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In this paper, we investigate the following quasilinear elliptic and singular system (P):

-

where Ω is a bounded domain with smooth boundary in R N , 1 < p, q < ∞ and

two positive functions. Under suitable conditions on f 1 and f 2 , we first give a general result on the existence of positive weak solutions pairs (u, v) ∈ W 1,p 0 (Ω)× W 1,q 0 (Ω) to (P). Next, we give some applications to Biology.

Introduction

In this paper we are interested in the following quasilinear elliptic and singular system,

(P)    -∆ p u = f 1 (x, u, v) in Ω ; u| ∂Ω = 0, u > 0 in Ω, -∆ q v = f 2 (x, u, v) in Ω ; v| ∂Ω = 0, v > 0 in Ω.
Here, Ω is a bounded domain of R N , N ≥ 2 with C 2 boundary ∂Ω, ∆ r u def = div(|∇u| r-2 ∇u) denotes the r -Laplace operator and 1 < p, q < ∞. In the righthand sides, f 1 and f 2 are two Carathéodory functions in Ω × R * + × R * + possibly singular. More precisely, for every (t 1 , t 2 ) ∈ R * + ×R * + and for almost every x ∈ Ω, we assume that (H 1 ) f 1 (•, t 1 , t 2 ) and f 2 (•, t 1 , t 2 ) are Lebesgue measurable in Ω, (H 2 ) f 1 (x, •, •) and f 2 (x, •, •) are in C 1 (R * + × R * + ). We aim to establish the existence of a positive weak solutions pair to problem (P) using the Schauder Fixed Point Theorem. Namely, if we can compose two order-reversing mappings, (u, v) → T 1 (u, v) def = ũ and (u, v) → T 2 (u, v) def = ṽ, (1.1) where ũ ∈ W 1,p 0 (Ω) and ṽ ∈ W 1,q 0 (Ω) are defined to be the (unique) positive weak solution to the Dirichlet problems -∆ p ũ+h 1 (x, ũ) = f 1 (x, u, v) +h 1 (x, u) in Ω; ũ| ∂Ω=0 , ũ > 0 in Ω, (1.2) -∆ q ṽ + h 2 (x, ṽ) = f 2 (x, u, v) + h 2 (x, v) in Ω; ṽ| ∂Ω=0 , ṽ > 0 in Ω, (1.3) respectively, in suitable conical shells of positive cones in W 1,p 0 (Ω) and W 1,q 0 (Ω), with appropriate functions h 1 and h 2 ; then any fixed point of the mapping

(u, v) → T (u, v) def = (T 1 (u, v), T 2 (u, v)) (1.4)
is a positive weak solution pair to (P) and conversely. To prove that T is well defined and invariant in some conical shell, we use monotonicity methods together with the existence of sub-and supersolutions which prescribe the behaviour of the right-hand side singular non-linearities, namely f 1 and f 2 , near the boundary ∂Ω. The continuity and the compactness in C 0,α (Ω) × C 0,α (Ω) for some suitable 0 < α < 1 follow from the regularity result Theorem 1.1 in [START_REF] Giacomoni | Hölder regularity and singular elliptic equations[END_REF] we recall in the appendix (see Theorem A.1). We derive further uniqueness results in case where the system (P) is competitive or cooperative (see Theorem 3.8). To establish the uniqueness of a positive pair of solutions to (P), it is essential that the mapping T is subhomogeneous. In the cooperative and "strong" singular case, we also prove the existence of very weak solutions in W 1,p loc (Ω) × W 1,q loc (Ω) (see Theorem 2.3). Quasilinear elliptic systems have been quite intensely investigated in the literature with various methods. In [START_REF] De Thélin | Existence et nonexistence de solutions non triviales pour des systèmes elliptiques non linéaires[END_REF], the authors take advantage of the variational structure of the problem to apply variational methods. In [START_REF] Clément | Positive solutions for a quasilinear system via blow up[END_REF], a blow up argument combined with a Liouville theorem yields universal a priori bounds. Then, the existence of solutions is obtained by a topological degree argument (see also the review article [START_REF] De Figueiredo | Semilinear Elliptic systems[END_REF]). In [START_REF] Cuesta | Nonlinear eigenvalue problems for degenerate elliptic systems[END_REF], the key ingredients to prove existence of solutions are the Strong Comparison Principle and Kreǐn-Rutman theorem for homogeneous non-linear mapping. While dealing with subhomogeneous systems, one usually appeals the method of sub and supersolutions.

Related problems for singular quasilinear systems have been also studied in [START_REF] Lee | Classes of singular pq-laplacian semipositone systems[END_REF] and [START_REF] Giacomoni | Quasilinear and singular systems: the cooperative case[END_REF]. Accordingly, we study in our paper a more general situation that handle more singular cases. We point out additionally that in the present work non-linearities f 1 and f 2 are not necessary non-negative.

The case of singular semi-linear systems (p = q = 2) has been studied even more frequently in [START_REF] Choi | A singular Gierer-Meinhardt system of elliptic equations[END_REF], [START_REF] Choi | A singular Gierer-Meinhardt system of elliptic equations: the classical case[END_REF], [START_REF] Ni | Diffusion, cross-diffusion and spike-layer steady states[END_REF], [START_REF] Hernández | Positive solutions for singular semilinear elliptic systems[END_REF], [START_REF] Hernández | Singular Elliptic and Parabolic Equations[END_REF] and [START_REF] Ghergu | Lane-Emden systems with negative exponents[END_REF]. We refer to [START_REF] Hernández | Positive solutions for singular semilinear elliptic systems[END_REF] for additional references on the subject.

Throughout this paper, we will use the following notations and definitions:

(i) To r ∈ (1, +∞) we associate r ′ def = r r-1 > 1 and we denote by W -1,r ′ (Ω) the dual space of W 1,r 0 (Ω) with respect to the standard inner product in L 2 (Ω). (iv) Let f, g : Ω -→ [0, +∞] be two functions of L 1 loc (Ω). Then, we write

f(x) ∼ g(x)
in Ω if there exist two positive constants C 1 and C 2 such that for almost every x ∈ Ω, C 1 g(x) ≤ f(x) ≤ C 2 g(x).

(v) The function ϕ 1,r ∈ W 1,r 0 (Ω) denotes the positive and L r -renormalized eigenfunction corresponding to the first eigenvalue of -∆ r ,

λ 1,r def = inf Ω |∇v| r dx ∈ R, v ∈ W 1,r 0 (Ω)
and

Ω |v| r dx = 1 .
It is a weak solution of the following eigenvalue problem:

-∆ r w = λ 1,r w r-1 in Ω; w| ∂Ω = 0, w > 0 in Ω.

Using Moser iterations, ϕ 1,r ∈ L ∞ (Ω) and using the Hölder regularity result in LIEBERMAN [START_REF] Lieberman | Boundary regularity for solutions of degenerate elliptic equations[END_REF], ϕ 1,r ∈ C 1,α Ω for some 0 < α < 1. Moreover the strong maximum and boundary principles from VÁSQUEZ [START_REF] Vázquez | A Strong Maximum Principle for some quasilinear elliptic equations[END_REF], guarantee that ϕ 1,r satisfies ϕ 1,r (x) ∼ d(x) in Ω.

(1.5) (vi) We say that a Lebesgue measurable function f : Ω → R is locally uniformly positive if essinf K f > 0 holds over every compact set K ⊂ Ω.

(vii) In this paper, we primarily look for positive weak solution pairs (positive solutions, for short) of problem (P), that is, pairs of functions (u, v) ∈ W 1,p 0 (Ω) × W 1,q 0 (Ω) with both u and v locally uniformly positive and each satisfying the respective equation in problem (P) in the weak sense. More precisely, given 1 < r < ∞ and f ∈ W -1,r ′ (Ω), we say that a function u ∈ W 1,r 0 (Ω) satisfies the equation

-∆ r u = f in Ω (1.6)
in the weak sense if u is locally uniformly positive and satisfies

∀w ∈ W 1,r 0 (Ω), Ω |∇u| r-2 ∇u.∇w dx = f, w W -1,r ′ (Ω)×W 1,r 0 (Ω) .
In the case where the existence of positive solutions of (P) cannot be established, we discuss the existence of weaker solutions. Then, we say that (u, v) ∈ W 1,p loc (Ω) × W 1,q loc (Ω) is a positive very weak solution pair of (P) if both u and v are locally uniformly positive and satisfy the respective equation in problem (P) in the sense of distributions.

In the three last points, for 1 < r < +∞, A r (Ω) represents the space W 1,r 0 (Ω) or the space W 1,r loc (Ω).

(viii) Let w, w ∈ A r (Ω), two locally uniformly positive functions such that w ≤ w a.e. in Ω. We define the convex set

[w, w] def = w ∈ A r (Ω) ∩ C Ω , w ≤ w ≤ w a.e. in Ω .
(ix) Let u, u ∈ A p (Ω) and v, v ∈ A q (Ω) four locally uniformly positive functions such that u ≤ u a.e. in Ω and v ≤ v a.e. in Ω. The couples (u, v) and (u, v) are said to be sub and supersolutions pairs to (P) if the following inequalities are satisfied in the distribution sense

-∆ p u ≤ f 1 (x, u, v) in Ω, for any v ∈ [v, v] , (1.7) 
-∆ q v ≤ f 2 (x, u, v) in Ω, for any u ∈ [u, u] , (1.8) 
-∆ p u ≥ f 1 (x, u, v) in Ω, for any v ∈ [v, v] , (1.9) 
-∆ q v ≥ f 2 (x, u, v) in Ω, for any u ∈ [u, u] . (1.10) (x) Let(u, v), (u, v) ∈ A p (Ω) × A q (Ω)
be respectively sub and supersolutions pairs to (P). Then, the conical shell

[u, u] × [v, v] is denoted by C.
The paper is organised as follows. The next section (Section 2) contains the statements and the proofs of our main results (Theorems 2.1 and Theorems 2.3). Different applications of Theorems 2.1 and 2.3 arising in population dynamics models are given in Section 3. The appendix contains the regularity result (Theorem A.1) used to prove Hölder continuity of solutions. Theorem A.1 is proved in [START_REF] Giacomoni | Hölder regularity and singular elliptic equations[END_REF].

General results

Theorem 2.1. Let (u, v), (u, v) ∈ W 1,p 0 (Ω) × W 1,q 0 (Ω) be sub and supersolutions pairs to (P) and assume in addition that the following conditions hold:

(i) there exist constants k 1 , k 2 > 0 and δ 1 , δ 2 ∈ R such that |f 1 (x, u, v)| ≤ k 1 d(x) δ 1 and |f 2 (x, u, v)| ≤ k 2 d(x) δ 2 in Ω×C, (2.1) (ii) there exist constants C 1 , C 2 > 0 and b 1 , b 2 > 0 such that u ≤ C 1 d(x) b 1 and v ≤ C 2 d(x) b 2 in Ω, (2.2) 
(iii) and there exist κ 1 , κ 2 > 0 and α 1 , α 2 > 0 such that

∂f 1 ∂u (x, u, v) ≤ κ 1 d(x) δ 1 -α 1 in Ω × C, (2.3 
)

∂f 2 ∂v (x, u, v) ≤ κ 2 d(x) δ 2 -α 2 in Ω × C, (2.4) 
with the following conditions on the coefficients

δ 1 > -2 + 1 p + (α 1 -b 1 ) + , δ 2 > -2 + 1 q + (α 2 -b 2 ) + . (2.5)
Then, there exists a positive weak solutions pair (u, v) ∈ C.

Remark 2.2. Instead of conditions (2.3) and (2.4), as in [START_REF] Giacomoni | Quasilinear and singular systems: the cooperative case[END_REF], we can rather suppose that there exist κ 1 , κ 2 > 0 and α 1 , α 2 > 0 such that for all (u, v) ∈ C,

w → f 1 (x, w, v) + κ 1 d(x) δ 1 -α 1 w p-1 is non decreasing on [u, u], w → f 2 (x, u, w) + κ 2 d(x) δ 2 -α 2 w q-1 is non decreasing on [v, v].
Replacing condition (2.5) by

δ 1 > -2 - 1 p + (α 1 -(p -1)b 1 ) + , δ 2 > -2 + 1 q + (α 2 -(q -1) b 2 ) + ,
we get the same result and the condition is sharper if p, q > 2. For that, it suffices to replace the first equation of the problem (Q), given below, by

-∆ p w + g1 (x, w) = f 1 (x, u, v) + κ 1 d(x) δ 1 -α 1 u p-1 in Ω,
with g1 : Ω × R → R * + the cut-off function defined as follows:

g1 (x, z) def =      κ 1 d(x) δ 1 -α 1 u p-1 if z ≥ u(x), κ 1 d(x) δ 1 -α 1 z p-1 if z ∈ [0, u(x)] , 0 if z ≤ 0 (2.6)
and proceed similarly for the second equation of (P).

Proof. Let (u, v) ∈ C. We first prove the existence of T 1 (u, v) ∈ W 1,p 0 (Ω), where

T 1 (u, v) is defined in (1.2) with h 1 (x, u) def = κ 1 d(x) δ 1 -α 1 u in Ω × [u, u].
For that, let us introduce the following problem :

(Q)    -∆ p w + g 1 (x, w) = f 1 (x, u, v) + κ 1 d(x) δ 1 -α 1 u in Ω, w| ∂Ω = 0, w > 0 in Ω, with g 1 : Ω × R → R *
+ the cut-off function defined as follows:

g 1 (x, z) def =      κ 1 d(x) δ 1 -α 1 u if z ≥ u(x), κ 1 d(x) δ 1 -α 1 z if z ∈ [0, u(x)] , 0 if z ≤ 0. (2.7) 
Then, g 1 is a Carathéodory function on Ω × R. Thus, for (x, s) ∈ Ω × R, setting

G 1 (x, s) def = s 0 g 1 (x, z
)dz, we consider the following functional: ∀w ∈ W 1,p 0 (Ω),

E(w) def = 1 p Ω |∇w| p dx + Ω G 1 (x, w) dx - Ω f 1 (x, u, v) + κ 1 d(x) δ1-α1 u w dx.
By assumption (2.5) and Hardy's inequality, E is well defined in W 1,p 0 (Ω) and for all w ∈ W 1,p 0 (Ω),

E(w) ≥ 1 p w p W 1,p 0 (Ω) -C f 1 (x, u, v) + κ 1 d(x) δ1-α1 u d(x) L p ′ (Ω) w W 1,p 0 (Ω) . (2.8)
So, let us define

I def = inf w∈W 1,p 0 (Ω) E(w) (2.9)
and let (w n ) n∈N ⊂ W and using Fatou's lemma,

lim inf k→∞ Ω G 1 (x, w n k )dx ≥ Ω lim inf k→∞ G 1 (x, w n k ) dx = Ω G 1 (x, ũ)dx.
Hence, E( ũ) = I and ũ is a solution to the Euler-Lagrange equation associated to E 0 , that is: 

Ω |∇ ũ| p-2 ∇ ũ.∇w dx + Ω g 1 (x, ũ)w dx = Ω f 1 (x, u, v) + κ 1 d(x) δ 1 -α 1 u
(Ω) + def = {w ∈ W 1,p 0 (Ω), w ≥ 0 a.e in Ω}, Ω |∇ ũ| p-2 ∇ ũ -|∇u| p-2 ∇u .∇w dx + Ω (g 1 (x, ũ) -g 1 (x, u)) w dx ≥ Ω f 1 (x, u, v) + κ 1 d(x) δ1-α1 u -f 1 (x, u, v) + κ 1 d(x) δ1-α1 u w dx. (2.11)
By assumption (2.3), applying this inequality with w = ( ũ -u) -∈ W 1,p 0 (Ω) + , we get ũ ≥ u a.e. in Ω. Similarly, combining (1.9) and (2.10) we also get ũ ≤ u a.e. in Ω. Then, ũ satisfies the equation

-∆ p ũ + κ 1 d(x) δ 1 -α 1 ũ = f 1 (x, u, v) + κ 1 d(x) δ 1 -α 1 u in Ω, (2.12) 
in the weak sense. Moreover, using a classical local regularity result in [START_REF] Serrin | Local behaviour of solutions of quasi-linear equations[END_REF], ũ ∈ C 1,γ (K) for some γ > 0 in any compact subset K of Ω. So using inequality (2.2), ũ ∈ C Ω , which gives us that ũ ∈ [u, u]. Finally, by the weak maximum principle, ũ is the unique function in the conical shell [u, u] satisfying (2.12). Then, the mapping

T 1 : (u, v) → ũ is well-defined from C to [u, u].
In the same spirit, we get the existence of the mapping

T 2 : (u, v) → ṽ defined from C to [v, v],
where ṽ is the unique weak solution in [v, v] of

-∆ p ṽ + κ 2 d(x) δ 2 -α 2 ṽ = f 2 (x, u, v) + κ 2 d(x) δ 2 -α 2 v in Ω. (2.13)
This proves that the operator T defined in (1.4) is well-defined and makes invariant the conical shell C. Now, the continuity and the compactness of T follow from a regularity result in [START_REF] Giacomoni | Hölder regularity and singular elliptic equations[END_REF] we recall in appendix A. Indeed, let

(u n , v n ) n∈N ⊂ C and (u, v) ∈ C such that (u n , v n ) → (u, v) in C Ω × C Ω as n → +∞.
Then, from Theorem A.1 and assumptions (2.1), (T 1 (u n , v n ) = ũn ) n∈N is bounded in C 0,α (Ω), for some 0 < α < 1. By Ascoli-Arzelà theorem, there exists a subsequence ( ũn k ) k∈N and ũ ∈ [u, u] such that ũn k → ũ uniformly in Ω as k → ∞. Moreover, using the local regularity result in [START_REF] Serrin | Local behaviour of solutions of quasi-linear equations[END_REF], ( ũn k ) k∈N is bounded in C 1,γ (K) for some γ > 0 and for any compact subset K of Ω which entails that up to a subsequence denoted again ( ũn k ) k∈N such that ∇ ũn k → ∇ ũ uniformly in K as k → +∞. Then, ũ satisfies

-∆ p ũ + κ 1 d(x) δ 1 -α 1 ũ = f 1 (x, u, v) + κ 1 d(x) δ 1 -α 1 u in Ω (2.14)
in the sense of distributions. Moreover, since ũ ≤ u a.e in Ω,

f 1 (x, u, v) + κ 1 d(x) δ 1 -α 1 (u -ũ) ∈ W -1,p ′ (Ω)
, which implies that ũ ∈ W 1,p 0 (Ω). Hence ũ ∈ [u, u] and is a weak solution of (2.14). By uniqueness of a such solution in [u, u], it follows that ũ = T 1 (u, v) and all the sequence ( ũn ) n∈N converges to ũ in C (Ω). The same arguments hold to prove that T 2 (u n , v n ) → T 2 (u, v) uniformly in Ω as n → +∞. Then, T : C → C is continuous. Finally, it easy from the compact embedding of C 0,α (Ω) in C (Ω) to get the compactness of T . Applying the Schauder Fixed Point Theorem to T in C, the proof of Theorem 2.1 is now complete.

We now give a more general result which guarantees the existence of a "very weak" positive solutions pair, in the cooperative case, when the inequalities (2.5) may not be satisfied.

Theorem 2.3. Assume that (P) is a cooperative system, i.e.

∂f 1 ∂v (x, u, v) > 0 and ∂f 2 ∂u (x, u, v) > 0 in Ω × R * + × R * + .
(2.15)

Let (u, v), (u, v) ∈ C (Ω) ∩ W 1,p loc (Ω) × C (Ω) ∩ W 1,q loc ( 
Ω) be sub and supersolutions pairs to (P). Assume in addition that the following conditions hold:

(i) there exist constants C 1 , C 2 > 0 and b 1 , b 2 > 0 such that u ≤ C 1 d(x) b 1 and v ≤ C 2 d(x) b 2 in Ω, (2.16) 
(ii) there exist κ 1 , κ 2 > 0 and δ 1 , δ 2 ∈ R such that

∂f 1 ∂u (x, u, v) ≤ κ 1 d(x) δ 1 and ∂f 2 ∂v (x, u, v) ≤ κ 2 d(x) δ 2 in Ω×C. (2.17)
Then, there exists a positive very weak solution pair

(u, v) ∈ L ∞ (Ω) ∩ W 1,p loc (Ω) × L ∞ (Ω) ∩ W 1,q loc (Ω) to (P) such that (u, v) ∈ C.
Remark 2.4. Since f 1 and f 2 are continuous with respect to the two last variables in R * + × R * + , assumptions (2.16) and (2.17) imply that for any K ⊂⊂ Ω, there exist C K , C ′ K > 0 such that 

|f 1 (x, u, v)| ≤ C K and |f 2 (x, u, v)| ≤ C ′ K in K × C. ( 2 
∀n ∈ N * , 1 n + 1 < dist(∂Ω, ∂Ω n ) < 1 n .
Then, for all n ∈ N * we consider the following iterative scheme:

(P n )          -∆ p u n + κ 1 d(x) δ 1 u n = f 1 (x, ũn-1 , ṽn-1 ) + κ 1 d(x) δ 1 ũn-1 in Ω n , -∆ q v n + κ 2 d(x) δ 2 v n = f 2 (x, ũn-1 , ṽn-1 ) + κ 2 d(x) δ 2 ṽn-1 in Ω n , u n | ∂Ωn = u, v n | ∂Ωn = v and u n > 0, v n > 0 in Ω n ,
with initial data u 0 = u and v 0 = v in Ω 0 and for all n ∈ N,

ũn def = 1 Ωn .u n + 1 Ω\Ωn .u and ṽn def = 1 Ωn .v n + 1 Ω\Ωn .v in Ω.
By induction on n ∈ N * , (P n ) has a solution

(u n , v n ) ∈ W 1,p (Ω n ) × W 1,q (Ω n ) satisfying for all n ∈ N * , u ≤ ũn ≤ ũn+1 ≤ u and v ≤ ṽn ≤ ṽn+1 ≤ v a.e. in Ω. (2.19) 
Indeed, using estimates (2.16) and (2.18),

f 1 (x, u, v) + κ 1 d(x) δ 1 u ∈ L ∞ (Ω 1 ) ֒→ W -1,p ′ (Ω 1 )
and since u ∈ W 1,p (Ω 1 ) ֒→ W 1/p ′ ,p (∂Ω 1 ) in the sense of the traces, we get u 1 ∈ W 1,p (Ω 1 ) as a minimum of the functional E 1 defined for w ∈ W 1,p (Ω 1 ) by

E 1 (w) def = 1 p Ω 1 |∇(w + u)| p dx + κ 1 2 Ω 1 d(x) δ 1 (w + u) 2 dx - Ω 1 (f 1 (x, u, v) + κ 1 d(x) δ 1 u)w dx. (2.20) Since the operator u → -∆ p u + κ 1 d(x) δ 1 u is monotone in W 1,p (Ω 1 )
, applying the weak comparison principle we get

u ≤ u 1 ≤ u a.e. in Ω 1 .
Using the same arguments as above, we prove the existence of

v 1 ∈ W 1,q (Ω 1 ) satisfying v ≤ v 1 ≤ v a.e. in Ω 1 . Now, let us fix n ∈ N * and suppose that for all k ≤ n, (P k ) has a solution (u k , v k ) ∈ W 1,p (Ω k ) × W 1,q (Ω k ) satisfying (2.19).
The existence of positive solutions of

(P n+1 ), (u n+1 , v n+1 ) ∈ W 1,p (Ω n+1 ) × W 1,q (Ω n+1 ) satisfying u ≤ u n+1 ≤ u and v ≤ v n+1 ≤ v a.e. in Ω n+1 ,
can be established using similar techniques as above. To prove the monotonicity of the sequences ( ũm ) m∈N * and ( ṽm ) m∈N * , we remark that ũn ∈ W 1,p (Ω n+1 ) and satisfies

-∆ p ũn + κ 1 d(x) δ 1 ũn ≤ f 1 (x, ũn-1 , ṽn-1 ) + κ 1 d(x) δ 1 ũn-1 in Ω n+1 , (2.21) 
in the weak sense. Then, using (2.21) together with (2.18), we deduce from the previous inequality that,

-∆ p ũn + κ 1 d(x) δ 1 ũn ≤ f 1 (x, ũn-1 , ṽn ) + κ 1 d(x) δ 1 ũn-1 in Ω n+1 ,
in the weak sense. Hence, by estimate (2.17) and from the weak comparison principle applied in W 1,p (Ω n+1 ), we obtain ũn ≤ u n+1 a.e. in Ω n+1 .

Similarly, we get the existence and the behaviour of v n+1 . Then, for almost every x ∈ Ω, we define

u(x) = lim n→∞ ũn (x) and v(x) = lim n→∞ ṽn (x).
Moreover, using a classical local regularity result of SERRIN [START_REF] Serrin | Local behaviour of solutions of quasi-linear equations[END_REF], ũn

, ṽn ∈ C 1,γ loc (Ω n ) for some 0 < γ < 1 and ∇ ũn -→ n→∞ ∇u and ∇ ṽn -→ n→∞ ∇v, uniformly in any com- pact set K of Ω. Thus, (u, v) ∈ [u, u] × [v, v
] and passing to the limit in (P n ), (u, v) is a solution of (P) in the sense of distributions.

Applications

Example 1

In this section we focus on the following quasilinear elliptic and singular system,

(P)    -∆ p u = K 1 (x)u a 1 v b 1 in Ω ; u| ∂Ω = 0, u > 0 in Ω, -∆ q v = K 2 (x)v a 2 u b 2 in Ω ; v| ∂Ω = 0, v > 0 in Ω. In this problem, (i) The exponents a 1 < p -1, a 2 < q -1 and b 1 , b 2 = 0 satisfy the subhomo- geneous condition (p -1 -a 1 )(q -1 -a 2 ) -|b 1 b 2 | > 0, (3.1) 
which is equivalent to the existence of a positive constant σ > 0 such that

(p -1 -a 1 ) -σ|b 1 | > 0 and σ(q -1 -a 2 ) -|b 2 | > 0. (3.2) (ii) K 1 , K 2 are two positive functions in Ω satisfying K 1 (x) = d(x) -k 1 L 1 (d(x)) and K 2 (x) = d(x) -k 2 L 2 (d(x)) in Ω, (3.3) 
with 0 ≤ k 1 < p, 0 ≤ k 2 < q and for i = 1, 2, L i a lower perturbation in C 2 ((0, D]) (D the diameter of the domain Ω), of the form:

∀t ∈ (0, D], L i (t) = exp 2D t z i (s) s ds , (3.4) 
with

z i ∈ C ([0, D]) ∩ C 1 ((0, D]) and z i (0) = 0. Remark 3.1. a. Let us notice that (3.4) implies that ∀ε > 0, lim t→0 + t -ε L i (t) = +∞ and lim t→0 + t ε L i (t) = 0. (3.5) b. Definition (3.4) also implies that lim t→0 + tL ′ i (t) L i (t)
= 0 and lim where, log

t→0 + tL ′′ i (t) L ′ i (t) = -1. c. If L 1 , L
n def = log • • • • • log (n times) and µ n > 0. Then L i satisfies (3.4).
In our study, b 1 = 0 and b 2 = 0. In the case where b 1 > 0 and b 2 > 0, the expression of the right-hand sides of the two coupled equations in system (P) define a cooperative interaction between the two components (species) u and v:

∂ ∂v K 1 (x)u a 1 v b 1 = b 1 K 1 (x)u a 1 v b 1 -1 > 0, (3.6) ∂ ∂u K 2 (x)v a 2 u b 2 = b 2 K 2 (x)v a 2 u b 2 -1 > 0. ( 3.7) 
In the case where b 1 < 0 and b 2 < 0, both partial derivative in (3.6) and (3.7) are negative and the expression of the right-hand sides of the two coupled equations of (P) defines a competitive interaction between u and v.

First, we discuss the existence of positive weak solutions pairs to problem (P). For that, regarding Theorem 2.1, we take

f 1 (x, u, v) = K 1 (x)u a 1 v b 1 , f 2 (x, u, v) = K 2 (x)v a 2 u b 2
and construct suitable sub and supersolutions pairs of (P) in W 1,p 0 (Ω) × W 1,q 0 (Ω). Then, in the cases where (P) is either competitive or cooperative, we investigate the uniqueness of such positive weak solutions pairs. For that, it is essential that the mappings T 1 • T 2 and T 2 • T 1 (where T 1 and T 2 are defined in (1.1)) is subhomogeneous, which is equivalent to condition (3.1).

Preliminary results

Let 1 < r < ∞, δ < r -1 and K : x -→ d(x) -k L(d(x)), with 0 ≤ k < r and L a perturbation function satisfying (3.4). In view of constructing suitable pairs of sub and supersolutions to (P), we first introduce the following problem:

-∆ r w = K(x)w δ in Ω; w| ∂Ω = 0, w > 0 in Ω.
(3.8) Theorem 3.3. Under the above hypothesis, we have:

(i) If k -1 < δ < r -1, problem (3.8
) has a unique positive weak solution ψ ∈ W 1,r 0 (Ω) that satisfies the following estimate:

ψ(x) ∼ d(x)
in Ω.

(3.9)

In addition, we have ψ ∈ C 1,α Ω , for some 0 < α < 1.

(ii

) If δ = k -1, problem (3.8
) has a unique positive weak solution ψ ∈ W 1,r 0 (Ω) that satisfies the following estimate:

ψ(x) ∼ d(x) 2D d(x) L(t)t -1 dt 1 r-k in Ω.
(3.10)

In addition, we have ψ ∈ C 0,α Ω , for some 0 < α < 1.

(iii) If k -2+ k-1 r-1 < δ < k -1, problem (3.8
) has a unique positive weak solution ψ ∈ W 1,r 0 (Ω) that satisfies the following estimate:

ψ(x) ∼ d(x) r-k r-1-δ L(d(x)) 1 r-1-δ in Ω. (3.11) 
In addition, we have ψ ∈ C 0,α Ω , for some 0 < α < 1.

(iv

) If δ ≤ k -2 + k-1 r-1 , problem (3.8
) has at least one positive weak solution ψ ∈ W 1,r loc (Ω) ∩ C 0 Ω that satisfies the following estimate:

ψ(x) ∼ d(x) r-k r-1-δ L(d(x)) 1 r-1-δ in Ω.
(3.12)

Proof. See Lemma 3.3 in GIACOMONI, MÂAGLI, SAUVY [START_REF] Giacomoni | Existence of compact support solutions for a quasilinear and singular problem[END_REF].

Remark 3.4. In (iv) above, it can be proved that ∀ γ > (r-1)(r-1-δ)

r(r-k) , ψ γ ∈ W 1,r 0 (Ω).
We give now a weak comparison principle used to establish the uniqueness of a positive weak solutions pair of (P). Theorem 3.5.

Let K : Ω → R + be a L 1 loc (Ω) function and δ < r -1. Assume u, v ∈ W 1,r 0 (Ω) ∩ L ∞ (Ω)
are two locally uniformly positive functions satisfying the sub and supersolution inequalities:

-∆ r u ≤ K(x)u δ and -∆ r v ≥ K(x)v δ in Ω, (3.13) 
in the sense of distributions (i.e. Radon measures) in W -1,r ′ (Ω). Then (i) If δ < 0, inequality u ≤ v holds a.e. in Ω.

(ii) If δ > 0 and if we suppose in addition that there exist C 1 , C 2 > 0 and a locally uniformly positive function

w 0 ∈ L ∞ (Ω) such that C 1 w 0 ≤ u, v ≤ C 2 w 0 a.e. in Ω and Ω K(x)w 0 δ+1 dx < +∞, (3.14) 
inequality u ≤ v holds a.e. in Ω.

To prove this theorem, we use the well-known inequality in Lemma 3.6 and the Díaz-Saa inequality (see DÍAZ-SAA [START_REF] Díaz | Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires[END_REF]). Lemma 3.6. There exists a constant C r > 0 such that, for all x, y ∈ R N ,

|x| r -|y| r -r|x| r-2 x.(y -x) ≥    C r |x -y| r if r ≥ 2, C r |x -y| 2 (|x| + |y|) 2-r if 1 < r < 2.
Proof. See Lemma 4.2 in LINDQVIST [START_REF] Lindqvist | On the equation div (|∇u| p-2 ∇u) + λ|u| p-2 u = 0[END_REF].

Proof. (OF THEOREM 3.5) (i) If δ < 0, we wish to prove that the function w = (u -v) + satisfies w = 0 a.e. in Ω. First notice that 0 ≤ w ∈ W 1,r 0 (Ω). Applying the duality between W 1,r 0 (Ω) and W -1,r ′ (Ω), respectively, to w and the the difference

-∆ r u + ∆ r v ≤ K(x) u δ -v δ which is ≤ 0 on the set Ω + def = {x ∈ Ω, w(x) > 0}, we obtain Ω+ |∇u| r-2 ∇u -|∇v| r-2 ∇v .(∇u -∇v) dx = Ω |∇u| r-2 ∇u -|∇v| r-2 ∇v .∇w dx ≤ 0.
This forces ∇w = 0 a.e. in Ω + and, consequently, also in Ω. Since w ∈ W 1,r 0 (Ω), we conclude that w = 0 a.e. in Ω as claimed, that is, u ≤ v a.e. in Ω.

(ii) If 0 < δ < r-1, following some ideas in LINDQUIST [START_REF] Lindqvist | On the equation div (|∇u| p-2 ∇u) + λ|u| p-2 u = 0[END_REF] (see also DRÁBEK-HERNÁNDEZ [START_REF] Drábek | Existence and uniqueness of positive solutions for some quasilinear elliptic problem[END_REF]), we use the Díaz-Saa inequality.

More precisely, for ε > 0, we set

u ε def = u + ε and v ε def = v + ε in Ω and we define φ def = u ε r -v ε r u ε r-1 and ψ def = v ε r -u ε r v ε r-1 in Ω.
Then, uε vε , vε uε ∈ L ∞ (Ω) and φ, ψ ∈ W 1,r 0 (Ω) with

∇φ = 1 + (r -1) v ε u ε r ∇u -r v ε u ε r-1 ∇v in Ω, (3.15 
)

∇ψ = 1 + (r -1) u ε v ε r ∇v -r u ε v ε r-1 ∇u in Ω. (3.16) 
Setting

Ω + def = {x ∈ Ω, u(x) > v(x)}, we have that φ > 0 and ψ < 0 in Ω + and Ω+ |∇u| r-2 ∇u.∇φ dx ≤ Ω+ K(x)u δ φ dx < +∞, Ω+ |∇v| r-2 ∇v.∇ψ dx ≤ Ω+ K(x)v δ ψ dx < +∞.
Using equalities (3.15) and (3.16) and the fact that

|∇ ln u ε | = |∇u| u ε and |∇ ln v ε | = |∇v| v ε in Ω, (3.17) 
we get

Ω+ |∇u| r-2 ∇u.∇φ dx + Ω+ |∇v| r-2 ∇v.∇ψ dx = Ω+ (u ε r -v ε r )(|∇ ln u ε | r -|∇ ln v ε | r ) dx - Ω+ rv ε r |∇ ln u ε | r-2 (∇ ln u ε ). (∇ ln v ε -∇ ln u ε ) dx - Ω+ ru ε r |∇ ln v ε | r-2 (∇ ln v ε ). (∇ ln u ε -∇ ln v ε ) dx.
a. If r ≥ 2, from Lemma 3.6, it follows that

Ω+ |∇u| r-2 ∇u.∇φ dx + Ω+ |∇v| r-2 ∇v.∇ψ dx ≥ Ω+ (u ε r -v ε r )(|∇ ln u ε | r -|∇ ln v ε | r ) dx + Ω+ v ε r (|∇ ln u ε | r -|∇ ln v ε | r + C r |∇ ln u ε -∇ ln v ε | r ) dx + Ω+ u ε r (|∇ ln v ε | r -|∇ ln u ε | r + C r |∇ ln u ε -∇ ln v ε | r ) dx = C r Ω+ |u ε ∇v ε -v ε ∇u ε | r 1 u ε r + 1 v r ε dx. b. If 1 < r < 2, Lemma 3.6 entails Ω+ |∇u| r-2 ∇u.∇φ dx + Ω+ |∇v| r-2 ∇v.∇ψ dx ≥ C r Ω+ |u ε ∇v ε -v ε ∇u ε | 2 (u ε |∇v ε | + v ε |∇u ε |) 2-r 1 u ε r + 1 v ε r dx.
In the right-hand side, we get

Ω+ K(x) u δ φ + v δ ψ dx = Ω+ K(x) u δ u r-1 u u ε r-1 - v δ v r-1 v v ε r-1 (u ε r -v ε r ) dx.
Then, since u uε → 1, v vε → 1 as ε → 0 + a.e. in Ω, we get from (3.14) and Lebesgue's Theorem that lim

ε→0 + Ω+ K(x) u δ φ + v δ ψ dx ≤ 0.
By Fatou's Lemma and using the above estimates, we obtain in the both cases that |u∇v -v∇u| = 0 a.e. in Ω + , from which we get that on each connected component set ω of Ω + , there exists k > 0 such that u = kv a.e. in ω. From sub an supersolution inequalities (3.13) we have,

k r ω K(x)v δ+1 dx ≤ k r ω |∇v| r dx = ω |∇u| r dx ≤ ω K(x)u δ+1 dx = k δ+1 ω K(x)v δ+1 dx. (3.18)
Hence, k ≤ 1 which implies that u ≤ v a.e. in Ω + and from the definition of Ω + , u ≤ v a.e. in Ω.

Main results

Theorem 3.7. Assume that the exponents a 1 < p -1, a 2 < q -1 and b 1 , b 2 = 0 in problem (P) satisfy the hypothesis (3.1).

(i) Set

α1 = q -1 -a2 (p -1 -a1)(q -1 -a2) -b1b2 , α2 = p -1 -a1 (p -1 -a1)(q -1 -a2) -b1b2 , β1 = b1 (p -1 -a1)(q -1 -a2) -b1b2 , β2 = b2 (p -1 -a1)(q -1 -a2) -b1b2 , γ1 = (p -k1)(q -1 -a2) + (q -k2)b1 (p -1 -a1)(q -1 -a2) -b1b2 , γ2 = (q -k2)(p -1 -a1) + (p -k1)b2 (p -1 -a1)(q -1 -a2) -b1b2
and assume that

1 - 1 p < γ 1 < 1 and 1 - 1 q < γ 2 < 1. (3.19) 
Then, problem (P) possesses positive solutions (u, v) ∈ W 1,p 0 (Ω)×W 1,q 0 (Ω) that satisfy the following estimates:

u(x) ∼ d(x) γ 1 L 1 (d(x)) α 1 L 2 (d(x)) β 1 in Ω, (3.20) v(x) ∼ d(x) γ 2 L 2 (d(x)) α 2 L 1 (d(x)) β 2 in Ω. (3.21) 
In addition, we have (u, v) ∈ C 0,α Ω × C 0,α Ω , for some 0 < α < 1.

(ii) Now assume that

k 1 -1 < a 1 + b 1 < p -1 and k 2 -1 < a 2 + b 2 < q -1. (3.22)
Then, problem (P ) possesses positive solutions (u, v) ∈ W 1,p 0 (Ω)×W 1,q 0 (Ω) that satisfy the following estimates:

u(x) ∼ d(x) and v(x) ∼ d(x) in Ω.
(3.23)

In addition, we have

(u, v) ∈ C 1,α Ω × C 1,α Ω , for some 0 < α < 1. (iii) Set γ = p -k 1 + b 1 p -1 -a 1
and assume that

1 - 1 p < γ < 1 and k 2 -1 < a 2 + b 2 γ < q -1. (3.24)
Then, problem (P ) possesses positive solutions (u, v) ∈ W 1,p 0 (Ω)×W 1,q 0 (Ω) that satisfy the following estimates:

u(x) ∼ d(x) γ L 1 (d(x)) 1 p-1-a 1 and v(x) ∼ d(x) in Ω.
(3.25)

In addition, we have (u, v) ∈ C 0,α Ω × C 1,α Ω , for some 0 < α < 1.

(iv) Symmetrically to part (iii) above, set

γ = q -k 2 + b 2 q -1 -a 2
and assume that

k 1 -1 < a 1 + b 1 γ < p -1 and 1 - 1 q < γ < 1. (3.26)
Then, problem (P ) possesses positive solutions (u, v) ∈ W 1,p 0 (Ω)×W 1,q 0 (Ω) that satisfy the following estimates:

u(x) ∼ d(x) and v(x) ∼ d(x) γ L 2 (d(x)) 1 q-1-a 2
in Ω.

(3.27)

In addition, we have The cooperative case is further analysed in the following result:

(u, v) ∈ C 1,α Ω × C 0,α Ω , for some 0 < α < 1. Theorem 3.8. Let a 1 < p -1, a 2 < q -1
Theorem 3.9. Let us suppose that the exponents a 1 < p -1, a 2 < q -1 and b 1 , b 2 = 0 satisfy the subhomogeneity hypothesis (3.1). Moreover, assume that (P ) is a cooperative system, i.e., b 1 > 0 and b 2 > 0.

(i) Set

γ 1 = (p -k 1 )(q -1 -a 2 ) + (q -k 2 )b 1 (p -1 -a 1 )(q -1 -a 2 ) -b 1 b 2 , (3.28) γ 2 = (q -k 2 )(p -1 -a 1 ) + (p -k 1 )b 2 (p -1 -a 1 )(q -1 -a 2 ) -b 1 b 2 (3.29)
and assume that one of the three following conditions are satisfied:

0 < γ 1 ≤ 1 - 1 p and 0 < γ 2 ≤ 1 - 1 q , (3.30) 1 - 1 p < γ 1 < 1 and 0 < γ 2 ≤ 1 - 1 q , (3.31) 0 < γ 1 ≤ 1 - 1 p and 1 - 1 q < γ 2 < 1. (3.32)
Then, problem (P) admits positive solutions (u, v) ∈ W 1,p loc (Ω) × W 1,q loc (Ω) in the sense of distributions satisfying the estimates (3.20) and (3.21).

(ii) Set

γ = p -k 1 + b 1 p -1 -a 1 (3.33)
and assume that

0 < γ ≤ 1 - 1 p and k 2 -1 < a 2 + b 2 γ < q -1. (3.34)
Then, problem (P) nevertheless admits positive solutions (u, v) ∈ W 1,p loc (Ω)× W 1,q 0 (Ω) in the sense of distributions satisfying the estimates (3.20) and (3.21).

(iii) Symmetrically to part (ii) above, set

γ = q -k 2 + b 2 q -1 -a 2 (3.35)
and assume that

k 1 -1 < a 1 + b 1 γ < p -1 and 0 < γ ≤ 1 - 1 q . (3.36)
Then, problem (P ) possesses positive solutions (u, v) ∈ W 1,p 0 (Ω)×W 1,q loc (Ω) in the sense of distributions that satisfies the estimates given in (3.27).

The next result deals with some limiting cases: Theorem 3.10. Assume that the exponents a 1 < p -1, a 2 < q -1 and b 1 , b 2 = 0 satisfy the subhomogeneity hypothesis (3.1).

(i) Assume that

a 1 + b 1 = k 1 -1 and k 2 -1 ≤ a 2 + b 2 < q -1.
(3.37)

Then, for all ε > 0 small enough, there exist C 1 , C 2 > 0 and C ′ 1 , C ′ 2 > 0 such that problem (P ) possesses positive solutions (u, v) ∈ W 1,p 0 (Ω) × W 1,q 0 (Ω) that satisfy the following estimates:

C 1 d(x) ≤ u ≤ C 2 d(x) 1-ε and C ′ 1 d(x) ≤ v ≤ C ′ 2 d(x) 1-εσ in Ω, (3.38)
where σ > 0 is given in (3.2).In addition, we have (u, v) ∈ C 0,α Ω × C 0,α Ω , for some 0 < α < 1.

(ii) Symmetrically, assume that

a 2 + b 2 = k 2 -1 and k 1 -1 ≤ a 1 + b 1 < q -1. (3.39) 
Then, for all ε > 0 small enough, there exist

C 1 , C 2 > 0 and C ′ 1 , C ′ 2 > 0 such that problem (P ) possesses positive solutions (u, v) ∈ W 1,p 0 (Ω) × W 1,q 0 ( 
Ω) that satisfy the following estimates:

C 1 d(x) ≤ u ≤ C 2 d(x) 1-ε and C ′ 1 d(x) ≤ v ≤ C ′ 2 d(x) 1-εσ in Ω. (3.40)
In addition, we have (u, v) ∈ C 0,α Ω × C 0,α Ω , for some 0 < α < 1.

(iii) Let us abbreviate

γ = p -k 1 + b 1 p -1 -a 1
and assume that

1 - 1 p < γ < 1 and a 2 + b 2 γ = k 2 -1. (3.41)
Then, for all ε > 0 small enough, there exist C 1 , C 2 > 0 and C ′ 1 , C ′ 2 > 0 such that problem (P ) possesses positive solutions (u, v) ∈ W 1,p 0 (Ω) × W 1,q 0 (Ω) that satisfy the following estimates in Ω:

C 1 d(x) γ+ε ≤ u ≤ C 2 d(x) γ-ε and C ′ 1 d(x) ≤ v ≤ C ′ 2 d(x) 1-εσ . (3.42)
In addition, we have (u, v) ∈ C 0,α Ω × C 0,α Ω , for some 0 < α < 1.

(iv) Symmetrically, let us abbreviate

γ = q -k 2 + b 2 q -1 -a 2
and assume that

a 1 + b 1 γ = k 2 -1 and 1 - 1 q < γ < 1. (3.43)
Then, for all ε > 0 small enough, there exist C 1 , C 2 > 0 and C ′ 1 , C ′ 2 > 0 such that problem (P ) possesses positive solutions (u, v) ∈ W 1,p 0 (Ω) × W 1,q 0 (Ω) that satisfy the following estimates in Ω:

C 1 d(x) ≤ u ≤ C 2 d(x) 1-ε and C ′ 1 d(x) γ+εσ ≤ v ≤ C ′ 2 d(x) γ-εσ . (3.44)
In addition, we have (u, v) ∈ C 0,α Ω × C 0,α Ω , for some 0 < α < 1.

Proof of Theorem 3.7

Thanks to Theorem 3.3, we apply Theorem 2.1 with a suitable choice of sub and supersolutions pairs (u, v), (u, v) ∈ W 1,p 0 (Ω) × W 1,q 0 (Ω) in the following form:

u ≡ mψ 1 and u ≡ m -1 ψ 1 in Ω, v ≡ m σ ψ 2 and v ≡ m -σ ψ 2 in Ω,
where σ > 0 is given in (3.2), 0 < m < 1 is an appropriate constant small enough and ψ 1 ∈ W 1,p 0 (Ω), ψ 2 ∈ W 1,q 0 (Ω) are given by Theorem 3.3 as the respective unique solutions of problems

-∆ p w = d(x) -k 1 L 1 (d(x))w δ 1 in Ω; w| ∂Ω = 0, w > 0 in Ω, (3.45) -∆ q w = d(x) -k 2 L 2 (d(x))w δ 2 in Ω; w| ∂Ω = 0, w > 0 in Ω, (3.46)
satisfying some cone conditions we specify below. In the following alternatives, we choose suitable perturbations L 1 , L 2 as in (3.4) and suitable values of expo-

nents k 1 -2 + k 1 -1 p-1 < δ 1 < p -1 and k 2 -2 + k 2 -1 q-1 < δ 2 < q -1 in order to satisfy -∆ p ψ 1 ∼ K 1 (x)ψ 1 a 1 ψ 2 b 1 and -∆ q ψ 2 ∼ K 2 (x)ψ 2 a 2 ψ 1 b 2
in Ω, (3.47) which provide us the inequalities (1.7) to (1.10) in order to apply Theorem 2.1.

Alternative 1:

We look for positive solutions (u, v) ∈ W 1,p 0 (Ω) × W 1,q 0 (Ω) to (P) by making the "Ansatz" that

u(x) ∼ d(x) γ 1 L 1 (d(x)) α 1 L 2 (d(x)) β 1 in Ω, v(x) ∼ d(x) γ 2 L 2 (d(x)) α 2 L 1 (d(x)) β 2 in Ω, for some γ 1 ∈ (1 -1 p , 1), γ 2 ∈ (1 -1 q , 1) and α 1 , α 2 , β 1 , β 2 ∈ R.
For that, we take in (3.45) and (3.46)

k 1 -2 + k 1 -1 p -1 < δ 1 < k 1 -1 and k 2 -2 + k 2 -1 q -1 < δ 2 < k 2 -1, (3.48) L 1 = L 1 λ 1 .L 2 µ 1 and L 2 = L 2 λ 2 .L 1 µ 2 in Ω,
where λ 1 , λ 2 , µ 1 , µ 2 ∈ R are suitable exponents we fix later. By Theorem 3.3, ψ 1 ∈ W 1,p 0 (Ω), ψ 2 ∈ W 1,q 0 (Ω) and satisfy

ψ 1 (x) ∼ d(x) p-k 1 p-1-δ 1 L 1 (d(x)) λ 1 p-1-δ 1 L 2 (d(x)) µ 1 p-1-δ 1 in Ω, (3.49) 
ψ 2 (x) ∼ d(x) q-k 2 q-1-δ 2 L 2 (d(x)) λ 2 q-1-δ 2 L 1 (d(x)) µ 2 q-1-δ 2 in Ω. (3.50) 
In view of satisfying estimates given in (3.47), the comparison of the term -∆ p ψ 1 with K 1 (x)ψ 1 a 1 ψ 2 b 1 on one side, and the term -∆ q ψ 2 with K 2 (x)ψ 2 a 2 ψ 1 b 2 on the other side, imposes the exponents λ 1 , λ 2 , µ 1 , µ 2 and δ 1 , δ 2 to satisfy the following system:

                             δ 1 p-k 1 p-1-δ 1 = a 1 p-k 1 p-1-δ 1 + b 1 q-k 2 q-1-δ 2 , δ 2 q-k 2 q-1-δ 2 = a 2 q-k 2 q-1-δ 2 + b 2 p-k 1 p-1-δ 1 , λ 1 p-1 p-1-δ 1 = 1 + a 1 λ 1 p-1-δ 1 + b 1 µ 2 q-1-δ 2 , λ 2 q-1 q-1-δ 2 = 1 + b 2 µ 1 p-1-δ 1 + a 2 λ 2 q-1-δ 2 , µ 1 p-1 p-1-δ 1 = a 1 µ 1 p-1-δ 1 + b 1 λ 2 q-1-δ 2 , µ 2 q-1 q-1-δ 2 = b 2 λ 1 p-1-δ 1 + a 2 µ 2 q-1-δ 2 .
Then, we get

γ 1 = p -k 1 p -1 -δ 1 = (p -k 1 )(q -1 -a 2 ) + (q -k 2 )b 1 (p -1 -a 1 )(q -1 -a 2 ) -b 1 b 2 , (3.51) γ 2 = q -k 2 q -1 -δ 2 = (q -k 2 )(p -1 -a 1 ) + (p -k 1 )b 2 (p -1 -a 1 )(q -1 -a 2 ) -b 1 b 2 , (3.52 
)

α 1 = λ 1 p -1 -δ 1 = q -1 -a 2 (p -1 -a 1 )(q -1 -a 2 ) -b 1 b 2 , (3.53) α 2 = λ 2 q -1 -δ 2 = p -1 -a 1 (p -1 -a 1 )(q -1 -a 2 ) -b 1 b 2 , (3.54 
) 

β 1 = µ 1 p -1 -δ 1 = b 1 (p -1 -a 1 )(q -1 -a 2 ) -b 1 b 2 , (3.55) 
β 2 = µ 2 q -1 -δ 2 = b 1 (p -1 -a 1 )(q -1 -a 2 ) -b 1 b 2 , ( 3 
-∆ p u ≤ m p-1 C 1 L 1 (d(x)) λ 1 +δ 1 γ 1 L 2 (d(x)) µ 1 +δ 1 β 1 d(x) δ 1 γ 1 -k 1 in Ω, -∆ q v ≤ m σ(q-1) C ′ 1 L 2 (d(x)) λ 2 +δ 2 α 2 L 1 (d(x)) µ 2 +δ 2 β 2 d(x) δ 2 γ 2 -k 2 in Ω. On the other hand, K 1 (x)u a 1 v b 1 ≥ C 2 m a 1 +σ|b 1 | Λ 1 (d(x))d(x) a 1 γ 1 +b 1 γ 2 -k 1 in Ω with Λ 1 = L 1 1+a 1 α 1 +b 1 β 2 .L 2 a 1 β 1 +b 1 α 2 . Similarly, K 2 (x)v a 2 u b 2 ≥ C ′ 2 m σa 2 +|b 2 | Λ 2 (d(x))d(x) a 2 γ 2 +b 2 γ 1 -k 2 in Ω, with Λ 2 = L 2 1+a 2 α 2 +b 2 β 1 .L 1 a 2 β 2 +b 2 α 1 .
Then, under condition (3.2) and thanks to (3.51) to (3.56), (u, v) is a subsolutions pair of problem (P), for m small enough. Next,

-∆ p u ≥ m 1-p C 3 L 1 (d(x)) λ 1 +δ 1 γ 1 L 2 (d(x)) µ 1 +δ 1 β 1 d(x) δ 1 γ 1 -k 1 in Ω, -∆ q v ≥ m σ(1-q) C ′ 3 L 2 (d(x)) λ 2 +δ 2 α 2 L 1 (d(x)) µ 2 +δ 2 β 2 d(x) δ 2 γ 2 -k 2 in Ω. Furthermore, K 1 (x)u a 1 v b 1 ≤ C 4 m -a 1 -σ|b 1 | Λ 1 (d(x))d(x) a 1 γ 1 +b 1 γ 2 -k 1 in Ω.
Similarly,

K 2 (x)v a 2 u b 2 ≤ C ′ 4 m -σa 2 -|b 2 | Λ 2 (d(x))d(x) a 2 γ 2 +b 2 γ 1 -k 2 in Ω.
Then 

C 1 d(x) γ 1 ≤ u, u ≤ C 2 d(x) γ 1 -ε and C ′ 1 d(x) γ 2 ≤ v, v ≤ C ′ 2 d(x) γ 2 -ε in Ω.
In addition, using (3.51) to (3.56), there exist positive constants κ 1 , κ 2 such that

|f 1 (x, u, v)| = K 1 (x)u a 1 v b 1 ≤ κ 1 d(x) δ 1 γ 1 -k 1 -ε in Ω × C, |f 2 (x, u, v)| = K 2 (x)v a 2 u b 2 ≤ κ 2 d(x) δ 2 γ 2 -k 2 -ε in Ω × C
and

∂f 1 ∂u (x, u, v) = |a 1 |K 1 (x)u a 1 -1 v b 1 ≤ κ 1 d(x) (δ 1 γ 1 1 -ε)-γ 1 in Ω × C, ∂f 2 ∂v (x, u, v) = |a 2 |K 2 (x)v a 2 -1 u b 2 ≤ κ 2 d(x) (δ 2 γ 2 -k 2 -ε)-γ 2 in Ω × C. Since γ 1 ∈ (1 -1 p , 1
) and γ 2 ∈ (1 -1 q , 1), inequalities (2.5) hold for ε small enough. Then, applying Theorem 2.1 we conclude about the existence of positive solutions to (P) in W 1,p 0 (Ω) × W 1,q 0 (Ω) satisfying the estimates (3.20) and (3.21).

Finally, using Theorem A.1, we get that any positive weak solutions pair to (P) in the conical shell C belongs to C 0,α Ω × C 0,α Ω , for some 0 < α < 1. This proves (i) of Theorem 3.7.

Alternative 2: In this part, we look for positive solutions (u, v) ∈ W 1,p 0 (Ω) × W 1,q 0 (Ω) by making the "Ansatz" that both function u and v behave like the distance function d(x) for x ∈ Ω near the boundary ∂Ω. For that, similarly as in Alternative 1, we take in (3.45) and (3.46)

k 1 -1 < δ 1 < p -1 and k 2 -1 < δ 2 < q -1, (3.57) L 1 = L 1 and L 2 = L 2 in Ω.
By Theorem 3.3, ψ 1 ∈ W 1,p 0 (Ω), ψ 2 ∈ W 1,q 0 (Ω) and satisfy

ψ 1 (x) ∼ d(x) and ψ 2 (x) ∼ d(x) in Ω.
In view of satisfying estimates given in (3.47), we fix δ 1 and δ 2 as follows:

δ 1 = a 1 + b 1 and δ 2 = a 2 + b 2 . (3.58)
Then, (3.47) holds and inequalities given in (3.57) entail (3.22). The rest of the proof is as in Alternative 1. This proves (ii) of Theorem 3.7.

Alternative 3: Now we combine our methods from Alternative 1 and Alternative 2. We search for positive solutions (u, v) ∈ W 1,p 0 (Ω) × W 1,q 0 (Ω) to problem (P) by again making the "Ansatz" that

u(x) ∼ d(x) γ L 1 (d(x)) α L 2 (d(x)) β in Ω,
for some γ ∈ (1 -1 p , 1) and α, β ∈ R, and v behave like the distance function in Ω. For that, we take in (3.45) and (3.46)

k 1 -2 + k 1 -1 p -1 < δ 1 < k 1 -1 and k 2 -1 < δ 2 < q -1, (3.59) L 1 = L 1 λ 1 .L 2 µ 1 and L 2 = L 2 λ 2 .L 1 µ 2 in Ω,
where λ 1 , λ 2 , µ 1 , µ 2 ∈ R are suitable exponents to be fixed. By Theorem 3.3, ψ 1 ∈ W 1,p 0 (Ω), ψ 2 ∈ W 1,q 0 (Ω) and satisfy

ψ 1 (x) ∼ d(x) p-k 1 p-1-δ 1 L 1 (d(x)) λ 1 p-1-δ 1 L 2 (d(x)) µ 1 p-1-δ 1 and ψ 2 (x) ∼ d(x) in Ω.
In view of (3.47), the exponents have to satisfy

         δ 1 p-k 1 p-1-δ 1 = a 1 p-k 1 p-1-δ 1 + b 1 , δ 2 = b 2 p-k 1 p-1-δ 1 + a 2 , λ 1 p-1 p-1-δ 1 = a 1 λ 1 p-1-δ 1 + 1, λ 2 = b 2 µ 1 p-1-δ 1 + 1, µ 1 p-1 p-1-δ 1 = a 1 µ 1 p-1-δ 1 , µ 2 = b 2 λ 1 p-1-δ 1 .
Hence we obtain

γ = p-k1 p-1-δ1 = p-k1+b1 p-1-a1
and

δ 2 = a 2 + b 2 p-k1+b1 p-1-a1 , α = λ1 p-1-δ1 = 1 p-1-δ1 and β = µ1 p-1-δ1 = 0.
The rest of the proof is as in Alternative 1. This proves (iii) of Theorem 3.7 and (iv) is the corresponding symmetric case of (iii).

Proof of Theorem 3.8

To prove uniqueness of solutions, we apply a classical argument of KRANSNOSEL-SKII [START_REF] Krasnoselskii | Topological methods in the theory of nonlinear integral equations[END_REF]. Let (u, v), ( ũ, ṽ) ∈ W 1,p 0 (Ω) × W 1,q 0 (Ω), be two distinct positive weak solutions pairs to problem (P) in the conical shell C = [u, u]× [v, v], where (u, v), (u, v) are given in the proof of Theorem 3.7. This means that T (u, v) = (u, v) and T ( ũ, ṽ) = ( ũ, ṽ), which implies that,

T 1 • T 2 (u) = u, T 2 • T 1 (v) = v and T 1 • T 2 ( ũ) = ũ, T 1 • T 2 ( ṽ) = ṽ, respectively. Let us define C max def = sup{C ∈ R + , C ũ ≤ u and C ṽ ≤ v a.e. in Ω}.
(3.60)

T 1 • T 2 (C max ũ) = (C max ) b 1 p-1-a 1 . b 2 q-1-a 2 T 1 • T 2 ( ũ) = (C max ) b 1 p-1-a 1 . b 2 q-1-a 2 ũ, T 2 • T 1 (C max ṽ) = (C max ) b 2 q-1-a 2 . b 1 p-1-a 1 T 2 • T 1 ( ṽ) = (C max ) b 2 q-1-a 2 . b 1 p-1-a 2 ṽ.
Therefore, by Theorem 3.5, both mappings T 1 • T 2 and T 2 • T 1 being (pointwise) order-preserving, we arrive at

u = T 1 • T 2 (u) ≥ T 1 • T 2 (C max ũ) = (C max ) b 1 p-1-a 1 . b 2 q-1-a 2 ũ, (3.61) v = T 2 • T 1 (v) ≥ T 2 • T 1 (C max ṽ) = (C max ) b 2 q-1-a 2 . b 1 p-1-a 1 ṽ. (3.62)
From 0 < C max < 1 combined with the subhomogeneity condition (3.1) we deduce that

C ′ max def = (C max ) b 1 p-1-a 1 . b 2 q-1-a 2 > C max ,
which contradicts the maximality of the constant C max in (3.60), by inequalities (3.61) and (3.62). Then, C max ≥ 1 which entails ũ ≤ u and ṽ ≤ v a.e. in Ω. Interchanging the roles of (u, v) and ( ũ, ṽ), we finally get (u, v) = ( ũ, ṽ) a.e. in Ω.

Proof of Theorem 3.9 The proof is very similar to the proof of Theorem 3.7. So we omit it.

Proof of Theorem 3.10

Alternative 1: Assume that a 1 + b 1 = k 1 -1 and k 2 -1 ≤ a 2 + b 2 < q -1.
We look for positive sub and supersolutions pairs (u, v), (u, v) in the form:

u = mψ 1 and u = m -1 (ϕ 1,p ) 1-ε in Ω, v = m σ ψ 2 and v = m -σ (ϕ 1,q ) 1-σε in Ω,
where σ > 0 is given by (3.2), ε < 1 and m < 1 are appropriate positive constants small enough and ψ 1 ∈ W 1,p 0 (Ω) and ψ 2 ∈ W 1,q 0 (Ω) are the respective solutions to

-∆ p w = K 1 (x)w δ 1 in Ω; w| ∂Ω = 0, w > 0 in Ω, -∆ q w = K 2 (x)w δ 2 in Ω; w| ∂Ω = 0, w > 0 in Ω,
with k 1 -1 < δ 1 < p -1 and a 2 + b 2 < δ 2 < q -1. By Theorem 3.3, both ψ 1 and ψ 2 behave like the distance function in Ω. Let us remark that by estimate (1.5), u ≤ u and v ≤ v in Ω, for m small enough. Now, let 1 < r < ∞ and γ ∈ (0, 1), then we have

-∆ r [(ϕ 1,r ) γ ] = γ r-1 λ 1,r (ϕ 1,r ) γ(r-1) -(γ -1)(r -1)(ϕ 1,r ) (γ-1)(r-1)-1 |∇ϕ 1,r | r = γ r-1 (ϕ 1,r ) -(1-γ)(r-1)-1 [λ 1,r (ϕ 1,r ) r + (1 -γ)(r -1)|∇ϕ 1,r | r ]
in Ω. By estimate (1.5), we conclude that

-∆ r [(ϕ 1,r (x)) γ ] ∼ d(x) -(1-γ)(r-1)-1 in Ω. (3.63) So, let (u, v) ∈ [u, u] × [v, v].
On one hand, we have

-∆ p u ≤ m p-1 C 1 K 1 (x)d(x) δ 1 and -∆ q v ≤ m q-1 C ′ 1 K 2 (x)d(x) δ 2 in Ω.
On the other hand, we also have

K 1 (x)u a 1 v b 1 ≥    m a 1 +σb 1 K 1 (x)ψ 1 a 1 ψ 2 b 1 if b 1 > 0, m a 1 -σb 1 K 1 (x)ψ 1 a 1 (ϕ 1,q ) b 1 (1-εσ) if b 1 < 0, ≥ m a 1 +σ|b 1 | C 2 K 1 (x)d(x) k 1 -1+εσb - 1 in Ω,
in Ω. Similarly, we get

K 2 (x)v a 2 u b 2 ≥ m σa 2 +|b 2 | C ′ 2 K 2 (x)d(x) a 2 +b 2 +εb - 2 in Ω.
Then, for m and ε small enough, (u, v) is a subsolutions pair of problem (P).

Similarly, using estimate (3.63), we obtain

-∆ p u ≥ m 1-p C 3 d(x) -1-ε(p-1) and -∆ q v ≥ m σ(1-q) C ′ 3 d(x) -1-εσ(q-1) in Ω.
Furthermore, by (3.5), for any ε ′ > 0, there exists

C 4 = C 4 (ε ′ ) > 0 such that K 1 (x)u a 1 v b 1 ≤    m -(a 1 +σb 1 ) K 1 (x)(ϕ 1,p ) a 1 (1-ε) (ϕ 1,q ) b 1 (1-εσ) if b 1 > 0, m -(a 1 -σb 1 ) K 1 (x)(ϕ 1,p ) a 1 (1-ε) ψ 2 b 1 if b 1 < 0, ≤ m -(a 1 +σ|b 1 |) C 4 d(x) -1-ε(a 1 +σb + 1 )-ε ′ in Ω,
Similarly, we have

K 2 (x)v a 2 u b 2 ≤ m -(σa 2 +|b 2 |) C ′ 4 d(x) -k 1 +a 2 +b 2 -ε(σa 2 +b + 2 )-ε ′ in Ω, with C ′ 4 = C ′ 4 (ε ′ ).
Then, for m, ε and ε ′ small enough, (u, v) is a supersolutions pair of problem (P). Applying Theorem 2.1, we get the existence of positive solutions (u, v) ∈ W 1,p 0 (Ω) × W 1,q 0 (Ω) of (P) satisfying (3.69). This proves (i) of Theorem 3.10.

Alternative 2:

When k 1 -1 ≤ a 1 + b 1 < q -1 and a 2 + b 2 = k 2 -1
, interchanging the role of u and v, the proof of (ii) is the same as above.

Alternative 3: Assume that (3.41) is satisfied. To prove (3), we follow the proof in Alternative 1. We construct positive sub and supersolutions pairs (u, v),

(u, v) ∈ W 1,p 0 (Ω) × W 1,q 0 (Ω) in the form u = m(ϕ 1,p ) γ+ε , u = m -1 (ϕ 1,p ) γ-ε and v = m σ ψ, v = m -σ (ϕ 1,q ) 1-σε in Ω,
where σ > 0 is given by (3.2), and ε, m are appropriate positive constants small enough and ψ ∈ W 1,q 0 (Ω) is the solution (see Theorem 3.3) of

-∆ q w = K 2 (x)w δ in Ω; w| ∂Ω = 0, w > 0 in Ω,
with a 2 + γb 2 < δ < q -1. (iv) is the symmetric case of (3) by interchanging the role of u and v. Finally, from Theorem A.1, we get the Hölder regularity of (u, v).

Example 2

We consider now the following singular system

(P)    -∆ p u = u a 1 v b 1 -u α 1 v β 1 in Ω ; u| ∂Ω = 0, u > 0 in Ω, -∆ q v = v a 2 u b 2 -v α 2 u β 2 in Ω ; v| ∂Ω = 0, v > 0 in Ω,
where the above exponents satisfy

(p -1 -a 1 ) -σ|b 1 | > 0 and (α 1 -a 1 ) -σ(|β 1 | -|b 1 |) > 0, (3.64) σ(q -1 -a 2 ) -|b 2 | > 0 and σ(α 2 -a 2 ) -(|β 2 | -|b 2 |) > 0, (3.65) 
for some constant σ > 0. Then, we have the following result:

Theorem 3.11.

(i) Let γ1 = p(q -1 -a2) + qb1 (p -1 -a1)(q -1 -a2) -b1b2 , γ2 = q(p -1 -a1) + pb2 (p -1 -a1)(q -1 -a2) -b1b2 (3.66)
and assume that

1 - 1 p < γ 1 < 1 and (α 1 -a 1 )γ 1 + (β 1 -b 1 )γ 2 > 0, (3.67) 1 - 1 q < γ 2 < 1 and (α 2 -a 2 )γ 2 + (β 2 -b 2 )γ 1 > 0. (3.68)
Then, problem (P) has a positive solution

(u, v) ∈ W 1,p 0 (Ω) × W 1,q 0 (Ω) satisfying u(x) ∼ d(x) γ 1 and v(x) ∼ d(x) γ 2 in Ω.
(3.69)

In addition, we have (u, v) ∈ C 0,α Ω × C 0,α Ω , for some 0 < α < 1.

(ii) Assume that

-1 < a 1 + b 1 < p -1 and (α 1 -a 1 ) + (β 1 -b 1 ) > 0, (3.70) 
-1 < a 2 + b 2 < q -1 and (α 2 -a 2 ) + (β 2 -b 2 ) > 0. (3.71) 
Then, (P) has a positive solution (u, v) ∈ W 1,p 0 (Ω) × W 1,q 0 (Ω) satisfying u(x) ∼ d(x) and v(x) ∼ d(x) in Ω.

(3.72)

In addition, we have

(u, v) ∈ C 1,α Ω × C 1,α Ω , for some 0 < α < 1. (iii) Let γ = p + b 1 p -1 -a 1 (3.73)
and assume that

1 - 1 p < γ < 1 and (α 1 -a 1 )γ + (β 1 -b 1 ) > 0, (3.74) 
-1 < a 2 + b 2 γ < p -1 and (α 2 -a 2 ) + (β 2 -b 2 )γ > 0. (3.75)
Then, (P) has a positive solution

(u, v) ∈ W 1,p 0 (Ω) × W 1,q 0 (Ω) satisfying u(x) ∼ d(x) γ and v(x) ∼ d(x) in Ω. (3.76) 
In addition, we have (u, v) ∈ C 0,α Ω × C 1,α Ω , for some 0 < α < 1.

(iv) Symmetrically, set

γ = q + b 2 q -1 -a 2 (3.77)
and assume that

-1 < a 1 + b 1 γ < p -1 and (α 1 -a 1 ) + (β 1 -b 1 )γ > 0, (3.78) 1 - 1 q < γ < 1 and (α 2 -a 2 )γ + (β 2 -b 2 ) > 0. (3.79)
Then, (P) has a positive solution

(u, v) ∈ W 1,p 0 (Ω) × W 1,q 0 (Ω) satisfying u(x) ∼ d(x) and v(x) ∼ d(x) γ in Ω. (3.80) 
In addition, we have

(u, v) ∈ C 1,α Ω × C 0,α Ω , for some 0 < α < 1.
Proof. We apply Theorem 2.1 with

u ≡ mψ 1 , u ≡ m -1 ψ 1 and v ≡ m σ ψ 2 , v ≡ m -σ ψ 2 in Ω,
where σ > 0 is the constant given in (3.64) and (3.65), m < 1 is a positive constant small enough and ψ 1 ∈ W 1,p 0 (Ω), ψ 2 ∈ W 1,q 0 (Ω) are given by Theorem 3.3 as the respective unique solutions of problems -∆ p w = w δ 1 in Ω; w| ∂Ω = 0, w > 0 in Ω, -∆ q w = w δ 2 in Ω; w| ∂Ω = 0, w > 0 in Ω, satisfying some cone conditions we precise below. In the following Alternatives, we choose -2 -1 p-1 < δ 1 < p -1 and -2 -1 q-1 < δ 2 < q -1 such that

-∆ p ψ 1 ∼ ψ 1 a 1 ψ 2 b 1 and -∆ q ψ 2 ∼ ψ 2 a 2 ψ 1 b 2 in Ω. (3.81)
Alternative 1: Assume that conditions (3.67) and (3.68) hold. Then, arguing as in Alternative 1 in the proof of Theorem 3.7, we choose -2 -1 p-1 < δ 1 < -1 and -2 -1 q-1 < δ 2 < -1 unique solutions pair of the following system:

δ 1 p p -1 -δ 1 = a 1 p p -1 -δ 1 + b 1 q q -1 -δ 2 and δ 2 q q -1 -δ 2 = a 2 q q -1 -δ 2 + b 2 p p -1 -δ 2 . Since ψ 1 (x) ∼ d(x) γ 1 and ψ 2 (x) ∼ d(x) γ 2 in Ω,
where γ 1 = p p-1-δ 1 and γ 2 = q q-1-δ 2 are given by (3.66), estimates (3.81) follows.

Let (u, v) ∈ [u, u] × [v, v]. First, we have -∆ p u ≤ m p-1 C 1 d(x) δ 1 γ 1 and -∆ q v ≤ m σ(q-1) C ′ 1 d(x) δ 2 γ 2 in Ω. (3.82)
On the other hand, by (3.64) and (3.67),

u a 1 v b 1 -u α 1 v β 1 ≥ m a 1 +σ|b 1 | ψ 1 a 1 ψ 2 b 1 1 -m α 1 -a 1 -σ(|β 1 |-|b 1 |) ψ 1 α 1 -a 1 ψ 2 β 1 -b 1 ≥ m a 1 +σ|b 1 | C 2 d(x) a 1 γ 1 +b 1 γ 2 in Ω. (3.83)
for m small enough. By (3.65) and (3.68), we also have

v a 2 u b 2 -v α 2 u β 2 ≥ m σa 2 +|b 2 | C ′ 2 d(x) a 2 γ 2 +b 2 γ 1 in Ω, (3.84) 
for m small enough. Then, under conditions (3.64), (3.65), (3.67) and (3.68) and for m small enough, (u, v) is a subsolutions pair of problem (P).

Similarly, we have

-∆ p u ≥ m 1-p C 3 d(x) δ 1 γ 1 and -∆ q v ≥ m σ(1-q) C ′ 3 d(x) δ 2 γ 2 in Ω. (3.85)
In addition,

u a 1 v b 1 -u α 1 v β 1 ≤ m -a 1 -σ|b 1 | ψ 1 a 1 ψ 2 b 1 ≤ m -a 1 -σ|b 1 | C 4 d(x) a 1 γ 1 +b 1 γ 2 (3.86)
in Ω. We obtain further

v a 2 u b 2 -v α 2 u β 2 ≤ m -σa 2 -|b 2 | C ′ 4 d(x) a 2 γ 2 +b 2 γ 1 in Ω. (3.87) 
Then, under conditions (3.64), (3.65) and for m small enough, (u, v) is a supersolutions pair of problem (P). Applying Theorem 2.1, we get the existence of positive solutions (u, v) ∈ W 1,p 0 (Ω) × W 1,q 0 (Ω) of (P) satisfying (3.69). Again from Theorem A.1, (u, v) are Hölder continuous. This proves the assertion (i). 

-∆ p u ≤ m p-1 C 1 d(x) a 1 +b 1 and -∆ q v ≤ m σ(q-1) C ′ 1 d(x) a 2 +b 2 in Ω.
(u, v) ∈ [u, u] × [v, v]: u a 1 v b 1 -u α 1 v β 1 ≥ m a 1 +σ|b 1 | C 2 d(x) a 1 +b 1 in Ω, v a 2 u b 2 -v α 2 u β 2 ≥ m σa 2 +|b 2 | C ′ 2 d(x) a 2 +b 2
in Ω, for m small enough. Then, under conditions (3.64), (3.65), (3.70), (3.71) and for m small enough, (u, v) is a subsolution pair of problem (P). Instead of inequalities (3.85), we have in this case in Ω,

-∆ p u ≥ m 1-p C 3 d(x) a 1 +b 1 and -∆ q v ≥ m σ(1-q) C ′ 3 d(x) a 2 +b 2 .
In addition, instead of inequalities (3.86) and (3.87), we get

u a 1 v b 1 -u α 1 v β 1 ≤ m -a 1 -σ|b 1 | C 4 d(x) a 1 +b 1 , v a 2 u b 2 -v α 2 u β 2 ≤ m -σa 2 -|b 2 | C ′ 4 d(x) a 2 +b 2 , in Ω.
Then, under conditions (3.64), (3.65) and for m small enough, (u, v) is a supersolution pair of problem (P). Then, we conclude as in the Alternative 1 and (ii) is proved.

Alternative 3: Now, assume conditions (3.74) and (3.75) hold. Then, arguing as in the proof of Theorem 3.7, we choose -2 -1 p < δ 1 < -1 and -1 < δ 2 < q -1 unique solutions pair of the following system:

δ 1 p p -1 -δ 1 = a 1 p p -1 -δ 1 + b 1 and δ 2 = a 2 + b 2 p p -1 -δ 2 .
Estimates in (3.81) hold since

ψ 1 (x) ∼ d(x) γ and ψ 2 (x) ∼ d(x) in Ω,
with γ given by (3.73). Instead of inequalities (3.82), we have in this case

-∆ p u ≤ m p-1 C 1 d(x) δ 1 γ and -∆ q v ≤ m σ(q-1) C ′ 1 d(x) δ 2 in Ω.
From (3.64), (3.65), (3.74) and (3.75), we obtain now

u a 1 v b 1 -u α 1 v β 1 ≥ m a 1 +σ|b 2 | C 2 d(x) a 1 γ+b 1 in Ω, v a 2 u b 2 -v α 2 u β 2 ≥ m σa 2 +|b 2 | C ′ 2 d(x) a 2 +b 2 γ
in Ω, for m small enough. Then, under conditions (3.64), (3.65), (3.74), (3.75) and for m small enough, (u, v) is a subsolution pair of problem (P). Instead of (3.85), we have

-∆ p u ≥ m 1-p C 3 d(x) δ 1 γ and -∆ p v ≥ m σ(1-q) C ′ 3 d(x) δ 2 in Ω.
And inequalities (3.86) are replaced by

u a 1 v b 1 -u α 1 v β 1 ≤ m -a 1 -σ|b 1 | C 4 d(x) a 1 γ+b 1 in Ω, v a 2 u b 2 -v α 2 u β 2 ≤ m -σa 2 -|b 2 | C ′ 4 d(x) a 2 +b 2 γ in Ω.
Then, under conditions (3.64), (3.65) and for m small enough, (u, v) is a supersolution pair of problem (P). We conclude as in the Alternative 1. Thus, (iii) is proved. Note that (iv) is the symmetric case of (iii) by interchanging u and v.

We can further prove similarly (we omit the proof): Theorem 3.12. Assume that conditions (3.64) and (3.65) are satisfied.

(i) Assume that

a 1 + b 1 = -1 and (α 1 -a 1 ) + (β 1 -b 1 ) > 0, (3.88) -1 ≤ a 2 + b 2 < q -1 and (α 2 -a 2 ) + (β 2 -b 2 ) > 0. (3.89)
Then, for all ε > 0 small enough, there exist

C 1 , C 2 > 0 and C ′ 1 , C ′ 2 > 0 such that (P ) admits positive solutions (u, v) ∈ W 1,p 0 (Ω) × W 1,q 0 (Ω) satisfying: C 1 d(x) ≤ u ≤ C 2 d(x) 1-ε and C ′ 1 d(x) ≤ v ≤ C ′ 2 d(x) 1-εσ in Ω, (3.90) 
with σ > 0 is given in (3.2). In addition, we have (u, v) ∈ C 0,α Ω × C 0,α Ω , for some 0 < α < 1.

(ii) Symmetrically, assume that

-1 ≤ a 1 + b 1 < q -1 and (α 1 -a 1 ) + (β 1 -b 1 ) > 0, (3.91) 
a 2 + b 2 = -1 and (α 2 -a 2 ) + (β 2 -b 2 ) > 0. (3.92)
Then, for all ε > 0 small enough, there exist C 1 , C 2 > 0 and C ′ 1 , C ′ 2 > 0 such that (P ) admits positive solutions (u, v) ∈ W 1,p 0 (Ω) × W 1,q 0 (Ω) satisfying:

C 1 d(x) ≤ u ≤ C 2 d(x) 1-ε and C ′ 1 d(x) ≤ v ≤ C ′ 2 d(x) 1-εσ in Ω. (3.93)
In addition, we have

(u, v) ∈ C 0,α Ω × C 0,α Ω , for some 0 < α < 1. (iii) Let γ = p + b 1 p -1 -a 1 and assume that 1 - 1 p < γ < 1 and (α 1 -a 1 )γ + (β 1 -b 1 ) > 0, (3.94) a 2 + b 2 γ = -1 and (α 2 -a 2 ) + (β 2 -b 2 )γ > 0. (3.95)
Then, for all ε > 0 small enough, there exist C 1 , C 2 > 0 and C ′ 1 , C ′ 2 > 0 such that (P ) admits positive solutions (u, v) ∈ W 1,p 0 (Ω) × W 1,q 0 (Ω) satisfying:

C 1 d(x) γ+ε ≤ u ≤ C 2 d(x) γ-ε and C ′ 1 d(x) ≤ v ≤ C ′ 2 d(x) 1-εσ in Ω. (3.96)
In addition, we have (u, v) ∈ C 0,α Ω × C 0,α Ω , for some 0 < α < 1.

(iv) Symmetrically, let

γ = q + b 2 q -1 -a 2
and assume that

a 1 + b 1 γ = -1 and (α 1 -a 1 ) + (β 1 -b 1 )γ > 0, (3.97) 1 - 1 q < γ < 1 and (α 2 -a 2 )γ + (β 2 -b 2 ) > 0. (3.98)
Then, for all ε > 0 small enough, there exist C 1 , C 2 > 0 and C ′ 1 , C ′ 2 > 0 such that (P ) admits positive solutions (u, v) ∈ W 1,p 0 (Ω) × W 1,q 0 (Ω) satisfying:

C 1 d(x) ≤ u ≤ C 2 d(x) 1-ε and C ′ 1 d(x) γ+εσ ≤ v ≤ C ′ 2 d(x) γ-εσ in Ω. (3.99)
In addition, we have (u, v) ∈ C 0,α Ω × C 0,α Ω , for some 0 < α < 1.

Example 3

In this section, we consider the following singular competition system

(P)    -∆ p u = λ 1 u α 1 -u β 1 -µ 1 u a 1 v b 1 in Ω ; u| ∂Ω = 0, u > 0 in Ω, -∆ q v = λ 2 v α 2 -v β 2 -µ 2 v a 2 u b 2 in Ω ; v| ∂Ω = 0, v > 0 in Ω,
where λ 1 , λ 2 and µ 1 , µ 2 are positive and

α 1 , α 2 , β 1 , β 2 , a 1 , a 2 , b 1 , b 2 satisfy -2 - 1 p -1 < α 1 < p -1, α 1 < β 1 and a 1 -α 1 -σ|b 1 | > 0, (3.100) -2 - 1 q -1 < α 2 < q -1, α 2 < β 2 and σ(a 2 -α 2 ) -|b 2 | > 0, (3.101)
for some constant σ > 0. Then, we have

Theorem 3.13. (i) Assume that -2 - 1 p -1 < α 1 < -1 and (a 1 -α 1 )p p -1 -α 1 + b 1 q q -1 -α 2 > 0, (3.102) -2 - 1 q -1 < α 2 < -1 and (a 2 -α 2 )q q -1 -α 2 + b 2 p p -1 -α 1 > 0. (3.103)
Then, (P) admits positive solutions (u, v) ∈ W 1,p 0 (Ω) × W 1,q 0 (Ω) satisfying:

u(x) ∼ d(x) p p-1-α 1 and v(x) ∼ d(x) q q-1-α 2 in Ω.
(3.104)

In addition, we have

(u, v) ∈ C 0,α Ω × C 0,α Ω , for some 0 < α < 1. (ii) Assume that -1 < α 1 < p -1 and a 1 -α 1 + b 1 > 0, (3.105) -1 < α 2 < q -1 and a 2 -α 2 + b 2 > 0. (3.106)
Then, (P) admits positive solutions (u, v) ∈ W 1,p 0 (Ω) × W 1,q 0 (Ω) satisfying:

u(x) ∼ d(x) and v(x) ∼ d(x) in Ω. (3.107) 
In addition, we have

(u, v) ∈ C 1,α Ω × C 1,α Ω , for some 0 < α < 1. (iii) Assume that -2- 1 p -1 < α 1 < -1 and (a 1 -α 1 +b 1 )p-b 1 (α 1 +1) > 0, (3.108) -1 < α 2 < q-1 and (a 2 -α 2 +b 2 )p-(a 2 -α 2 )(α 1 +1) > 0. (3.109)
Then, (P) admits positive solutions (u, v) ∈ W 1,p 0 (Ω) × W 1,q 0 (Ω) satisfying:

u(x) ∼ d(x) p p-1-α 1 and v(x) ∼ d(x) in Ω.
(3.110)

In addition, we have (u, v) ∈ C 0,α Ω × C 1,α Ω , for some 0 < α < 1. (iv) Symmetrically, assume that

-1 < α 1 < p-1 and (a 1 -α 1 +b 1 )q-(a 1 -α 1 )(α 2 +1) > 0, (3.111) -2- 1 q -1 < α 2 < -1 and (a 2 -α 2 +b 2 )q -b 2 (α 2 +1) > 0. (3.112)
Then, (P) admits positive solutions (u, v) ∈ W 1,p 0 (Ω) × W 1,q 0 (Ω) satisfying:

u(x) ∼ d(x) and v(x) ∼ d(x) q q-1-α 2 in Ω.
(3.113)

In addition, we have (u, v) ∈ C 1,α Ω × C 0,α Ω , for some 0 < α < 1.

Proof. We apply Theorem 2.1 with

u ≡ mψ 1 , u ≡ m -1 ψ 1 and v ≡ m σ ψ 2 , v ≡ m -σ ψ 2 in Ω, (3.114)
where σ > 0 is the constant given in (3.100) and (3.101), m < 1 is a suitable small positive constant and ψ 1 ∈ W 1,p 0 (Ω), ψ 2 ∈ W 1,q 0 (Ω) are (given by Theorem 3.3) the respective unique solutions of problems 

-∆ p w = w α 1 in Ω; w| ∂Ω = 0, w > 0 in Ω, -∆ q w = w α 2 in Ω; w| ∂Ω = 0, w > 0 in Ω.
ψ 1 (x) ∼ d(x) p p-1-α 1 and ψ 2 (x) ∼ d(x) q q-1-α 2 in Ω.
Let us prove that, for m small enough, (u, v) and (u, v) are respectively sub and supersolutions pairs of (P).

Let (u, v) ∈ [u, u] × [v, v]. We have in Ω, -∆ p u ≤ m p-1 C 1 d(x) α 1 p p-1-α 1 and -∆ q v ≤ m σ(q-1) C ′ 1 d(x) α 2 q q-1-α 2 . (3.115)
From (3.100) and (3.102), we obtain:

λ 1 u α 1 -u β 1 -µ 1 u a 1 v b 1 ≥ λ 1 (mψ 1 ) α 1 1 -1 λ 1 (mψ 1 ) β 1 -α 1 -µ 1 λ 1 (mψ 1 ) a 1 -α 1 m -σsign(b 1 ) ψ 2 b 1 ≥ λ 1 2 m α 1 C 2 d(x) α 1 p p-1-α 1 , (3.116 
) for m small enough. In addition, from (3.101) and (3.103), we get:

λ 2 v α 2 -v β 2 -µ 2 v a 2 u b 2 ≥ λ 1 2 m σα 2 C ′ 2 d(x) α 2 q q-1-α 2 in Ω, (3.117) 
for m small enough. Then, under conditions (3.102), (3.103) and for m small enough, (u, v) is a subsolutions pair of problem (P). We also get -∆ p u ≥ m 1-p C 3 d(x) α 1 p p-1-α 1 and -∆ q v ≥ m σ(1-q) C ′ 3 d(x) α 2 q q-1-α 2 in Ω. (3.118) Similarly, one has

λ 1 u α 1 -u β 1 -µ 1 u a 1 v b 1 ≤ λ 1 m -α 1 C 4 d(x) α 1 p p-1-α 1 in Ω, (3.119) 
λ 2 v α 2 -v β 2 -µ 2 v a 2 u b 2 ≤ λ 2 m -σα 2 C ′ 4 d(x)
α 2 q q-1-α 2 in Ω.

(3.120)

Then, for m small enough, (u, v) is a supersolutions pair of problem (P). Applying Theorem 2.1, we get the existence of positive solutions (u, v) ∈ W 1,p 0 (Ω) × W 1,q 0 (Ω) of (P) satisfying (3.104). From Theorem A.1, we get the Hölder regularity of u and v. This proves (i). 

λ 1 u α 1 -u β 1 -µ 1 u a 1 v b 1 ≥ λ 1 2 m α 1 C 2 d(x) α 1 in Ω, λ 2 v α 2 -v β 2 -µ 2 v a 2 u b 2 ≥ λ 2 2 m σα 2 C ′ 2 d(x) α 2
in Ω, for m small enough. Then, under conditions (3.105), (3.106) and for m small enough, (u, v) is a subsolutions pair of problem (P). Instead of (3.118), we have -∆ p u ≥ m 1-p C 3 d(x) α 1 and -∆ q v ≥ m σ(1-q) C ′ 3 d(x) α 2 in Ω.

Furthermore, the following inequalities

λ 1 u α 1 -u β 1 -µ 1 u a 1 v b 1 ≤ λ 1 m -α 1 C 4 d(x) α 1 in Ω, λ 2 v α 2 -v β 2 -µ 2 v a 2 u b 2 ≤ λ 1 m -σα 2 C ′ 4 d(x) α 2
in Ω replace (3.119) and (3.120). Then, for m small enough, (u, v) is a supersolutions pair of problem (P). We conclude as in the Alternative 1 and (ii) is proved. and -∆ q v ≤ m σ(q-1) C ′ 1 d(x) α 2 in Ω.

From (3.100), (3.101), (3.108) and (3.109), instead of (3.116) and (3.117), we get

λ 1 u α 1 -u β 1 -µ 1 u a 1 v b 1 ≥ λ 1 2 m α 1 C 2 d(x) α 1 p p-1-α 1 in Ω, λ 2 v α 2 -v β 2 -µ 2 v a 2 u b 2 ≥ λ 2 2 m σα 2 C ′ 2 d(x) α 2 in Ω,
for m small enough. Then, under conditions (3.108), (3.109) and for m small enough, (u, v) is a subsolutions pair of problem (P). Finally, Instead of (3.118), we have

-∆ p u ≥ m 1-p C 3 d(x)
α 1 p p-1-α 1 and -∆ q v ≥ m σ(1-q) C ′ 3 d(x) α 2 in Ω.

Instead of (3.119) and (3.120), we obtain

λ 1 u α 1 -u β 1 -µ 1 u a 1 v b 1 ≤ λ 1 m -α 1 C 4 d(x) α 1 p p-1-α 1 in Ω, λ 2 v α 2 -v β 2 -µ 2 v a 2 u b 2 ≤ λ 1 m -σα 2 C ′ 4 d(x) α 2 in Ω.
Then, for m small enough, (u, v) is a supersolutions pair of problem (P). Then, we conclude as in the Alternative 1. Thus, (iii) and by symmetry (iv) are proved.

Concerning the above theorem, we analyse further some limiting cases. The proof of the next result follows the proof of Theorem 3.10. So we omit it. In addition, we have (u, v) ∈ C 0,α Ω × C 0,α Ω , for some 0 < α < 1. in Ω. (3.126)

In addition, we have (u, v) ∈ C 0,α Ω × C 0,α Ω , for some 0 < α < 1.

(iii) Let α 1 = -1 and a 1 -α 1 + b 1 > 0, (3.127) -1 < α 2 < q -1 and a 2 -α 2 + b 2 > 0.

(3.128)

Then, (P) admits positive solutions (u, v) ∈ W 1,p 0 (Ω) × W 1,q 0 (Ω) satisfying: In addition, we have (u, v) ∈ C 0,α Ω × C 1,α Ω , for some 0 < α < 1.

A A useful Hölder regularity result

We consider the following quasilinear elliptic boundary value problem, -∆ r w = f in Ω; w| ∂Ω = 0, w > 0 in Ω.

(A.1)

In this equation, f is a L 1 loc (Ω) function such that there exist two constants C > 0 and δ > 0 satisfying |f(x)| ≤ Cd(x) -δ , a.e. in Ω.

(A.2)

Then, we have the following Hölder regularity result on the solutions to (A.1).

Theorem A.1. Assume that f satisfies the growth hypothesis (A.2). Let u ∈ W 1,r 0 (Ω) be a positive weak solution to (A.1). Let u ∈ W 1,r 0 (Ω) be a supersolutions to (A.1) such that -∆ r u ≥ |f| in Ω, (A.3) in the sense of distributions in W -1,r ′ (Ω). In addition, assume that there exists C ′ > 0 such that 0 ≤ u ≤ u ≤ C ′ d(x) δ ′ a.e in Ω, (A.4) with 0 < δ ′ < δ. Finally, let α be an arbitrary number such that 0 < α < r r -1 + δ/δ ′ < 1.

Then, there exists a constant M > 0, depending solely on Ω, r and N , on the constants C and δ in (A.2), on the constants C ′ and δ ′ in (A.4), and on the constant α, such that u ∈ C 0,α (Ω) and u C 0,α (Ω) ≤ M.

(

  ii) We denote by d(x) def = inf y∈∂Ω d(x, y), the distance from x ∈ Ω to ∂Ω. (iii) We denote by D def = sup x,y∈Ω d(x, y), the diameter of the domain Ω.

and b 1 , b 2 =

 12 0 satisfying the subhomogeneity hypothesis (3.1). Assume that (P ) is either a competitive or a cooperative system, i.e. b 1 b 2 > 0. Then, each solution provided by Theorem 3.7 is unique.

Alternative 2 :

 2 Now, assume that conditions (3.70) and (3.71) are satisfied. Then, we choose δ 1 = a 1 + b 1 and δ 2 = a 2 + b 2 . By Theorem 3.3, since ψ 1 (x) ∼ d(x) and ψ 2 (x) ∼ d(x) in Ω, estimates (3.81) hold. Instead of inequalities (3.82), we have in this case

From ( 3 .

 3 64), (3.65), (3.70) and (3.71), we get for any

Alternative 1 :

 1 Assume conditions (3.102) and (3.103) are satisfied. Then, from Theorem 3.3, we get

Alternative 2 :

 2 Now, let conditions (3.105) and (3.106) be satisfied. Then,ψ 1 (x) ∼ d(x) and ψ 2 (x) ∼ d(x) in Ω. Let (u, v) ∈ [u, u] × [v, v]. Instead of (3.115), we now get -∆ p u ≤ m p-1 C 1 d(x) α 1 and -∆ q v ≤ m σ(q-1) C ′ 1 d(x) α 2 in Ω.From (3.100), (3.101), (3.105) and (3.106), instead of (3.116) and (3.117), we have

Alternative 3 :

 3 Now, assume that conditions (3.108) and (3.109) are satisfied. Then,ψ 1 (x) ∼ d(x) p p-1-α 1 and ψ 2 (x) ∼ d(x) in Ω. Let (u, v) ∈ [u, u] × [v, v]. Instead of (3.115), we have -∆ p u ≤ m p-1 C 1 d(x) α 1 p p-1-α 1

Theorem 3 . 1 < α 2 <

 312 14. (i)Letα 1 = -1 and (a 1 -α 1 + b 1 )q -(a 1 -α 1 )(α 2 + 1) > 0, (3.121) -1 and (a 2 -α 2 -b 2 )q -b 2 (α 2 +1) > 0. (3.122)Then, (P) admits positive solutions (u, v) ∈ W 1,p 0 (Ω) × W 1,q 0 (Ω) satisfying:u(x) ∼ d(x)| ln(d(x))| 1 p and v(x) ∼ d(x) q q-1-α 2in Ω.(3.123) 

(ii) Let α 1 = -1 and a 1 -α 1 + b 1 α 2 = 1 p

 111121 -1 and a 2 -α 2 + b 2 > 0. (3.125) Then, (P) admits positive solutions (u, v) ∈ W 1,p 0 (Ω) × W 1,q 0 (Ω) satisfying: u(x) ∼ d(x)| ln(d(x))| and v(x) ∼ d(x)| ln(d(x))| 1 q

u

  (x) ∼ d(x)| ln(d(x))| 1 p and v(x) ∼ d(x) in Ω.(3.129)

  .[START_REF] Krasnoselskii | Topological methods in the theory of nonlinear integral equations[END_REF] Proof. Since Ω is a smooth domain, we can introduce (Ω n ) n∈N * ⊂ Ω an increasing sequence of smooth subdomains of Ω such that Ω n -→

	topology with	n→∞	Ω in the Hausdorff

  Letus check that conditions (2.1) to (2.5) of Theorem 2.1 are satisfied. By estimates (3.49) and (3.50) and using the properties of the perturbations L 1 and L 2 given in point (a) and (c) of Remark 3.1, for all ε > 0 there exist positive constants C 1 , C 2 and C ′ 1 , C ′ 2 such that

under (3.2) and thanks to (3.51) to (3.56), (u, v) is a supersolutions pair of problem (P), for m small enough. Therefore estimates (1.7) to (1.10) hold.

Proof. The proof is quite similar to the Theorem 1.1's in [START_REF] Giacomoni | Hölder regularity and singular elliptic equations[END_REF] with a : (x, η) → |η| p-2 η in Ω×R N . Indeed, to overcome the non-positivity of f, we add conditions (A.3) and (A.4). Then, introducing the same boundary value problem (2.12),instead of inequality (2.14), we get here

Then, estimate (A.18) still holds and the end of the proof is exactly the same.
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