 =
(p− k1)(q − 1 − a2) + (q − k2)b1

(p− 1 − a1)(q − 1 − a2)− b1b2
, γ2 =

(q − k2)(p− 1 − a1) + (p− k1)b2

(p− 1 − a1)(q − 1 − a2)− b1b2

and assume that

1 −
1
p
< γ1 < 1 and 1 −

1
q
< γ2 < 1. (3.19)

Then, problem (P) possesses positive solutions (u, v) ∈ W1,p
0 (Ω)×W1,q

0 (Ω)
that satisfy the following estimates:

u(x) ∼ d(x)γ1L1(d(x))
α1L2(d(x))

β1 in Ω, (3.20)

v(x) ∼ d(x)γ2L2(d(x))
α2L1(d(x))

β2 in Ω. (3.21)

In addition, we have (u, v) ∈ C 0,α
(

Ω
)

× C 0,α
(

Ω
)

, for some 0 < α < 1.

(ii) Now assume that

k1 − 1 < a1 + b1 < p− 1 and k2 − 1 < a2 + b2 < q − 1. (3.22)

Then, problem (P ) possesses positive solutions (u, v) ∈ W1,p
0 (Ω)×W1,q

0 (Ω)
that satisfy the following estimates:

u(x) ∼ d(x) and v(x) ∼ d(x) in Ω. (3.23)

In addition, we have (u, v) ∈ C 1,α
(

Ω
)

× C 1,α
(

Ω
)

, for some 0 < α < 1.
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(iii) Set

γ =
p− k1 + b1

p− 1 − a1

and assume that

1 −
1
p
< γ < 1 and k2 − 1 < a2 + b2γ < q − 1. (3.24)

Then, problem (P ) possesses positive solutions (u, v) ∈ W1,p
0 (Ω)×W1,q

0 (Ω)
that satisfy the following estimates:

u(x) ∼ d(x)γL1(d(x))
1

p−1−a1 and v(x) ∼ d(x) in Ω. (3.25)

In addition, we have (u, v) ∈ C 0,α
(

Ω
)

× C 1,α
(

Ω
)

, for some 0 < α < 1.

(iv) Symmetrically to part (iii) above, set

γ =
q − k2 + b2

q − 1 − a2

and assume that

k1 − 1 < a1 + b1γ < p− 1 and 1 −
1
q
< γ < 1. (3.26)

Then, problem (P ) possesses positive solutions (u, v) ∈ W1,p
0 (Ω)×W1,q

0 (Ω)
that satisfy the following estimates:

u(x) ∼ d(x) and v(x) ∼ d(x)γL2(d(x))
1

q−1−a2 in Ω. (3.27)

In addition, we have (u, v) ∈ C
1,α
(

Ω
)

× C
0,α
(

Ω
)

, for some 0 < α < 1.

Theorem 3.8. Let a1 < p − 1, a2 < q − 1 and b1, b2 6= 0 satisfying the subhomo-

geneity hypothesis (3.1). Assume that (P ) is either a competitive or a cooperative

system, i.e. b1b2 > 0. Then, each solution provided by Theorem 3.7 is unique.

The cooperative case is further analysed in the following result:

Theorem 3.9. Let us suppose that the exponents a1 < p − 1, a2 < q − 1 and

b1, b2 6= 0 satisfy the subhomogeneity hypothesis (3.1). Moreover, assume that

(P ) is a cooperative system, i.e., b1 > 0 and b2 > 0.
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(i) Set

γ1 =
(p− k1)(q − 1 − a2) + (q − k2)b1

(p− 1 − a1)(q − 1 − a2)− b1b2
, (3.28)

γ2 =
(q − k2)(p− 1 − a1) + (p− k1)b2

(p− 1 − a1)(q − 1 − a2)− b1b2
(3.29)

and assume that one of the three following conditions are satisfied:

0 < γ1 ≤ 1 −
1
p

and 0 < γ2 ≤ 1 −
1
q
, (3.30)

1 −
1
p
< γ1 < 1 and 0 < γ2 ≤ 1 −

1
q
, (3.31)

0 < γ1 ≤ 1 −
1
p

and 1 −
1
q
< γ2 < 1. (3.32)

Then, problem (P) admits positive solutions (u, v) ∈ W1,p
loc(Ω)×W1,q

loc(Ω) in

the sense of distributions satisfying the estimates (3.20) and (3.21).

(ii) Set

γ =
p− k1 + b1

p− 1 − a1
(3.33)

and assume that

0 < γ ≤ 1 −
1
p

and k2 − 1 < a2 + b2γ < q − 1. (3.34)

Then, problem (P) nevertheless admits positive solutions (u, v) ∈ W1,p
loc(Ω)×

W1,q
0 (Ω) in the sense of distributions satisfying the estimates (3.20) and (3.21).

(iii) Symmetrically to part (ii) above, set

γ =
q − k2 + b2

q − 1 − a2
(3.35)

and assume that

k1 − 1 < a1 + b1γ < p− 1 and 0 < γ ≤ 1 −
1
q
. (3.36)

Then, problem (P ) possesses positive solutions (u, v) ∈ W1,p
0 (Ω)×W1,q

loc(Ω)
in the sense of distributions that satisfies the estimates given in (3.27).

The next result deals with some limiting cases:
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Theorem 3.10. Assume that the exponents a1 < p − 1, a2 < q − 1 and b1, b2 6= 0
satisfy the subhomogeneity hypothesis (3.1).

(i) Assume that

a1 + b1 = k1 − 1 and k2 − 1 ≤ a2 + b2 < q − 1. (3.37)

Then, for all ε > 0 small enough, there existC1, C2 > 0 andC ′
1, C

′
2 > 0 such

that problem (P ) possesses positive solutions (u, v) ∈ W1,p
0 (Ω)× W1,q

0 (Ω)
that satisfy the following estimates:

C1d(x) ≤ u ≤ C2d(x)
1−ε and C ′

1d(x) ≤ v ≤ C ′
2d(x)

1−εσ in Ω, (3.38)

where σ > 0 is given in (3.2).In addition, we have (u, v) ∈ C
0,α
(

Ω
)

×
C

0,α
(

Ω
)

, for some 0 < α < 1.

(ii) Symmetrically, assume that

a2 + b2 = k2 − 1 and k1 − 1 ≤ a1 + b1 < q − 1. (3.39)

Then, for all ε > 0 small enough, there existC1, C2 > 0 andC ′
1, C

′
2 > 0 such

that problem (P ) possesses positive solutions (u, v) ∈ W1,p
0 (Ω)× W1,q

0 (Ω)
that satisfy the following estimates:

C1d(x) ≤ u ≤ C2d(x)
1−ε and C ′

1d(x) ≤ v ≤ C ′
2d(x)

1−εσ in Ω. (3.40)

In addition, we have (u, v) ∈ C
0,α
(

Ω
)

× C
0,α
(

Ω
)

, for some 0 < α < 1.

(iii) Let us abbreviate

γ =
p− k1 + b1

p− 1 − a1

and assume that

1 −
1
p
< γ < 1 and a2 + b2γ = k2 − 1. (3.41)

Then, for all ε > 0 small enough, there existC1, C2 > 0 andC ′
1, C

′
2 > 0 such

that problem (P ) possesses positive solutions (u, v) ∈ W1,p
0 (Ω)× W1,q

0 (Ω)
that satisfy the following estimates in Ω:

C1d(x)
γ+ε ≤ u ≤ C2d(x)

γ−ε and C ′
1d(x) ≤ v ≤ C ′

2d(x)
1−εσ. (3.42)

In addition, we have (u, v) ∈ C
0,α
(

Ω
)

× C
0,α
(

Ω
)

, for some 0 < α < 1.
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(iv) Symmetrically, let us abbreviate

γ =
q − k2 + b2

q − 1 − a2

and assume that

a1 + b1γ = k2 − 1 and 1 −
1
q
< γ < 1. (3.43)

Then, for all ε > 0 small enough, there existC1, C2 > 0 andC ′
1, C

′
2 > 0 such

that problem (P ) possesses positive solutions (u, v) ∈ W1,p
0 (Ω)× W1,q

0 (Ω)
that satisfy the following estimates in Ω:

C1d(x) ≤ u ≤ C2d(x)
1−ε and C ′

1d(x)
γ+εσ ≤ v ≤ C ′

2d(x)
γ−εσ. (3.44)

In addition, we have (u, v) ∈ C 0,α
(

Ω
)

× C 0,α
(

Ω
)

, for some 0 < α < 1.

Proof of Theorem 3.7

Thanks to Theorem 3.3, we apply Theorem 2.1 with a suitable choice of sub and
supersolutions pairs (u, v), (u, v) ∈ W1,p

0 (Ω)× W1,q
0 (Ω) in the following form:

u ≡ mψ1 and u ≡ m−1ψ1 in Ω,

v ≡ mσψ2 and v ≡ m−σψ2 in Ω,

where σ > 0 is given in (3.2), 0 < m < 1 is an appropriate constant small enough
and ψ1 ∈ W1,p

0 (Ω), ψ2 ∈ W1,q
0 (Ω) are given by Theorem 3.3 as the respective

unique solutions of problems

−∆pw = d(x)−k1L1(d(x))w
δ1 in Ω; w|∂Ω = 0, w > 0 in Ω, (3.45)

−∆qw = d(x)−k2L2(d(x))w
δ2 in Ω; w|∂Ω = 0, w > 0 in Ω, (3.46)

satisfying some cone conditions we specify below. In the following alternatives,
we choose suitable perturbations L1,L2 as in (3.4) and suitable values of expo-
nents k1 − 2 + k1−1

p−1 < δ1 < p − 1 and k2 − 2 + k2−1
q−1 < δ2 < q − 1 in order to

satisfy

−∆pψ1 ∼ K1(x)ψ1
a1ψ2

b1 and − ∆qψ2 ∼ K2(x)ψ2
a2ψ1

b2 in Ω, (3.47)

which provide us the inequalities (1.7) to (1.10) in order to apply Theorem 2.1.
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Alternative 1: We look for positive solutions (u, v) ∈ W1,p
0 (Ω) × W1,q

0 (Ω) to
(P) by making the "Ansatz" that

u(x) ∼ d(x)γ1L1(d(x))
α1L2(d(x))

β1 in Ω,

v(x) ∼ d(x)γ2L2(d(x))
α2L1(d(x))

β2 in Ω,

for some γ1 ∈ (1− 1
p , 1), γ2 ∈ (1− 1

q , 1) and α1, α2, β1, β2 ∈ R. For that, we take
in (3.45) and (3.46)

k1 − 2+
k1 − 1
p− 1

< δ1 < k1 − 1 and k2 − 2+
k2 − 1
q − 1

< δ2 < k2 − 1, (3.48)

L1 = L1
λ1 .L2

µ1 and L2 = L2
λ2 .L1

µ2 in Ω,

where λ1, λ2, µ1, µ2 ∈ R are suitable exponents we fix later. By Theorem 3.3,
ψ1 ∈ W1,p

0 (Ω), ψ2 ∈ W1,q
0 (Ω) and satisfy

ψ1(x) ∼ d(x)
p−k1

p−1−δ1L1(d(x))
λ1

p−1−δ1L2(d(x))
µ1

p−1−δ1 in Ω, (3.49)

ψ2(x) ∼ d(x)
q−k2

q−1−δ2L2(d(x))
λ2

q−1−δ2 L1(d(x))
µ2

q−1−δ2 in Ω. (3.50)

In view of satisfying estimates given in (3.47), the comparison of the term −∆pψ1

with K1(x)ψ1
a1ψ2

b1 on one side, and the term −∆qψ2 with K2(x)ψ2
a2ψ1

b2 on the
other side, imposes the exponents λ1, λ2, µ1, µ2 and δ1, δ2 to satisfy the following
system:



























































δ1
p−k1

p−1−δ1
= a1

p−k1
p−1−δ1

+ b1
q−k2

q−1−δ2
,

δ2
q−k2

q−1−δ2
= a2

q−k2
q−1−δ2

+ b2
p−k1

p−1−δ1
,

λ1
p−1

p−1−δ1
= 1 + a1

λ1
p−1−δ1

+ b1
µ2

q−1−δ2
,

λ2
q−1

q−1−δ2
= 1 + b2

µ1
p−1−δ1

+ a2
λ2

q−1−δ2
,

µ1
p−1

p−1−δ1
= a1

µ1
p−1−δ1

+ b1
λ2

q−1−δ2
,

µ2
q−1

q−1−δ2
= b2

λ1
p−1−δ1

+ a2
µ2

q−1−δ2
.

Then, we get

γ1 =
p− k1

p− 1 − δ1
=

(p− k1)(q − 1 − a2) + (q − k2)b1

(p− 1 − a1)(q − 1 − a2)− b1b2
, (3.51)

γ2 =
q − k2

q − 1 − δ2
=

(q − k2)(p− 1 − a1) + (p− k1)b2

(p− 1 − a1)(q − 1 − a2)− b1b2
, (3.52)
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α1 =
λ1

p− 1 − δ1
=

q − 1 − a2

(p− 1 − a1)(q − 1 − a2)− b1b2
, (3.53)

α2 =
λ2

q − 1 − δ2
=

p− 1 − a1

(p− 1 − a1)(q − 1 − a2)− b1b2
, (3.54)

β1 =
µ1

p− 1 − δ1
=

b1

(p− 1 − a1)(q − 1 − a2)− b1b2
, (3.55)

β2 =
µ2

q − 1 − δ2
=

b1

(p− 1 − a1)(q − 1 − a2)− b1b2
, (3.56)

which imply estimate (3.47). Moreover, inequalities (3.19) are then equivalent to
inequalities (3.48). Let (u, v) ∈ [u, u]× [v, v]. On one hand, we have

−∆pu ≤ mp−1C1L1(d(x))
λ1+δ1γ1L2(d(x))

µ1+δ1β1d(x)δ1γ1−k1 in Ω,

−∆qv ≤ mσ(q−1)C ′
1L2(d(x))

λ2+δ2α2L1(d(x))
µ2+δ2β2d(x)δ2γ2−k2 in Ω.

On the other hand,

K1(x)u
a1vb1 ≥ C2m

a1+σ|b1|Λ1(d(x))d(x)
a1γ1+b1γ2−k1 in Ω

with Λ1 = L1
1+a1α1+b1β2 .L2

a1β1+b1α2 . Similarly,

K2(x)v
a2ub2 ≥ C ′

2m
σa2+|b2|Λ2(d(x))d(x)

a2γ2+b2γ1−k2 in Ω,

with Λ2 = L2
1+a2α2+b2β1 .L1

a2β2+b2α1 . Then, under condition (3.2) and thanks to
(3.51) to (3.56), (u, v) is a subsolutions pair of problem (P), for m small enough.
Next,

−∆pu ≥ m1−pC3L1(d(x))
λ1+δ1γ1L2(d(x))

µ1+δ1β1d(x)δ1γ1−k1 in Ω,

−∆qv ≥ mσ(1−q)C ′
3L2(d(x))

λ2+δ2α2L1(d(x))
µ2+δ2β2d(x)δ2γ2−k2 in Ω.

Furthermore,

K1(x)u
a1vb1 ≤ C4m

−a1−σ|b1|Λ1(d(x))d(x)
a1γ1+b1γ2−k1 in Ω.

Similarly,

K2(x)v
a2ub2 ≤ C ′

4m
−σa2−|b2|Λ2(d(x))d(x)

a2γ2+b2γ1−k2 in Ω.

Then under (3.2) and thanks to (3.51) to (3.56), (u, v) is a supersolutions pair of
problem (P), for m small enough. Therefore estimates (1.7) to (1.10) hold. Let
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us check that conditions (2.1) to (2.5) of Theorem 2.1 are satisfied. By estimates
(3.49) and (3.50) and using the properties of the perturbations L1 and L2 given in
point (a) and (c) of Remark 3.1, for all ε > 0 there exist positive constants C1, C2

and C ′
1, C

′
2 such that

C1d(x)
γ1 ≤ u, u ≤ C2d(x)

γ1−ε and C ′
1d(x)

γ2 ≤ v, v ≤ C ′
2d(x)

γ2−ε in Ω.

In addition, using (3.51) to (3.56), there exist positive constants κ1, κ2 such that

|f1(x, u, v)| = K1(x)u
a1vb1 ≤ κ1d(x)

δ1γ1−k1−ε in Ω × C,

|f2(x, u, v)| = K2(x)v
a2ub2 ≤ κ2d(x)

δ2γ2−k2−ε in Ω × C

and
∣

∣

∣

∣

∂f1

∂u
(x, u, v)

∣

∣

∣

∣

= |a1|K1(x)u
a1−1vb1 ≤ κ1d(x)

(δ1γ1−k1−ε)−γ1 in Ω × C,

∣

∣

∣

∣

∂f2

∂v
(x, u, v)

∣

∣

∣

∣

= |a2|K2(x)v
a2−1ub2 ≤ κ2d(x)

(δ2γ2−k2−ε)−γ2 in Ω × C.

Since γ1 ∈ (1 − 1
p , 1) and γ2 ∈ (1 − 1

q , 1), inequalities (2.5) hold for ε small
enough. Then, applying Theorem 2.1 we conclude about the existence of positive
solutions to (P) in W1,p

0 (Ω)×W1,q
0 (Ω) satisfying the estimates (3.20) and (3.21).

Finally, using Theorem A.1, we get that any positive weak solutions pair to (P) in
the conical shell C belongs to C

0,α
(

Ω
)

× C
0,α
(

Ω
)

, for some 0 < α < 1. This
proves (i) of Theorem 3.7.

Alternative 2: In this part, we look for positive solutions (u, v) ∈ W1,p
0 (Ω) ×

W1,q
0 (Ω) by making the "Ansatz" that both function u and v behave like the dis-

tance function d(x) for x ∈ Ω near the boundary ∂Ω. For that, similarly as in
Alternative 1, we take in (3.45) and (3.46)

k1 − 1 < δ1 < p− 1 and k2 − 1 < δ2 < q − 1, (3.57)

L1 = L1 and L2 = L2 in Ω.

By Theorem 3.3, ψ1 ∈ W1,p
0 (Ω), ψ2 ∈ W1,q

0 (Ω) and satisfy

ψ1(x) ∼ d(x) and ψ2(x) ∼ d(x) in Ω.

In view of satisfying estimates given in (3.47), we fix δ1 and δ2 as follows:

δ1 = a1 + b1 and δ2 = a2 + b2. (3.58)
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Then, (3.47) holds and inequalities given in (3.57) entail (3.22). The rest of the
proof is as in Alternative 1. This proves (ii) of Theorem 3.7.

Alternative 3: Now we combine our methods from Alternative 1 and Alternative

2. We search for positive solutions (u, v) ∈ W1,p
0 (Ω) × W1,q

0 (Ω) to problem (P)

by again making the "Ansatz" that

u(x) ∼ d(x)γL1(d(x))
αL2(d(x))

β in Ω,

for some γ ∈ (1 − 1
p , 1) and α, β ∈ R, and v behave like the distance function in

Ω. For that, we take in (3.45) and (3.46)

k1 − 2 +
k1 − 1
p− 1

< δ1 < k1 − 1 and k2 − 1 < δ2 < q − 1, (3.59)

L1 = L1
λ1 .L2

µ1 and L2 = L2
λ2 .L1

µ2 in Ω,

where λ1, λ2, µ1, µ2 ∈ R are suitable exponents to be fixed. By Theorem 3.3,
ψ1 ∈ W1,p

0 (Ω), ψ2 ∈ W1,q
0 (Ω) and satisfy

ψ1(x) ∼ d(x)
p−k1

p−1−δ1L1(d(x))
λ1

p−1−δ1L2(d(x))
µ1

p−1−δ1 and ψ2(x) ∼ d(x) in Ω.

In view of (3.47), the exponents have to satisfy



















δ1
p−k1

p−1−δ1
= a1

p−k1
p−1−δ1

+ b1, δ2 = b2
p−k1

p−1−δ1
+ a2,

λ1
p−1

p−1−δ1
= a1

λ1
p−1−δ1

+ 1, λ2 = b2
µ1

p−1−δ1
+ 1,

µ1
p−1

p−1−δ1
= a1

µ1
p−1−δ1

, µ2 = b2
λ1

p−1−δ1
.

Hence we obtain

γ = p−k1
p−1−δ1

= p−k1+b1
p−1−a1

and δ2 = a2 + b2
p−k1+b1
p−1−a1

,

α = λ1
p−1−δ1

= 1
p−1−δ1

and β = µ1

p−1−δ1
= 0.

The rest of the proof is as in Alternative 1. This proves (iii) of Theorem 3.7 and
(iv) is the corresponding symmetric case of (iii). �

Proof of Theorem 3.8

To prove uniqueness of solutions, we apply a classical argument of KRANSNOSEL-
SKII [18]. Let (u, v), (ũ, ṽ) ∈ W1,p

0 (Ω) × W1,q
0 (Ω), be two distinct positive weak

solutions pairs to problem (P) in the conical shell C = [u, u]×[v, v], where (u, v),
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(u, v) are given in the proof of Theorem 3.7. This means that T (u, v) = (u, v)
and T (ũ, ṽ) = (ũ, ṽ), which implies that, T1 ◦ T2(u) = u, T2 ◦ T1(v) = v and
T1 ◦ T2(ũ) = ũ, T1 ◦ T2(ṽ) = ṽ, respectively. Let us define

Cmax
def
= sup{C ∈ R+, Cũ ≤ u and Cṽ ≤ v a.e. in Ω}. (3.60)

T1 ◦ T2(Cmaxũ) = (Cmax)
b1

p−1−a1
.

b2
q−1−a2 T1 ◦ T2(ũ) = (Cmax)

b1
p−1−a1

.
b2

q−1−a2 ũ,

T2 ◦ T1(Cmaxṽ) = (Cmax)
b2

q−1−a2
.

b1
p−1−a1 T2 ◦ T1(ṽ) = (Cmax)

b2
q−1−a2

.
b1

p−1−a2 ṽ.

Therefore, by Theorem 3.5, both mappings T1 ◦ T2 and T2 ◦ T1 being (pointwise)
order-preserving, we arrive at

u = T1 ◦ T2(u) ≥ T1 ◦ T2(Cmaxũ) = (Cmax)
b1

p−1−a1
.

b2
q−1−a2 ũ, (3.61)

v = T2 ◦ T1(v) ≥ T2 ◦ T1(Cmaxṽ) = (Cmax)
b2

q−1−a2
.

b1
p−1−a1 ṽ. (3.62)

From 0 < Cmax < 1 combined with the subhomogeneity condition (3.1) we de-
duce that

C ′
max

def
= (Cmax)

b1
p−1−a1

.
b2

q−1−a2 > Cmax,

which contradicts the maximality of the constant Cmax in (3.60), by inequalities
(3.61) and (3.62). Then, Cmax ≥ 1 which entails ũ ≤ u and ṽ ≤ v a.e. in Ω.
Interchanging the roles of (u, v) and (ũ, ṽ), we finally get (u, v) = (ũ, ṽ) a.e. in
Ω. �

Proof of Theorem 3.9 The proof is very similar to the proof of Theorem 3.7.
So we omit it. �

Proof of Theorem 3.10

Alternative 1: Assume that a1 + b1 = k1 − 1 and k2 − 1 ≤ a2 + b2 < q − 1. We
look for positive sub and supersolutions pairs (u, v), (u, v) in the form:

u = mψ1 and u = m−1(ϕ1,p)
1−ε in Ω,

v = mσψ2 and v = m−σ(ϕ1,q)
1−σε in Ω,

where σ > 0 is given by (3.2), ε < 1 and m < 1 are appropriate positive constants
small enough and ψ1 ∈ W1,p

0 (Ω) and ψ2 ∈ W1,q
0 (Ω) are the respective solutions to

−∆pw = K1(x)w
δ1 in Ω; w|∂Ω = 0, w > 0 in Ω,
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−∆qw = K2(x)w
δ2 in Ω; w|∂Ω = 0, w > 0 in Ω,

with k1 −1 < δ1 < p−1 and a2 + b2 < δ2 < q−1. By Theorem 3.3, both ψ1 and
ψ2 behave like the distance function in Ω. Let us remark that by estimate (1.5),
u ≤ u and v ≤ v in Ω, for m small enough. Now, let 1 < r < ∞ and γ ∈ (0, 1),
then we have

−∆r [(ϕ1,r)
γ
] = γr−1

[

λ1,r(ϕ1,r)
γ(r−1) − (γ − 1)(r− 1)(ϕ1,r)

(γ−1)(r−1)−1|∇ϕ1,r|
r
]

= γr−1(ϕ1,r)
−(1−γ)(r−1)−1 [λ1,r(ϕ1,r)

r + (1 − γ)(r − 1)|∇ϕ1,r|
r]

in Ω. By estimate (1.5), we conclude that

−∆r [(ϕ1,r(x))
γ ] ∼ d(x)−(1−γ)(r−1)−1 in Ω. (3.63)

So, let (u, v) ∈ [u, u]× [v, v]. On one hand, we have

−∆pu ≤ mp−1C1K1(x)d(x)
δ1 and − ∆qv ≤ mq−1C ′

1K2(x)d(x)
δ2 in Ω.

On the other hand, we also have

K1(x)u
a1vb1 ≥







ma1+σb1K1(x)ψ1
a1ψ2

b1 if b1 > 0,

ma1−σb1K1(x)ψ1
a1(ϕ1,q)

b1(1−εσ) if b1 < 0,

≥ ma1+σ|b1|C2K1(x)d(x)
k1−1+εσb−1 in Ω,

in Ω. Similarly, we get

K2(x)v
a2ub2 ≥ mσa2+|b2|C ′

2K2(x)d(x)
a2+b2+εb−2 in Ω.

Then, for m and ε small enough, (u, v) is a subsolutions pair of problem (P).
Similarly, using estimate (3.63), we obtain

−∆pu ≥ m1−pC3d(x)
−1−ε(p−1) and −∆qv ≥ mσ(1−q)C ′

3d(x)
−1−εσ(q−1) in Ω.

Furthermore, by (3.5), for any ε′ > 0, there exists C4 = C4(ε
′) > 0 such that

K1(x)u
a1vb1 ≤







m−(a1+σb1)K1(x)(ϕ1,p)
a1(1−ε)(ϕ1,q)

b1(1−εσ) if b1 > 0,

m−(a1−σb1)K1(x)(ϕ1,p)
a1(1−ε)ψ2

b1 if b1 < 0,

≤ m−(a1+σ|b1|)C4d(x)
−1−ε(a1+σb+1 )−ε′ in Ω,
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Similarly, we have

K2(x)v
a2ub2 ≤ m−(σa2+|b2|)C ′

4d(x)
−k1+a2+b2−ε(σa2+b+2 )−ε′ in Ω,

with C ′
4 = C ′

4(ε
′). Then, for m, ε and ε′ small enough, (u, v) is a supersolutions

pair of problem (P). Applying Theorem 2.1, we get the existence of positive
solutions (u, v) ∈ W1,p

0 (Ω)×W1,q
0 (Ω) of (P) satisfying (3.69). This proves (i) of

Theorem 3.10.
Alternative 2: When k1 − 1 ≤ a1 + b1 < q − 1 and a2 + b2 = k2 − 1,

interchanging the role of u and v, the proof of (ii) is the same as above.
Alternative 3: Assume that (3.41) is satisfied. To prove (3), we follow the

proof in Alternative 1. We construct positive sub and supersolutions pairs (u, v),
(u, v) ∈ W1,p

0 (Ω)× W1,q
0 (Ω) in the form

u = m(ϕ1,p)
γ+ε, u = m−1(ϕ1,p)

γ−ε and v = mσψ, v = m−σ(ϕ1,q)
1−σε in Ω,

where σ > 0 is given by (3.2), and ε,m are appropriate positive constants small
enough and ψ ∈ W1,q

0 (Ω) is the solution (see Theorem 3.3) of

−∆qw = K2(x)w
δ in Ω; w|∂Ω = 0, w > 0 in Ω,

with a2 + γb2 < δ < q − 1. (iv) is the symmetric case of (3) by interchanging the
role of u and v. Finally, from Theorem A.1, we get the Hölder regularity of (u, v).
�

3.2 Example 2

We consider now the following singular system

(P)







−∆pu = ua1vb1 − uα1vβ1 in Ω ; u|∂Ω = 0, u > 0 in Ω,

−∆qv = va2ub2 − vα2uβ2 in Ω ; v|∂Ω = 0, v > 0 in Ω,

where the above exponents satisfy

(p− 1 − a1)− σ|b1| > 0 and (α1 − a1)− σ(|β1| − |b1|) > 0, (3.64)

σ(q − 1 − a2)− |b2| > 0 and σ(α2 − a2)− (|β2| − |b2|) > 0, (3.65)

for some constant σ > 0. Then, we have the following result:

Theorem 3.11.
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(i) Let

γ1 =
p(q − 1 − a2) + qb1

(p− 1 − a1)(q − 1 − a2)− b1b2
, γ2 =

q(p− 1 − a1) + pb2

(p− 1 − a1)(q − 1 − a2)− b1b2
(3.66)

and assume that

1 −
1
p
< γ1 < 1 and (α1 − a1)γ1 + (β1 − b1)γ2 > 0, (3.67)

1 −
1
q
< γ2 < 1 and (α2 − a2)γ2 + (β2 − b2)γ1 > 0. (3.68)

Then, problem (P) has a positive solution (u, v) ∈ W1,p
0 (Ω) × W1,q

0 (Ω)
satisfying

u(x) ∼ d(x)γ1 and v(x) ∼ d(x)γ2 in Ω. (3.69)

In addition, we have (u, v) ∈ C 0,α
(

Ω
)

× C 0,α
(

Ω
)

, for some 0 < α < 1.

(ii) Assume that

−1 < a1 + b1 < p− 1 and (α1 − a1) + (β1 − b1) > 0, (3.70)

−1 < a2 + b2 < q − 1 and (α2 − a2) + (β2 − b2) > 0. (3.71)

Then, (P) has a positive solution (u, v) ∈ W1,p
0 (Ω)× W1,q

0 (Ω) satisfying

u(x) ∼ d(x) and v(x) ∼ d(x) in Ω. (3.72)

In addition, we have (u, v) ∈ C
1,α
(

Ω
)

× C
1,α
(

Ω
)

, for some 0 < α < 1.

(iii) Let

γ =
p+ b1

p− 1 − a1
(3.73)

and assume that

1 −
1
p
< γ < 1 and (α1 − a1)γ + (β1 − b1) > 0, (3.74)

−1 < a2 + b2γ < p− 1 and (α2 − a2) + (β2 − b2)γ > 0. (3.75)

Then, (P) has a positive solution (u, v) ∈ W1,p
0 (Ω)× W1,q

0 (Ω) satisfying

u(x) ∼ d(x)γ and v(x) ∼ d(x) in Ω. (3.76)

In addition, we have (u, v) ∈ C
0,α
(

Ω
)

× C
1,α
(

Ω
)

, for some 0 < α < 1.
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(iv) Symmetrically, set

γ =
q + b2

q − 1 − a2
(3.77)

and assume that

−1 < a1 + b1γ < p− 1 and (α1 − a1) + (β1 − b1)γ > 0, (3.78)

1 −
1
q
< γ < 1 and (α2 − a2)γ + (β2 − b2) > 0. (3.79)

Then, (P) has a positive solution (u, v) ∈ W1,p
0 (Ω)× W1,q

0 (Ω) satisfying

u(x) ∼ d(x) and v(x) ∼ d(x)γ in Ω. (3.80)

In addition, we have (u, v) ∈ C 1,α
(

Ω
)

× C 0,α
(

Ω
)

, for some 0 < α < 1.

Proof. We apply Theorem 2.1 with

u ≡ mψ1, u ≡ m−1ψ1 and v ≡ mσψ2, v ≡ m−σψ2 in Ω,

where σ > 0 is the constant given in (3.64) and (3.65),m < 1 is a positive constant
small enough and ψ1 ∈ W1,p

0 (Ω), ψ2 ∈ W1,q
0 (Ω) are given by Theorem 3.3 as the

respective unique solutions of problems

−∆pw = wδ1 in Ω; w|∂Ω = 0, w > 0 in Ω,

−∆qw = wδ2 in Ω; w|∂Ω = 0, w > 0 in Ω,

satisfying some cone conditions we precise below. In the following Alternatives,
we choose −2 − 1

p−1 < δ1 < p− 1 and −2 − 1
q−1 < δ2 < q − 1 such that

−∆pψ1 ∼ ψ1
a1ψ2

b1 and − ∆qψ2 ∼ ψ2
a2ψ1

b2 in Ω. (3.81)

Alternative 1: Assume that conditions (3.67) and (3.68) hold. Then, arguing as
in Alternative 1 in the proof of Theorem 3.7, we choose −2− 1

p−1 < δ1 < −1 and

−2 − 1
q−1 < δ2 < −1 unique solutions pair of the following system:

δ1p

p− 1 − δ1
=

a1p

p− 1 − δ1
+

b1q

q − 1 − δ2
and

δ2q

q − 1 − δ2
=

a2q

q − 1 − δ2
+

b2p

p− 1 − δ2
.

Since
ψ1(x) ∼ d(x)γ1 and ψ2(x) ∼ d(x)γ2 in Ω,
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where γ1 = p
p−1−δ1

and γ2 = q
q−1−δ2

are given by (3.66), estimates (3.81) follows.
Let (u, v) ∈ [u, u]× [v, v]. First, we have

−∆pu ≤ mp−1C1d(x)
δ1γ1 and −∆qv ≤ mσ(q−1)C ′

1d(x)
δ2γ2 in Ω. (3.82)

On the other hand, by (3.64) and (3.67),

ua1vb1 − uα1vβ1 ≥ ma1+σ|b1|ψ1
a1ψ2

b1

[

1 −mα1−a1−σ(|β1|−|b1|)ψ1
α1−a1ψ2

β1−b1

]

≥ ma1+σ|b1|C2d(x)
a1γ1+b1γ2 in Ω. (3.83)

for m small enough. By (3.65) and (3.68), we also have

va2ub2 − vα2uβ2 ≥ mσa2+|b2|C ′
2d(x)

a2γ2+b2γ1 in Ω, (3.84)

for m small enough. Then, under conditions (3.64), (3.65), (3.67) and (3.68) and
for m small enough, (u, v) is a subsolutions pair of problem (P).

Similarly, we have

−∆pu ≥ m1−pC3d(x)
δ1γ1 and −∆qv ≥ mσ(1−q)C ′

3d(x)
δ2γ2 in Ω. (3.85)

In addition,

ua1vb1 − uα1vβ1 ≤ m−a1−σ|b1|ψ1
a1ψ2

b1 ≤ m−a1−σ|b1|C4d(x)
a1γ1+b1γ2 (3.86)

in Ω. We obtain further

va2ub2 − vα2uβ2 ≤ m−σa2−|b2|C ′
4d(x)

a2γ2+b2γ1 in Ω. (3.87)

Then, under conditions (3.64), (3.65) and for m small enough, (u, v) is a superso-
lutions pair of problem (P).

Applying Theorem 2.1, we get the existence of positive solutions (u, v) ∈
W1,p

0 (Ω) × W1,q
0 (Ω) of (P) satisfying (3.69). Again from Theorem A.1, (u, v)

are Hölder continuous. This proves the assertion (i).
Alternative 2: Now, assume that conditions (3.70) and (3.71) are satisfied.

Then, we choose δ1 = a1 + b1 and δ2 = a2 + b2. By Theorem 3.3, since

ψ1(x) ∼ d(x) and ψ2(x) ∼ d(x) in Ω,

estimates (3.81) hold. Instead of inequalities (3.82), we have in this case

−∆pu ≤ mp−1C1d(x)
a1+b1 and − ∆qv ≤ mσ(q−1)C ′

1d(x)
a2+b2 in Ω.
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From (3.64), (3.65), (3.70) and (3.71), we get for any (u, v) ∈ [u, u]× [v, v]:

ua1vb1 − uα1vβ1 ≥ ma1+σ|b1|C2d(x)
a1+b1 in Ω,

va2ub2 − vα2uβ2 ≥ mσa2+|b2|C ′
2d(x)

a2+b2 in Ω,

form small enough. Then, under conditions (3.64), (3.65), (3.70), (3.71) and form
small enough, (u, v) is a subsolution pair of problem (P). Instead of inequalities
(3.85), we have in this case in Ω,

−∆pu ≥ m1−pC3d(x)
a1+b1 and − ∆qv ≥ mσ(1−q)C ′

3d(x)
a2+b2 .

In addition, instead of inequalities (3.86) and (3.87), we get

ua1vb1 − uα1vβ1 ≤ m−a1−σ|b1|C4d(x)
a1+b1 ,

va2ub2 − vα2uβ2 ≤ m−σa2−|b2|C ′
4d(x)

a2+b2 ,

in Ω. Then, under conditions (3.64), (3.65) and for m small enough, (u, v) is a
supersolution pair of problem (P). Then, we conclude as in the Alternative 1 and
(ii) is proved.

Alternative 3: Now, assume conditions (3.74) and (3.75) hold. Then, arguing as
in the proof of Theorem 3.7, we choose −2 − 1

p < δ1 < −1 and −1 < δ2 < q− 1
unique solutions pair of the following system:

δ1p

p− 1 − δ1
=

a1p

p− 1 − δ1
+ b1 and δ2 = a2 +

b2p

p− 1 − δ2
.

Estimates in (3.81) hold since

ψ1(x) ∼ d(x)γ and ψ2(x) ∼ d(x) in Ω,

with γ given by (3.73). Instead of inequalities (3.82), we have in this case

−∆pu ≤ mp−1C1d(x)
δ1γ and − ∆qv ≤ mσ(q−1)C ′

1d(x)
δ2 in Ω.

From (3.64), (3.65), (3.74) and (3.75), we obtain now

ua1vb1 − uα1vβ1 ≥ ma1+σ|b2|C2d(x)
a1γ+b1 in Ω,

va2ub2 − vα2uβ2 ≥ mσa2+|b2|C ′
2d(x)

a2+b2γ in Ω,

for m small enough. Then, under conditions (3.64), (3.65), (3.74), (3.75) and for
m small enough, (u, v) is a subsolution pair of problem (P). Instead of (3.85), we
have

−∆pu ≥ m1−pC3d(x)
δ1γ and − ∆pv ≥ mσ(1−q)C ′

3d(x)
δ2 in Ω.
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And inequalities (3.86) are replaced by

ua1vb1 − uα1vβ1 ≤ m−a1−σ|b1|C4d(x)
a1γ+b1 in Ω,

va2ub2 − vα2uβ2 ≤ m−σa2−|b2|C ′
4d(x)

a2+b2γ in Ω.

Then, under conditions (3.64), (3.65) and for m small enough, (u, v) is a super-
solution pair of problem (P). We conclude as in the Alternative 1. Thus, (iii) is
proved. Note that (iv) is the symmetric case of (iii) by interchanging u and v.

We can further prove similarly (we omit the proof):

Theorem 3.12. Assume that conditions (3.64) and (3.65) are satisfied.

(i) Assume that

a1 + b1 = −1 and (α1 − a1) + (β1 − b1) > 0, (3.88)

−1 ≤ a2 + b2 < q − 1 and (α2 − a2) + (β2 − b2) > 0. (3.89)

Then, for all ε > 0 small enough, there existC1, C2 > 0 andC ′
1, C

′
2 > 0 such

that (P ) admits positive solutions (u, v) ∈ W1,p
0 (Ω)× W1,q

0 (Ω) satisfying:

C1d(x) ≤ u ≤ C2d(x)
1−ε and C ′

1d(x) ≤ v ≤ C ′
2d(x)

1−εσ in Ω, (3.90)

with σ > 0 is given in (3.2). In addition, we have (u, v) ∈ C
0,α
(

Ω
)

×
C 0,α

(

Ω
)

, for some 0 < α < 1.

(ii) Symmetrically, assume that

−1 ≤ a1 + b1 < q − 1 and (α1 − a1) + (β1 − b1) > 0, (3.91)

a2 + b2 = −1 and (α2 − a2) + (β2 − b2) > 0. (3.92)

Then, for all ε > 0 small enough, there existC1, C2 > 0 andC ′
1, C

′
2 > 0 such

that (P ) admits positive solutions (u, v) ∈ W1,p
0 (Ω)× W1,q

0 (Ω) satisfying:

C1d(x) ≤ u ≤ C2d(x)
1−ε and C ′

1d(x) ≤ v ≤ C ′
2d(x)

1−εσ in Ω. (3.93)

In addition, we have (u, v) ∈ C 0,α
(

Ω
)

× C 0,α
(

Ω
)

, for some 0 < α < 1.

(iii) Let

γ =
p+ b1

p− 1 − a1

and assume that

1 −
1
p
< γ < 1 and (α1 − a1)γ + (β1 − b1) > 0, (3.94)
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a2 + b2γ = −1 and (α2 − a2) + (β2 − b2)γ > 0. (3.95)

Then, for all ε > 0 small enough, there existC1, C2 > 0 andC ′
1, C

′
2 > 0 such

that (P ) admits positive solutions (u, v) ∈ W1,p
0 (Ω)× W1,q

0 (Ω) satisfying:

C1d(x)
γ+ε ≤ u ≤ C2d(x)

γ−ε and C ′

1d(x) ≤ v ≤ C ′

2d(x)
1−εσ in Ω. (3.96)

In addition, we have (u, v) ∈ C
0,α
(

Ω
)

× C
0,α
(

Ω
)

, for some 0 < α < 1.

(iv) Symmetrically, let

γ =
q + b2

q − 1 − a2

and assume that

a1 + b1γ = −1 and (α1 − a1) + (β1 − b1)γ > 0, (3.97)

1 −
1
q
< γ < 1 and (α2 − a2)γ + (β2 − b2) > 0. (3.98)

Then, for all ε > 0 small enough, there existC1, C2 > 0 andC ′
1, C

′
2 > 0 such

that (P ) admits positive solutions (u, v) ∈ W1,p
0 (Ω)× W1,q

0 (Ω) satisfying:

C1d(x) ≤ u ≤ C2d(x)
1−ε and C ′

1d(x)
γ+εσ ≤ v ≤ C ′

2d(x)
γ−εσ in Ω. (3.99)

In addition, we have (u, v) ∈ C 0,α
(

Ω
)

× C 0,α
(

Ω
)

, for some 0 < α < 1.

3.3 Example 3

In this section, we consider the following singular competition system

(P)







−∆pu = λ1u
α1 − uβ1 − µ1u

a1vb1 in Ω ; u|∂Ω = 0, u > 0 in Ω,

−∆qv = λ2v
α2 − vβ2 − µ2v

a2ub2 in Ω ; v|∂Ω = 0, v > 0 in Ω,

where λ1, λ2 and µ1, µ2 are positive and α1, α2, β1, β2, a1, a2, b1, b2 satisfy

−2 −
1

p− 1
< α1 < p− 1, α1 < β1 and a1 − α1 − σ|b1| > 0, (3.100)

−2 −
1

q − 1
< α2 < q − 1, α2 < β2 and σ(a2 − α2)− |b2| > 0, (3.101)

for some constant σ > 0. Then, we have
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Theorem 3.13. (i) Assume that

−2 −
1

p− 1
< α1 < −1 and

(a1 − α1)p

p− 1 − α1
+

b1q

q − 1 − α2
> 0, (3.102)

−2 −
1

q − 1
< α2 < −1 and

(a2 − α2)q

q − 1 − α2
+

b2p

p− 1 − α1
> 0. (3.103)

Then, (P) admits positive solutions (u, v) ∈ W1,p
0 (Ω)×W1,q

0 (Ω) satisfying:

u(x) ∼ d(x)
p

p−1−α1 and v(x) ∼ d(x)
q

q−1−α2 in Ω. (3.104)

In addition, we have (u, v) ∈ C 0,α
(

Ω
)

× C 0,α
(

Ω
)

, for some 0 < α < 1.

(ii) Assume that

−1 < α1 < p− 1 and a1 − α1 + b1 > 0, (3.105)

−1 < α2 < q − 1 and a2 − α2 + b2 > 0. (3.106)

Then, (P) admits positive solutions (u, v) ∈ W1,p
0 (Ω)×W1,q

0 (Ω) satisfying:

u(x) ∼ d(x) and v(x) ∼ d(x) in Ω. (3.107)

In addition, we have (u, v) ∈ C 1,α
(

Ω
)

× C 1,α
(

Ω
)

, for some 0 < α < 1.

(iii) Assume that

−2−
1

p− 1
< α1 < −1 and (a1−α1+b1)p−b1(α1+1) > 0, (3.108)

−1 < α2 < q−1 and (a2−α2+b2)p−(a2−α2)(α1+1) > 0. (3.109)

Then, (P) admits positive solutions (u, v) ∈ W1,p
0 (Ω)×W1,q

0 (Ω) satisfying:

u(x) ∼ d(x)
p

p−1−α1 and v(x) ∼ d(x) in Ω. (3.110)

In addition, we have (u, v) ∈ C
0,α
(

Ω
)

× C
1,α
(

Ω
)

, for some 0 < α < 1.

(iv) Symmetrically, assume that

−1 < α1 < p−1 and (a1−α1+b1)q−(a1−α1)(α2+1) > 0, (3.111)

−2−
1

q − 1
< α2 < −1 and (a2−α2+b2)q−b2(α2+1) > 0. (3.112)

Then, (P) admits positive solutions (u, v) ∈ W1,p
0 (Ω)×W1,q

0 (Ω) satisfying:

u(x) ∼ d(x) and v(x) ∼ d(x)
q

q−1−α2 in Ω. (3.113)

In addition, we have (u, v) ∈ C
1,α
(

Ω
)

× C
0,α
(

Ω
)

, for some 0 < α < 1.
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Proof. We apply Theorem 2.1 with

u ≡ mψ1, u ≡ m−1ψ1 and v ≡ mσψ2, v ≡ m−σψ2 in Ω, (3.114)

where σ > 0 is the constant given in (3.100) and (3.101), m < 1 is a suitable
small positive constant and ψ1 ∈ W1,p

0 (Ω), ψ2 ∈ W1,q
0 (Ω) are (given by Theorem

3.3) the respective unique solutions of problems

−∆pw = wα1 in Ω; w|∂Ω = 0, w > 0 in Ω,

−∆qw = wα2 in Ω; w|∂Ω = 0, w > 0 in Ω.

Alternative 1: Assume conditions (3.102) and (3.103) are satisfied. Then, from
Theorem 3.3, we get

ψ1(x) ∼ d(x)
p

p−1−α1 and ψ2(x) ∼ d(x)
q

q−1−α2 in Ω.

Let us prove that, for m small enough, (u, v) and (u, v) are respectively sub and
supersolutions pairs of (P). Let (u, v) ∈ [u, u]× [v, v]. We have in Ω,

−∆pu ≤ mp−1C1d(x)
α1p

p−1−α1 and − ∆qv ≤ mσ(q−1)C ′
1d(x)

α2q
q−1−α2 . (3.115)

From (3.100) and (3.102), we obtain:

λ1u
α1 − uβ1 − µ1u

a1vb1

≥ λ1(mψ1)
α1

[

1 − 1
λ1
(mψ1)

β1−α1 − µ1
λ1
(mψ1)

a1−α1
(

m−σsign(b1)ψ2
)b1
]

≥ λ1
2 m

α1C2d(x)
α1p

p−1−α1 ,
(3.116)

for m small enough. In addition, from (3.101) and (3.103), we get:

λ2v
α2 − vβ2 − µ2v

a2ub2 ≥
λ1

2
mσα2C ′

2d(x)
α2q

q−1−α2 in Ω, (3.117)

for m small enough. Then, under conditions (3.102), (3.103) and for m small
enough, (u, v) is a subsolutions pair of problem (P). We also get

−∆pu ≥ m1−pC3d(x)
α1p

p−1−α1 and −∆qv ≥ mσ(1−q)C ′
3d(x)

α2q
q−1−α2 in Ω. (3.118)

Similarly, one has

λ1u
α1 − uβ1 − µ1u

a1vb1 ≤ λ1m
−α1C4d(x)

α1p
p−1−α1 in Ω, (3.119)
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λ2v
α2 − vβ2 − µ2v

a2ub2 ≤ λ2m
−σα2C ′

4d(x)
α2q

q−1−α2 in Ω. (3.120)

Then, for m small enough, (u, v) is a supersolutions pair of problem (P).
Applying Theorem 2.1, we get the existence of positive solutions (u, v) ∈

W1,p
0 (Ω) × W1,q

0 (Ω) of (P) satisfying (3.104). From Theorem A.1, we get the
Hölder regularity of u and v. This proves (i).

Alternative 2: Now, let conditions (3.105) and (3.106) be satisfied. Then,

ψ1(x) ∼ d(x) and ψ2(x) ∼ d(x) in Ω.

Let (u, v) ∈ [u, u]× [v, v]. Instead of (3.115), we now get

−∆pu ≤ mp−1C1d(x)
α1 and − ∆qv ≤ mσ(q−1)C ′

1d(x)
α2 in Ω.

From (3.100), (3.101), (3.105) and (3.106), instead of (3.116) and (3.117), we have

λ1u
α1 − uβ1 − µ1u

a1vb1 ≥
λ1

2
mα1C2d(x)

α1 in Ω,

λ2v
α2 − vβ2 − µ2v

a2ub2 ≥
λ2

2
mσα2C ′

2d(x)
α2 in Ω,

for m small enough. Then, under conditions (3.105), (3.106) and for m small
enough, (u, v) is a subsolutions pair of problem (P). Instead of (3.118), we have

−∆pu ≥ m1−pC3d(x)
α1 and − ∆qv ≥ mσ(1−q)C ′

3d(x)
α2 in Ω.

Furthermore, the following inequalities

λ1u
α1 − uβ1 − µ1u

a1vb1 ≤ λ1m
−α1C4d(x)

α1 in Ω,

λ2v
α2 − vβ2 − µ2v

a2ub2 ≤ λ1m
−σα2C ′

4d(x)
α2 in Ω

replace (3.119) and (3.120). Then, for m small enough, (u, v) is a supersolutions
pair of problem (P). We conclude as in the Alternative 1 and (ii) is proved.

Alternative 3: Now, assume that conditions (3.108) and (3.109) are satisfied.
Then,

ψ1(x) ∼ d(x)
p

p−1−α1 and ψ2(x) ∼ d(x) in Ω.

Let (u, v) ∈ [u, u]× [v, v]. Instead of (3.115), we have

−∆pu ≤ mp−1C1d(x)
α1p

p−1−α1 and − ∆qv ≤ mσ(q−1)C ′
1d(x)

α2 in Ω.

From (3.100), (3.101), (3.108) and (3.109), instead of (3.116) and (3.117), we get

λ1u
α1 − uβ1 − µ1u

a1vb1 ≥
λ1

2
mα1C2d(x)

α1p
p−1−α1 in Ω,
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λ2v
α2 − vβ2 − µ2v

a2ub2 ≥
λ2

2
mσα2C ′

2d(x)
α2 in Ω,

for m small enough. Then, under conditions (3.108), (3.109) and for m small
enough, (u, v) is a subsolutions pair of problem (P). Finally, Instead of (3.118),
we have

−∆pu ≥ m1−pC3d(x)
α1p

p−1−α1 and − ∆qv ≥ mσ(1−q)C ′
3d(x)

α2 in Ω.

Instead of (3.119) and (3.120), we obtain

λ1u
α1 − uβ1 − µ1u

a1vb1 ≤ λ1m
−α1C4d(x)

α1p
p−1−α1 in Ω,

λ2v
α2 − vβ2 − µ2v

a2ub2 ≤ λ1m
−σα2C ′

4d(x)
α2 in Ω.

Then, for m small enough, (u, v) is a supersolutions pair of problem (P). Then,
we conclude as in the Alternative 1. Thus, (iii) and by symmetry (iv) are proved.

Concerning the above theorem, we analyse further some limiting cases. The
proof of the next result follows the proof of Theorem 3.10. So we omit it.

Theorem 3.14. (i) Let

α1 = −1 and (a1 − α1 + b1)q − (a1 − α1)(α2 + 1) > 0, (3.121)

−2−
1

q − 1
< α2 < −1 and (a2−α2−b2)q−b2(α2+1) > 0. (3.122)

Then, (P) admits positive solutions (u, v) ∈ W1,p
0 (Ω)×W1,q

0 (Ω) satisfying:

u(x) ∼ d(x)| ln(d(x))|
1
p and v(x) ∼ d(x)

q
q−1−α2 in Ω. (3.123)

In addition, we have (u, v) ∈ C 0,α
(

Ω
)

× C 0,α
(

Ω
)

, for some 0 < α < 1.

(ii) Let

α1 = −1 and a1 − α1 + b1 > 0, (3.124)

α2 = −1 and a2 − α2 + b2 > 0. (3.125)

Then, (P) admits positive solutions (u, v) ∈ W1,p
0 (Ω)×W1,q

0 (Ω) satisfying:

u(x) ∼ d(x)| ln(d(x))|
1
p and v(x) ∼ d(x)| ln(d(x))|

1
q in Ω. (3.126)

In addition, we have (u, v) ∈ C
0,α
(

Ω
)

× C
0,α
(

Ω
)

, for some 0 < α < 1.



Quasilinear and singular elliptic systems 39

(iii) Let

α1 = −1 and a1 − α1 + b1 > 0, (3.127)

−1 < α2 < q − 1 and a2 − α2 + b2 > 0. (3.128)

Then, (P) admits positive solutions (u, v) ∈ W1,p
0 (Ω)×W1,q

0 (Ω) satisfying:

u(x) ∼ d(x)| ln(d(x))|
1
p and v(x) ∼ d(x) in Ω. (3.129)

In addition, we have (u, v) ∈ C 0,α
(

Ω
)

× C 1,α
(

Ω
)

, for some 0 < α < 1.

A A useful Hölder regularity result

We consider the following quasilinear elliptic boundary value problem,

−∆rw = f in Ω; w|∂Ω = 0, w > 0 in Ω. (A.1)

In this equation, f is a L1
loc(Ω) function such that there exist two constants C > 0

and δ > 0 satisfying

|f(x)| ≤ Cd(x)−δ, a.e. in Ω. (A.2)

Then, we have the following Hölder regularity result on the solutions to (A.1).

Theorem A.1. Assume that f satisfies the growth hypothesis (A.2). Let u ∈
W1,r

0 (Ω) be a positive weak solution to (A.1). Let u ∈ W1,r
0 (Ω) be a superso-

lutions to (A.1) such that

−∆ru ≥ |f | in Ω, (A.3)

in the sense of distributions in W−1,r′(Ω). In addition, assume that there exists

C ′ > 0 such that

0 ≤ u ≤ u ≤ C ′d(x)δ
′

a.e in Ω, (A.4)

with 0 < δ′ < δ. Finally, let α be an arbitrary number such that

0 < α <
r

r − 1 + δ/δ′
< 1.

Then, there exists a constant M > 0, depending solely on Ω, r and N , on the

constantsC and δ in (A.2), on the constantsC ′ and δ′ in (A.4), and on the constant

α, such that u ∈ C 0,α(Ω) and

‖u‖
C 0,α(Ω) ≤M.
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Proof. The proof is quite similar to the Theorem 1.1’s in [11] with a : (x, η) 7→
|η|p−2η in Ω×R

N . Indeed, to overcome the non-positivity of f , we add conditions
(A.3) and (A.4). Then, introducing the same boundary value problem (2.12),in-
stead of inequality (2.14), we get here

|u(x)− v(x)| ≤ u(x) ≤ Cxδ
′

N for all x = (x′, xN ) ∈ B+
R(0). (A.5)

Then, estimate (A.18) still holds and the end of the proof is exactly the same.
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