
HAL Id: hal-00793324
https://hal.science/hal-00793324v4

Submitted on 5 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Realizability for Peano Arithmetic with Winning
Conditions in HON Games

Valentin Blot

To cite this version:
Valentin Blot. Realizability for Peano Arithmetic with Winning Conditions in HON Games. Typed
Lambda Calculi and Applications, Jun 2013, Eindhoven, Netherlands. pp.77 - 92, �10.1007/978-3-642-
38946-7_8�. �hal-00793324v4�

https://hal.science/hal-00793324v4
https://hal.archives-ouvertes.fr

Realizability for Peano Arithmetic with

Winning Conditions in HON Games

Valentin Blot

Laboratoire de l’Informatique et du Parallélisme
ENS Lyon - Université de Lyon

UMR 5668 CNRS ENS-Lyon UCBL INRIA
46, allée d’Italie

69364 Lyon cedex 07 - FRANCE
valentin.blot@ens-lyon.fr

Abstract. We build a realizability model for Peano arithmetic based on
winning conditions for HON games. First we define a notion of winning
strategies on arenas equipped with winning conditions. We prove that the
interpretation of a classical proof of a formula is a winning strategy on
the arena with winning condition corresponding to the formula. Finally
we apply this to Peano arithmetic with relativized quantifications and
give the example of witness extraction for Π0

2 -formulas.

1 Introduction

Realizability is a technique to extract computational content from formal proofs.
It has been widely used to analyze intuitionistic systems (for e.g. higher-order
arithmetic or set theory), see [1] for a survey. Following Griffin’s computational
interpretation of Peirce’s law [2], Krivine developed in [3–5] a realizability for
second-order classical arithmetic and Zermelo-Fraenkel set theory.

On the other hand, Hyland-Ong game semantics provide precise models of
various programming languages such as PCF [6] (a similar model has simulta-
neously been obtained in [7]), also augmented with control operators [8] and
higher-order references [9]. In these games, plays are interactions traces between
a program (player P) and an environment (opponent O). A program is inter-
preted by a strategy for P which represents the interactions it can have with any
environment.

In this paper, we devise a notion of realizability for HON general games based
on winning conditions on plays. We show that our model is sound for classical
Peano arithmetic and allows to perform extraction for Π0

2 -formulas.
HON games with winning conditions on plays have been used in e.g. [10]

for intuitionistic propositional logic with fixpoints. Our winning conditions can
be seen as a generalization of the ones of [10] in order to handle full first-order
classical logic, while [10] only deals with totality. Our witness extraction is based
on a version of Friedman’s trick inspired from Krivine [4]. Classical logic is
handled similarly to the unbracketed game model of PCF of [8].

We start from the cartesian closed category of single-threaded strategies
which contains the unbracketed and non-innocent strategies used to model con-
trol operators and references. We use a category of continuations in the coprod-
uct completion of [11], so that the usual flat arena of natural numbers in HON
games is indeed in the image of a negative translation. Our realizability is then
obtained by equipping arenas with winning conditions on plays.

The paper is organized as follows. Section 2 recalls the game semantics frame-
work and how to interpret λµ-calculus in it. Section 3 defines the notion of win-
ning strategies. Section 4 contains the definition of our realizability relation and
its adequacy for classical logic. Section 5 applies our realizability model to Peano
arithmetic and shows witness extraction for Π0

2 -formulas.

2 HON Games

Our realizability model is based on the Hyland-Ong-Nickau games [6] with no
bracketing or innocence constraint, so as to model control operators and refer-
ences [8, 9]. We consider single-threaded strategies in order to have a cartesian
closed category.

2.1 Arenas and Strategies

Definition 1 (Arena). An arena is a countable forest of moves. Each move
is given a polarity O (for Opponent) or P (for Player or Proponent):

– A root is of polarity O.
– A move which is not a root has the inverse polarity of that of his parent.

A root of an arena is also called an initial move. We will often identify an arena
with its set of moves.

Definition 2 (Justified sequence). Given an arena A, we define a justified
sequence on A to be a word s (finite or infinite) of A together with a partial
justifying function f : |s|⇀ |s| such that:

– If f(i) is undefined, then si is an initial move.
– If f(i) is defined, then f(i) < i and si is a child of sf(i).

We denote the empty justified sequence by ǫ. Remark here that by definition of
the polarity, if f(i) is undefined (si is initial), then si is of polarity O, and if
f(i) is defined, then si and sf(i) are of opposite polarities. Also, f(0) is never
defined, and so s0 is always an initial O-move. A justified sequence is represented
for example as:

a b c d e f g h i j

A subsequence of a justified sequence s is a subword of s together with a justifying
function defined accordingly. In particular if a move a points to a move b in the
original sequence and if a is in the subsequence but b is not, then the pointer

from a is left undefined. For example the following sequence is a subsequence of
the one above:

a b e f g i

If A is an arena, X is a subset of A and s is a justified sequence on A, then s|X
is the subsequence of s consisting of the moves of s which are in X.
In a sequence s, a move sj is hereditarily justified by a move si if si is initial
and for some n, fn(j) = i.

Definition 3 (Thread). If s is a justified sequence on A and if si is initial,
then the thread associated to si is the subsequence of s consisting of the moves
hereditarily justified by si. The set of threads of s, Threads(s), is the set of
threads associated to the initial moves of s.

For example we have:

Threads

(

a b c d e f g h i j

)

=

{

a b d g; c e f i;h j

}

Warning. Note that a thread is a justified sequence which may not be alternat-
ing, so our definition of thread differs from the usual one.

By extension a justified sequence s will be called a thread if it contains exactly
one thread (i.e. Threads(s) = {s}). Remark that Threads(ǫ) = ∅ and so ǫ is not
a thread.
A P -sequence (resp. O-sequence) is a sequence ending with a P -move (resp. a
O-move). Write t ⊑ s if t is a prefix of s, i.e. t is a prefix of s as a word and their
justifying functions coincide (this is a particular case of subsequence). Write
t ⊑P s (resp. t ⊑O s) if t is a P -prefix (resp. O-prefix) of s, i.e. t ⊑ s and t is a
P -sequence (resp. O-sequence).

Definition 4 (Play). A play s on A is an alternating justified sequence of A,
i.e., for any i, s2i is a O-move and s2i+1 is a P -move. We denote the set of
plays of A by PA.

A play on an arena is the trace of an interaction between a program and a
context, each one performing an action alternatively. A P -play (resp. O-play) is
a play which is a P -sequence (resp. O-sequence).

Definition 5 (Strategy). A strategy σ on A is a P -prefix-closed set of finite
P -plays on A such that:

– σ is deterministic: if sm and sm′ are in σ, then m = m′.

– σ is single-threaded: for any P -play s, s ∈ σ ⇔ Threads(s) ⊆ σ.

Our notion of single-threadedness matches the usual one of thread-independence
(see e.g. [9]). Remark also that a strategy always contains the empty play ǫ since
Threads(ǫ) = ∅.

2.2 Cartesian Closed Structure

The constructions we use will sometimes contain multiple copies of the same
arena (for example A → A), so we distinguish the instances with superscripts
(for example A(1) → A(2)).

Let U be the empty arena and V be the arena with only one (opponent)
move. If A and B are arenas consisting of the trees A1 . . .Ap and B1 . . .Bq, then
the arenas A → B and A× B can be represented as follows:

A → B : A× B :

B1

A
(1)
1

· · · A
(1)
p

· · · Bq

A
(q)
1

· · · A
(q)
p

A1 · · · Ap B1 · · · Bq

The constructions described here define a cartesian closed category whose objects
are arenas and morphisms are strategies. Details of the construction can be found
in [12]. In the following this category will be denoted as C.

These definitions of arenas will be used to associate arenas to the following
simple types:

Definition 6 (Simple types). The simple types are defined by the following
grammar, where ι ranges over a set of base types:

T, U := ι | void | unit | T × U | T → U

We suppose given an object [[ι]] of C for each base type ι, and we associate to
each simple type T an object [[T]] of C as follows:

[[void]] = V [[unit]] = U [[T × U]] = [[T]]× [[U]] [[T → U]] = [[U]][[T]]

Since C is cartesian closed, we use the syntax of λ-calculus to define strategies
from other strategies. In order to distinguish this notation from the λµ-terms of
Sect. 2.3 we use a bold lambda λ.

2.3 Interpretation of the call-by-name λµ-calculus

We map classical proofs to strategies using the interpretation of call-by-name
λµ-calculus in categories of continuations described in [13]. In order to make
explicit the double negation translation of the base types, we base the model on
the category of continuations RFam(C), where the response category Fam(C) is a
variant of the coproduct completion described in [11] applied to the category C
defined in Sect. 2.2:

Definition 7 (Fam(C)). The objects of Fam(C) are families of objects of C in-
dexed by at most countable sets, and a morphism from {Ai | i ∈ I} to {Bj | j ∈
J} is a function f : I → J together with a family of morphisms of C from Ai to
Bf(i), for i ∈ I.

Remark here that we differ from [11] because C doesn’t have weak coproducts nor
all small products, and the families are countable. Thus Fam(C) is not bicartesian
closed, but since C is cartesian closed and has countable products, Fam(C) is still
a distributive category with finite products and coproducts, and has exponentials
of all singleton families. The empty product and terminal object is the singleton
family {1}, the empty sum and initial object is the empty family {}, and:

{Ai | i ∈ I} × {Bj | j ∈ J} = {Ai ×Bj | (i, j) ∈ I × J}

{Ai | i ∈ I}+ {Bj | j ∈ J} = {Ck | k ∈ I ⊎ J} where Ck =

{

Ak if k ∈ I
Bk if k ∈ J

{B0}
{Ai | i∈I} = {Πi∈IB

Ai

0 }

We fix once and for all:

R = {V} = {[[void]]}

which is an object of Fam(C) as a singleton family. R has all exponentials as

stated above. Note that the canonical morphism δA : A→ R(RA) is a mono.
The category of continuations RFam(C) is the full subcategory of Fam(C)

consisting of the objects of the form RA. The objects of RFam(C) are singleton
families, and RFam(C) is isomorphic to C. We will consider that objects and
morphisms of RFam(C) are arenas and strategies and we will use the vocabulary
defined at the end of Sect. 2.2 on RFam(C) also.

Interpreting the call-by-name λµ-calculus. The types of λµ-calculus are
the simple types of Definition 6. Let kT range over a set of typed constants and
xT (resp. αT) range over a countable set of variables (resp. names) for each type
T . The grammar of λµ-terms is the following:

M,N := kT | xT | ∗ | 〈M,N〉 | π1M | π2M | λxT .M | MN | µαT .M | [α]M

The typing rules can be found in [13], where our unit is their ⊤, our × is their
∧ and our void is their ⊥. For instance, the Law of Peirce is the type of the
following term (we omit the type annotation of the variables).

λx.µα.[α]s(λy.µβ.[α]y) : ((T → U) → T) → T (1)

This λµ-term will be denoted cc.
We follow [13] to interpret call-by-name λµ-calculus in RFam(C). In partic-

ular if M is a λµ-term of type T with free variables in {xT1
1 , . . . , xTn

n }, then
its interpretation is a morphism [[M]] from [[T1]] × . . . × [[Tn]] to [[T]]. This mor-
phism coincides with the interpretation of the call-by-name CPS translation of
M (defined in [13]) in the cartesian closed category RFam(C). See [13] for de-
tails. As stated in [13], if the call-by-name CPS translations of two terms are
βη-equivalent, then their interpretations are the same.

In the following we will drop the double brackets for the interpretation of
simple types.

3 Winning Conditions on Arenas

We will now define our notion of realizability. We equip arenas with winning
conditions on threads. Realizers are then winning strategies, intuitively strategies
which threads are all winning.

It is well-known that preservation of totality by composition of strategies is
problematic in game semantics. Luckily we do not need to preserve totality, but
only winningness. We thus do not impose any totality condition on strategies,
but when it turns to the definition of winning threads, we have to take into
account all maximal threads, including both infinite and odd-length threads.
This leads to the notion of winning strategy proposed in Definition 12.

In order to define the notion of winning condition on an arena we introduce
the notion of P -subthread and O-subthread:

Definition 8 (P -subthread, O-subthread). If t is a thread and u is a sub-
sequence of t which is a thread, then u is a:

– P -subthread of t if when mO points to nP in t and nP ∈ u, then mO ∈ u,
– O-subthread of t if when mP points to nO in t and nO ∈ u, then mP ∈ u.

Now we can define the notion of winning condition on an arena:

Definition 9 (Winning condition). A winning condition on A is a set W of
threads on A such that:

– If t is a thread on A and if some P -subthread of t is in W, then t ∈ W.
– If t ∈ W then all the O-subthreads of t are in W.

A justified sequence s on the arena A equipped with the winning condition W is
said to be winning if Threads(s) ⊆ W.

Our notion of winning sequence can be seen as a generalization of the one defined
in [10]. In order to obtain a realizability model of first-order logic, the notion
of winning sequence is non-trivial and there can be odd-length sequences which
are winning and even-length sequences which are losing.
Remark that if t is a thread on A → B, then t|B is a thread on B, so t|B is
winning iff t|B ∈ WB, and if t is a thread on A× B, then t is either a thread on
A, either a thread on B.

Definition 10 (Arrow and product of winning conditions). If WA and
WB are sets of threads on the arenas A and B, then we define:

WA→B = {t thread on A → B | Threads(t|A) ⊆WA ⇒ t|B ∈WB}

WA×B =

{

t thread on A× B

∣

∣

∣

∣

t thread on A ⇒ t ∈WA

t thread on B ⇒ t ∈WB

}

Lemma 1. If WA and WB are winning conditions on A and B, then WA→B is
a winning condition on A → B and WA×B is a winning condition on A× B.

Winning Strategies. In order to define what is a winning strategy, we use a
notion of augmented plays of a strategy inspired from [14]:

Definition 11 (Augmented play). If σ is a strategy on A, then s is an aug-
mented play of σ if one of the following holds:

– s ∈ σ, or
– s ∈ PA is such that ∀t ⊑P s, t ∈ σ and ∀t ∈ σ, s 6⊑ t.

In particular, in the second case of the above definition, s is either a O-sequence,
either an infinite sequence (in which case s ⊑ t ⇔ s = t and so the second
condition, equivalent to s /∈ σ, is always true). Remark that unlike [14], we
consider not only odd-length extensions (with an O-move), but also infinite ones.

Definition 12 (Winning strategy). If σ is a strategy on the arena A equipped
with the winning condition W, then σ is said to be winning if all its augmented
plays are winning.

The following lemma will be useful to prove that a strategy σ is winning on
(A,W).

Lemma 2. If σ is a strategy on A and if s is an augmented play of σ, then
every t ∈ Threads(s) is an augmented play of σ.

Using this lemma it is sufficient to prove that every augmented play of σ which
is a thread (let us call it an augmented thread of σ) is in WA in order to prove
that σ is winning on (A,WA).

We now prove that the winning conditions on the arrow and product are
compatible with application and pairing of strategies.

Lemma 3. If σ is a winning strategy on (A → B,WA→B) and τ is a winning
strategy on (A,WA), then σ(τ) is a winning strategy on (B,WB).

Proof. Let t be an augmented thread of σ(τ). By definition of composition of
strategies, there is some augmented play u of σ such that u|A is an augmented
play of τ and u|B = t. Since t is a thread, u is also a thread, so since σ is winning
on A → B, u ∈ WA→B. u|A is an augmented play of τ which is winning on A,
so u|B is winning, and so t = u|B is a winning thread: t ∈ WB. Therefore σ(τ) is
winning. ⊓⊔

Lemma 4. If σ is a winning strategy on (A,WA) and τ is a winning strategy
on (B,WB), then 〈σ, τ〉 is a winning strategy on (A× B,WA×B).

Proof. Let t be an augmented thread of σ(τ). By definition of product of strate-
gies, t|A is an augmented play of σ and t|B is an augmented play of τ , so since σ
and τ are winning, t|A and t|B are winning, and so t ∈ WA×B. Therefore 〈σ, τ〉
is winning. ⊓⊔

The following technical lemma on the interpretation of cc will be useful.

Lemma 5. If t is an augmented thread of [[cc]] on the arena ((T → U) → T) →
T (written ((T (1) → U) → T (2)) → T (3)), then the threads of t|T (1) and t|T (2)

are P -subthreads of t|T (3) .

It follows easily from this lemma and Lemma 1 that for any winning conditions
WT and WU , [[cc]] is winning on the arena

(

((T → U) → T) → T,W((T→U)→T)→T)

)

Remark on the arrow on winning conditions. Let A, B be arenas equipped
with winning conditions WA, WB. We define here a strategy σ on A → B such
that for any winning strategy τ on A, σ(τ) is winning on B, but σ is not winning
on A → B. Hence the arrow on winning conditions differs from the usual Kleene
realizability arrow (see [1]).
We choose A and B to be the same arena Q consisting of one root with three
children ♯, ♭ and ♮, equipped with the winning condition

WQ = {qOaP1 a
P
2 . . . | ∃i, ai ∈ {♯, ♮}}

where the threads may be finite or infinite. We define a strategy σ on Q → Q
such that for any τ winning on (Q,WQ), σ(τ) is winning on (Q,WQ), but σ
is not winning on (Q → Q,WQ→Q). σ is the innocent strategy defined by the
views:

Q qO ♯P

↑

Q qP aO qP aO

Q qO ♭P

↑

Q qP aO qP bO

where a and b are distinct moves. The interaction with any single threaded
strategy will produce the left view, and so the projection qO♯P will be winning,
but the right view (which will never happen in an interaction with a single-
threaded strategy) with a = ♯ and b = ♮ is losing, so σ is losing.

4 First-order Logic

We define a realizability model for first-order classical logic with possibilities of
witness extraction. For that the proposition ⊥ will be mapped to an arena ι in
general different from V. Its associated winning condition will be a parameter of
the model, in the spirit of [4].

Let x range over a countable set of variables, f range over a set of function
symbols with fixed finite arity and P range over a set of predicate symbols with
fixed finite arity. First-order terms and formulas are defined by the following
grammar:

a, b := x | f(a1, . . . , an)

A,B := P (a1, . . . , an) | ⊤ | A ∧B | A⇒ B | ∀xA | ⊥

In the following we use syntactic sugar for the negation of formulas: ¬A ≡
A ⇒ ⊥ and for the existential: ∃xA ≡ ¬∀x¬A. We fix a countable first-order
structure interpreting the terms of our logic, that is a countable set E together
with an interpretation fE : En → E for each function symbol. The interpretation
is extended to every closed term: if a is a closed term of the logic, then aE denotes
its interpretation in the first-order structure, so aE is an element of E.

4.1 Realizability

We let ⊥⊥ be an arbitrary subset of E. We consider simple types with a type
constant P ∗ for each predicate P and a type constant ι to interpret ⊥. We can
map any first-order formula A to such a simple type A∗ as follows:

(P (a1, . . . , an))
∗ = P ∗ ⊤∗ = unit (A ∧B)∗ = A∗ ×B∗

(A⇒ B)∗ = A∗ → B∗ (∀xA)∗ = A∗ ⊥∗ = ι

Remark that the type ⊥∗ is not the type void because the associated arena would
be too small to hold informational content.

Recall that we omit the double bracket notation for the arenas, so a type T
also denotes the associated arena. We suppose that for each atomic predicate P ,
the type P ∗ comes with its associated arena. We fix the arena associated to ι to

be R(R
E), where E = {Ue | e ∈ E} is the countable family of empty arenas (and

R = {V}). Hence ι is the usual flat arena for the set E.
Let us suppose we associate to each predicate P (a1, . . . , an) with a1, . . . , an

closed first-order terms a winning condition WP (a1,...,an) on the arena P ∗. We
can then define for each closed first-order formula A a winning condition WA on
the arena A∗. The winning conditions WA∧B and WA⇒B are as in Definition 10,
and we let:

W⊤ = ∅ W∀xA =
⋂

a closed

WA[a/x] W⊥ = {qOmP
1 m

P
2 . . . | ∃i,mi ∈ ⊥⊥}

Note that these are indeed winning conditions. For W⊤, the empty set is a
winning condition on U which is the empty arena with no thread. For W∀xA, it
is easy to see that an intersection of winning conditions is a winning condition.
For W⊥, the thread qOmP

1 m
P
2 . . . (that may be finite or infinite) has only itself

as O-subthread and qOmP
i1
mP

i2
. . . for 1 ≤ i1 < i2 ≤ . . . as P -subthreads so W⊥

is a winning condition on ι.
We can now define our notion of realizability:

Definition 13 (Realizability relation). If A is a closed first-order formula
and if σ is a strategy on A∗, then σ realizes A (denoted σ
 A) if σ is a winning
strategy on (A∗,WA).

The following lemma shows that the identity formulas are realized by the corre-
sponding identity strategies.

Lemma 6. If A is a closed formula, then the identity strategy idA∗ on A∗ is a
realizer for the formula A⇒ A.

Proof. Let A(1) → A(2) denote the arena A∗ → A∗. If t is an augmented thread
of idA∗ , then t|A(1) = tA(2) , so if t|A(1) is winning, then t|A(2) = tA(1) is also
winning, and so t ∈ WA∗ . ⊓⊔

The following result is a consequence of the remark following Lemma 5.

Lemma 7. If A and B are closed formulas, then cc
 ((A⇒ B) ⇒ A) ⇒ A.

4.2 Adequacy for Minimal Classical Logic

We now show that realizability is compatible with deduction in minimal classical
logic. Full classical logic is discussed in Sect. 4.3.

Deduction system. Let Ax be a set of closed formulas. We use the following
deduction system based on natural deduction with a rule for the law of Peirce,
where Γ is a sequence of formulas A1, . . . , An.

A ∈ Φ
Γ ⊢ A Γ ⊢ ((A⇒ B) ⇒ A) ⇒ A

A ∈ Ax
Γ ⊢ A

Γ ⊢ ⊤
Γ ⊢ A Γ ⊢ B

Γ ⊢ A ∧B
Γ ⊢ A ∧B
Γ ⊢ A

Γ ⊢ A ∧B
Γ ⊢ B

Γ,A ⊢ B

Γ ⊢ A⇒ B
Γ ⊢ A⇒ B Γ ⊢ A

Γ ⊢ B

Γ ⊢ A
x /∈ FV (Γ)

Γ ⊢ ∀xA
Γ ⊢ ∀xA
Γ ⊢ A[a/x]

Remark that ⊥ has no associated rule, since the ex-falso rule has a particular
status, given the interpretation of ⊥. This will be discussed in Sect. 4.3.

Translation of proofs to strategies. We use λµ-calculus and its interpre-
tation in RFam(C) to map a first-order proof to a typed λµ-term which is then
interpreted in RFam(C) as a strategy.

Assume given a constant kA of type A∗ for each A ∈ Ax. We map a derivation
ν of A1, . . . , An ⊢ A to a typed λµ-term ν∗ of type A with free variables among
xA

∗

1 , . . . , xA
∗

n as follows:

A1, . . . , An ⊢ Ai
 xA

∗

i Γ ⊢ ((A⇒ B) ⇒ A) ⇒ A cc (see (1))

ν
Γ ⊢ A

ν′

Γ ⊢ B
Γ ⊢ A ∧B

 〈ν∗, ν′∗〉 Γ ⊢ ⊤ ∗ A ∈ Ax
Γ ⊢ A kA

ν
Γ ⊢ A ∧B
Γ ⊢ A

 π1ν
∗

ν
Γ ⊢ A

x /∈ FV (Γ)
Γ ⊢ ∀xA

 ν∗
ν

Γ,A ⊢ B

Γ ⊢ A⇒ B
 λxA

∗

.ν∗

ν
Γ ⊢ A ∧B
Γ ⊢ B

 π2ν
∗

ν
Γ ⊢ ∀xA
Γ ⊢ A[a/x]

 ν∗
ν

Γ ⊢ A⇒ B
ν′

Γ ⊢ A
Γ ⊢ B

 ν∗(ν′∗)

Adequacy. We now prove that the strategies interpreting the proofs are re-
alizers of the proved formula. If A is a formula and θ an assignment of terms
to variables, then θ(A) denotes A where all the free variables are replaced with
their image by θ.

Lemma 8. Let ⊥⊥ ⊆ E. Suppose that we have a realizer for each formula of
Ax. If ν is a derivation of the sequent Γ ⊢ A and if θ is an assignment of
closed first-order terms to variables, then [[ν∗]] is a winning strategy on Γ ∗ → A∗

equipped with Wθ(Γ⇒A).

Proof (sketch). The case of the variable follows from Lemma 6. That of cc comes
from Lemma 5. Product introduction is dealt with using Lemma 4, and arrow
elimination using Lemma 3. The other cases are straightforward. ⊓⊔

4.3 Full Classical Logic

In order to get full classical logic we need to add an ex-falso rule. However since
the arena ⊥∗ is not empty (see Sect. 4.1), we restrict ex-falso to a certain class
of formulas. We have to ensure that (ι,W⊥) is included in (A∗,WA). This means
that ι is a subtree of A∗, so a play on ι is in particular a play on A∗, and that
W⊥ ⊆ WA. We will call these formulas explodable since they satisfy the principle
of explosion. We add to our deduction system the following rule:

Γ ⊢ ⊥
A explodable

Γ ⊢ A

In particular any formula ending with ⊥ is explodable, where a formula ending
with ⊥ is a formula generated by the grammar:

C,D := C ∧D | A⇒ C | ∀xC | ⊥

where A is any first-order formula (defined in Sect. 4). The corresponding ade-
quacy lemma is immediate from Lemma 8.

4.4 First-order Logic with Equality

We now show how to handle equality. We suppose that our first-order language
contains an inequality predicate 6= of arity 2 interpreted by the simple type ι
(see Sect. 4.1). The associated winning condition is:

Wa 6=b =

{

W⊥ if aE = bE

the set of all threads on ι otherwise

(recall that E is the first-order structure chosen at the beginning of Sect. 4).
It is easy then to verify that any formula ending with the predicate a 6= b is

explodable. In the following we use the notation (a = b) ≡ ¬(a 6= b). The axioms
for equality are:

(refl) ∀x(x = x) (Leib) ∀x∀y(¬A[x] ⇒ A[y] ⇒ x 6= y)

Recall that ∀x(x = x) is only syntactic sugar for ∀x(x 6= x ⇒ ⊥), and that
∀x∀y(¬A[x] ⇒ A[y] ⇒ x 6= y) is also syntactic sugar for ∀x∀y((A[x] ⇒ ⊥) ⇒
A[y] ⇒ x 6= y).

Lemma 9. Let ⊥⊥ ⊆ E.

1. The identity strategy on ι, is a realizer of (refl).
2. The identity strategy on A∗ → ι, is a realizer of (Leib).

Proof (sketch). For the first point, we always have aE = aE , so Wa 6=a = W⊥.
Concerning the second point,if a and b are closed first-order terms, if aE 6= bE

then any thread is winning on a 6= b, otherwise if we win on A[b] then we win
on A[a], so if we win on ¬A[a] then we win on ⊥ and therefore on a 6= b. ⊓⊔

5 Peano Arithmetic

We now proceed to the realizability interpretation of full Peano arithmetic.

5.1 Definitions

Our first-order language is built from the function symbols 0 of arity 0, S of
arity 1 and + and × of arity 2. The predicate symbols are 6= of arity 2 and nat

of arity 1. This choice of function symbols is only for simplicity, and we could
choose to have all the symbols of primitive recursive functions.

We also fix the structure interpreting the terms of the logic to be the set of
natural numbers N. The symbols 0, S, + and × are interpreted the standard
way. The typed λµ-calculus in which we interpret the proofs has ι as unique base
type. All the predicate symbols and ⊥ are interpreted as ι, and the associated

arena in RFam(C) is [[ι]] = R(R
N) where N = {Un | n ∈ N} (see Sect. 4.1). Hence

the type of natural numbers is interpreted as the negative translation of N. Note
that this is the usual flat arena of natural numbers:

q
0 · · · n · · ·

This differs from Laird’s interpretation of PCF with control [15], where the base
type of natural numbers is interpreted by the arena (ι→ ι) → ι.

The winning conditions for ⊥ and a 6= b are as in Sects. 4.1 and 4.4, and the
winning condition for nat(a) is:

Wnat(a) = {qOnP
1 n

P
2 . . . | ∃i, ni = aN}

which is a winning condition, using the same arguments as for W⊥. From this
we can check that every formula which contains no nat(a) predicate at rightmost
position is explodable. We use the following syntactic sugar:

∀nxA ≡ ∀x (nat(x) ⇒ A) ∃nxA ≡ ¬∀nx¬A ≡ ¬∀x (nat(x) ⇒ ¬A)

The relativization An of a formula is defined as the identity on all constructions
except for the quantification: (∀xA)n ≡ ∀nxAn. Note that if a formula does not
contain any nat(a) predicate, then its relativization has no nat(a) predicate at
rightmost position, so it is explodable.

The axioms are the ones for equality (defined in Sect. 4.4) and the universal
closures of:

(Snz) S(x) 6= 0 (Sinj) x 6= y ⇒ S(x) 6= S(y)
(+0) x+ 0 = x (nat0) nat(0)
(+S) x+ S(y) = S(x+ y) (natS) nat(x) ⇒ nat(S(x))
(×0) x× 0 = 0 (nat+) nat(x) ⇒ nat(y) ⇒ nat(x+ y)
(×S) x× S(y) = x× y + x (nat×) nat(x) ⇒ nat(y) ⇒ nat(x× y)

(ind) A[0] ⇒ ∀nx(A[x] ⇒ A[S(x)]) ⇒ ∀nxA[x]

We will now define the realizers for these axioms. We first define the strategies
computing basic operations and recursion on natural numbers.

In Fam(C) a morphism from ⊤∗ = {U} to N = {Un | n ∈ N} is given by a
function from the singleton set to N together with a strategy from U to U . Since
there is only one such strategy, such a morphism is given by a natural number.
We will call this morphism τn. Similarly a morphism from Nk to N is given by
a function from N

k to N. This leads to morphisms τS , τ+ and τ× respectively on
N → N, N → N → N and N → N → N. From these we define the following
morphisms of RFam(C):

σn = λk.kτn : ι
σS = λn.λk.n(λn′.k(τSn

′)) : ι→ ι
σ+ = λmλn.λk.m(λm′.n(λn′.k(τ+m

′n′))) : ι→ ι→ ι
σ× = λmλn.λk.m(λm′.n(λn′.k(τ×m

′n′))) : ι→ ι→ ι

The above morphisms correspond to the expected strategies:

Lemma 10. The strategies σn, σS, σ+ and σ× are the innocent strategies de-
fined by the views:

σn σS σ+ σ×
ι

qO

nP

ι → ι

qO

qP

nO

(n+ 1)P

ι → ι → ι

qO

qP

mO

qP

nO

(m+ n)P

ι → ι → ι

qO

qP

mO

qP

nO

(m× n)P

We now move to the definition of ρT , the recursor on type T , which is the usual
recursor of Gödel’s system T. For that we define for each n ∈ N and simple type
T a strategy ρTn by:

ρT0 = [[λx.λy.x]] : T → (ι→ T → T) → T
ξT = [[λn.λr.λx.λy.y(n)(rxy)]]

: ι→ (T → (ι→ T → T) → T) → T → (ι→ T → T) → T
ρTn+1 = ξT (σn)(ρ

T
n) : T → (ι→ T → T) → T

and we finally define the strategy ρT as the innocent strategy which views are:

T→ (ι→T→T)→ ι →T

qO

qP

nO

s

where qO s is a view of ρTn on the subarena T → (ι→ T → T) → T .

We use the following lemma in order to prove the validity of (ind):

Lemma 11. 1. ρT0 is a realizer of A[0] ⇒ ∀nx(A[x] ⇒ A[S(x)]) ⇒ A[0]

2. ξT is a realizer of:

∀ny

(

(

A[0] ⇒ ∀nx(A[x] ⇒ A[S(x)]) ⇒ A[y]
)

⇒ A[0] ⇒ ∀nx(A[x] ⇒ A[S(x)]) ⇒ A[S(y)]

)

Proof. This is an immediate consequence of Lemma 8, since the strategies ρT0
and ξT are the interpretations of proofs of the formulas.

5.2 Validity of Axioms

We prove that all the axioms are realized:

Lemma 12. Let ⊥⊥ ⊆ N.

1. The empty strategy on ι is a realizer of (Snz)

2. The identity strategy on ι is a realizer of (Sinj), (+0), (+S), (×0) and (×S)

3. σ0 is a realizer of (nat0)

4. σS is a realizer of (natS)

5. σ+ is a realizer of (nat+)

6. σ× is a realizer of (nat×)

7. ρA
∗

is a realizer of (ind)

Proof (sketch). The cases 1 and 2 are straightforward. We prove cases 3, 4, 5
and 6 using Lemma 10. For 7 we prove by induction on n that:

ρA
∗

n
 A[0] ⇒ ∀nx(A[x] ⇒ A[S(x)]) ⇒ A[n]

using Lemma 11. We finally prove that ρA
∗

is a realizer of the (ind) axiom for
formula A. Let t be an augmented thread of ρA

∗

on the arena

A(1) →
(

ι(1) → A(2) → A(3)
)

→ ι(2) → A(4)

Let suppose that t|A(1) is winning on A[0] and t|ι(1)→A(2)→A(3) is winning on
∀nx(A[x] ⇒ A[S(x)]). We want to prove that t|ι(2)→A(4) is winning on ∀xnA[x], so

let a be a closed first-order term, let n = aN and let suppose that t|ι(2) is winning

on nat(a). Then there must be some nO in t|ι(2) . Let u be the subsequence of t

consisting of the initial qO, the following qP , this nO and all the moves m of t
such that the view obtained immediately after m contains nO. Then u is a play
of ρA

∗

n . Since a P -move does not change the current view, the threads of u|A(1)

are O-subthreads of t|A(1) (the projection induces an inversion of polarities), so
they are winning on A[0], and the threads of u|ι(1)→A(2)→A(3) are O-subthreads
of t|ι(1)→A(2)→A(3) , so they are winning on ∀nx(A[x] ⇒ A[S(x)]). Then by the

property on ρA
∗

n , u|A(4) is winning on A[a]. But u|A(4) is a P -subthread of t|A(4)

(no inversion here), so t|A(4) is winning on A[a]. ⊓⊔

Theorem 1. If A is provable in Peano arithmetic then there is a computable
strategy σ such that σ
 An.

5.3 Extraction

We now show that from any provable Π0
2 -formula we can extract a computable

witnessing function.

Suppose that we have a proof of ⊢ ∀nx∃ny(a = b). We obtain by double-
negation elimination a proof of ⊢ ∀nx(¬∀ny(a 6= b)), and we map it to a strategy
σ such that:

σ
 ∀nx(¬∀ny(a 6= b)) ≡ ∀x(nat(x) ⇒ (∀y(nat(y) ⇒ a 6= b) ⇒ ⊥)

Then if n ∈ N, σn
 nat(n), so σ(σn)
 ∀y(nat(y) ⇒ a[n/x] 6= b[n/x]) ⇒ ⊥.
Let now fix ⊥⊥ = {m ∈ N | (a[n/x,m/y])N = (b[n/x,m/y])N}. By a simple
disjunction of cases we get

idι
 ∀y(nat(y) ⇒ a[n/x] 6= b[n/x])

and therefore σ(σn)(idι)
 ⊥. Then we can prove that σ(σn)(idι) is some σm
such that m ∈ ⊥⊥. Indeed, if σ(σn)(idι) is the empty strategy then its only
augmented play is qO, which is losing on ⊥.

6 Conclusion & Future Work

We have built a realizability model for Peano arithmetic using winning conditions
on arenas, and have used it in the context of witness extraction for Π0

2 -formulas.
Future work will be the comparison of the present model with the game in-
terpretation of classical arithmetic of [16], and with the winning conditions on
sequential games of [17] and [18]. Our main goal is to compare two different ver-
sions of realizers for the axiom of dependent choices: the modified bar recursion
of [19] and the clock of [3].

References

1. Troelstra, A.: Chapter VI Realizability. Studies in Logic and the Foundations of
Mathematics 137 (1998) 407–473

2. Griffin, T.: A Formulae-as-Types Notion of Control. In: POPL. , ACM Press
(1990) 47–58

3. Krivine, J.L.: Dependent choice, ‘quote’ and the clock. Theor. Comput. Sci.
308(1–3) (2003) 259276

4. Krivine, J.L.: Realizability in classical logic. Panoramas et synthèses 27 (2009)
197–229

5. Krivine, J.L.: Typed lambda-calculus in classical Zermelo-Frænkel set theory.
Arch. Math. Log. 40(3) (2001) 189–205

6. Hyland, J.M.E., Ong, C.H.L.: On Full Abstraction for PCF: I, II, and III. Inf.
Comput. 163(2) (2000) 285–408

7. Nickau, H.: Hereditarily Sequential Functionals. In: LFCS. Lecture Notes in Com-
puter Science, Springer (1994) 253–264

8. Laird, J.: Full Abstraction for Functional Languages with Control. In: LICS. ,
IEEE (1997) 58–67

9. Abramsky, S., Honda, K., McCusker, G.: A Fully Abstract Game Semantics for
General References. In: LICS. , IEEE (1998) 334–344

10. Clairambault, P.: Least and Greatest Fixpoints in Game Semantics. In: FOSSACS.
Lecture Notes in Computer Science, Springer (2009) 16–31

11. Abramsky, S., McCusker, G.: Call-by-Value Games. In: CSL. Lecture Notes in
Computer Science, Springer (1997) 1–17

12. Harmer, R.: Games and full abstraction for non-deterministic languages. PhD
thesis, Imperial College London (University of London) (1999)

13. Selinger, P.: Control categories and duality: on the categorical semantics of the
lambda-mu calculus. Mathematical Structures in Computer Science 11(2) (2001)
207–260

14. Melliès, P.A.: Sequential algorithms and strongly stable functions. Theor. Comput.
Sci. 343(1–2) (2005) 237–281

15. Laird, J.: A semantic analysis of control. PhD thesis, University of Edinburgh.
(1999)

16. Coquand, T.: A Semantics of Evidence for Classical Arithmetic. J. Symb. Log.
60(1) (1995) 325–337

17. Hyland, J.M.E.: Game semantics. In Pitts, A.M., Dybjer, P., eds.: Semantics and
logics of computation. Volume 14. Cambridge University Press (1997)

18. Melliès, P.A., Tabareau, N.: Resource modalities in game semantics. In: LICS. ,
IEEE (2007) 389–398

19. Berardi, S., Bezem, M., Coquand, T.: On the Computational Content of the Axiom
of Choice. J. Symb. Log. 63(2) (1998) 600–622

7 Appendix

Lemma 13. If WA and WB are winning conditions on A and B, then WA→B

is a winning condition on A → B and WA×B is a winning condition on A× B.

Proof. – Let t be a thread on A → B and let u be a P -subthread of t such that
u ∈ WA→B. Suppose that Threads(t|A) ⊆ WA. If v ∈ Threads(u|A) then v
is a O-subthread of some w ∈ Threads(t|A ⊆ WA, so v ∈ WA. Then since
u is winning, u|B is winning and is a P -subthread of t|B which is therefore
also winning. Finally t is winning.

– Let t be a thread on A → B such that t ∈WA→B and let u be a O-subthread
of t. Let suppose that Threads(u|A) ⊆ WA. If v ∈ Threads(t|A) and if m
is the initial move of v, then m points to the initial move of t which is a
O-move, and since u is a O-subthread of t, we get m ∈ u. Now the thread of
u|A which initial move is m is in WA and is a P -subthread of v, so v ∈WA.
Therefore Threads(t|A) ⊆WA, and since t ∈WA→B we have t|B ∈WB, and
since u|B is a O-subthread of t|B, we get u|B ∈WB. Finally u ∈WA→B.

– Let t be a thread on A× B. t is either a thread on A, either a thread on B,
so if u is a winning P -subthread of t, then either u ∈ WA, either u ∈ WB.
Therefore t ∈WA or t ∈WB, and so t ∈WA×B.

– Let t be a thread on A× B such that t ∈ WA×B. Either t ∈ WA, either
t ∈WB, so any O-subthread of t is in WA or WB, so in WA×B. ⊓⊔

Lemma 14. If σ is a strategy on A and if s is an augmented play of σ, then
every t ∈ Threads(s) is an augmented play of σ.

Proof. – If s ∈ σ, then by single-threadedness of σ, Threads(s) ⊆ σ.
– If s is an O-sequence, then we write s = s′m with s′ ∈ σ. Let t ∈ Threads(s).

If m is not a move in t, then t ∈ Threads(s′) ⊆ σ. If m is a move in t, then
we write t = t′m, so t′ ∈ Threads(s′) ⊆ σ. If there is some n such that
tn = t′mn ∈ σ, then Threads(s′mn) = (Threads(s′) \ {t′}) ∪ {t′mn} ⊆ σ,
so by single-threadedness of σ, sn = s′mn ∈ σ, contradicting the fact that s
is an augmented play of σ.

– If s is infinite, let t ∈ Threads(s). If t is finite, then there is some s′ ⊑P s such
that t ∈ Threads(s′), but s′ ∈ σ, so by single-threadedness of σ t ∈ σ. If t is
infinite, then for all t′ ⊑P t there is some s′ ⊑P s such that t′ ∈ Threads(s′),
but s′ ∈ σ, so by single-threadedness of σ t ∈ σ. ⊓⊔

Fam(C) satisfies the mono requirement and therefore Fam(C) is a response cat-
egory(see [13]):

Lemma 15 (mono requirement). If C is the category defined in Sect. 2.2,

then the canonical morphism ∂A : A→ R(R
A) in Fam(C) is monic.

Proof. Let ϕ : B → A. If we write A = {Ai | i ∈ I} and B = {Bj | j ∈ J}
in Fam(C), then ϕ consists of a function fϕ : J → I together with a family of
strategies ϕj : Bj → Afϕ(j).

∂A consists of a family of strategies ∂Ai0 on Ai0 → (Πi∈I(Ai → R)) → R which
plays are copycat plays on the subarena Ai0 → (Ai0 → R) → R.
Therefore, the plays of the jth fiber of ϕ; ∂A are in the subarena Bj → (Afϕ(j) →
R) → R and their projections on Bj → Afϕ(j) are exactly the plays of ϕj . In
other words:

ϕj = {s|Bj→Afϕ(j)
| s ∈ (ϕ; ∂A)j}

therefore, if ϕ; ∂A = ψ; ∂A, then ϕ = ψ, so ∂A is monic. ⊓⊔

Lemma 16. Let ⊥⊥ ⊆ E. Suppose that we have a realizer for each formula of
Ax. If ν is a derivation of the sequent Γ ⊢ A and if θ is an assignment of
closed first-order terms to variables, then [[ν∗]] is a winning strategy on Γ ∗ → A∗

equipped with Wθ(Γ⇒A)

Proof. We prove the property by induction on the proof tree:

– A ∈ Γ
Γ ⊢ A : this is a consequence of Lemma 6

– A ∈ Ax
Γ ⊢ A : this is an assumption of the lemma

– Γ ⊢ ((A⇒ B) ⇒ A) ⇒ A : this is a consequence of Lemma 5

– Γ ⊢ ⊤ : Threads(∗) = ∅ so the result is immediate

–
ν

Γ ⊢ A
ν′

Γ ⊢ B
Γ ⊢ A ∧B

: this follows from Lemma 4

–
ν

Γ ⊢ A ∧B
Γ ⊢ A

: An augmented thread of [[π1ν
∗]] is an augmented thread of

[[ν∗]] which is a thread on Γ ∗ → A∗, so by Definition 10 it is winning on
(

Γ ∗ → A∗ ×B∗,Wθ(Γ⇒A∧B)

)

–
ν

Γ ⊢ A ∧B
Γ ⊢ B

: idem

–

ν
Γ,A ⊢ B

Γ ⊢ A⇒ B
: the induction property is unchanged

–
ν

Γ ⊢ A⇒ B
ν′

Γ ⊢ A
Γ ⊢ B

: this follows from Lemma 3

–
ν

Γ ⊢ A
x /∈ FV (Γ)

Γ ⊢ ∀xA
: If t is an augmented thread of [[ν∗]] such that:

Threads(t|Γ∗) ⊆ Wθ(Γ)

Let a be a closed term and let θ′ = θ[x 7→ a]. Since x /∈ FV (Γ), θ′(Γ) = θ(Γ)
so:

Threads(t|Γ∗) ⊆ Wθ′(Γ)

And then by induction hypothesis t|A∗ ∈ Wθ′(A). Since θ
′(A) = θ(A[a/x]),

we get that for all closed term a, t|A∗ ∈ Wθ(A[a/x]), and so t|A∗ ∈ Wθ(∀xA)

–
ν

Γ ⊢ ∀xA
Γ ⊢ A[a/x]

: If t is an augmented thread of [[ν∗]] such that:

Threads(t|Γ∗) ⊆ Wθ(Γ)

Then by induction hypothesis, since θ(a) is a closed term we get t|A∗ ∈
Wθ(A[θ(a)/x]), which terminates the proof since θ(A[θ(a)/x]) = θ(A[a/x]).

⊓⊔

Lemma 17. Let ⊥⊥ ⊆ E.

1. The identity strategy on ι, is a realizer of (refl)

2. The identity strategy on A∗ → ι, is a realizer of (Leib)

Proof. 1. If t is an augmented thread of idι on the arena ι(1) → ι(2), then t is
even or infinite (since idι is total) and verifies t|ι(1) = t|ι(2) . Let a be a closed
first-order term. We must prove that t ∈ Wa 6=a→⊥. Suppose that

Threads(t|ι(1)) ⊆ Wa 6=a

First, t is a thread so t|ι(2) is a thread and t|ι(1) = t|ι(2) is also a thread.
Therefore we have t|ι(1) ∈ Wa 6=a. On the other hand, we have of course

aE = aE , so Wa 6=a = W⊥. Finally we obtain t|ι(2) ∈ W⊥, so t ∈ Wa 6=a→⊥.
2. If t is an augmented thread of idA∗→ι on the arena

(A(1) → ι(1)) → A(2) → ι(2)

then t is even or infinite (since idA∗→ι is total) and verifies t|A(1)→ι(1) =
t|A(2)→ι(2) . Let a and b be closed first-order terms. We must prove that t ∈
W(A[a]→⊥)→A[b]→a 6=b. We distinguish two cases:
– aE 6= bE : any thread is in Wa 6=b so in particular t ∈ Wa 6=b and therefore
t ∈ W(A[a]→⊥)→A[b]→a 6=b

– aE = bE : Suppose that

Threads(t|A(1)→ι(1)) ⊆ W|A[a]→⊥ and Threads(t|A(2)) ⊆ WA[b]

Since aE = bE , W|A[a] = W|A[b], and since t|A(1)→ι(1) = t|A(2)→ι(2) ,

Threads(t|A(1)) = Threads(t|A(2))

so Threads(t|A(1)) ⊆ WA[a]

If u ∈ Threads(t|A(1)→ι(1)) ⊆ W|A[a]→⊥

then Threads(u|A(1)) ⊆ Threads(t|A(1)) ⊆ WA[a]

and so u|ι(1) ∈ W⊥. Therefore

Threads(t|ι(1)) ⊆ W⊥

but Threads(t|ι(1)) = Threads(t|ι(2)) = {t|ι(2)}

so t|ι(2) ∈ W⊥ = Wa 6=b. Finally we obtain t ∈ W(A[a]→⊥)→A[b]→a 6=b. ⊓⊔

Lemma 18. Let ⊥⊥ ⊆ N.

1. The empty strategy on ι, is a realizer of (Snz)

2. The identity strategy on ι, is a realizer of (Sinj), (+0), (+S), (×0) and (×S)

3. σ0 is a realizer of (nat0)

4. σS is a realizer of (natS)

5. σ+ is a realizer of (nat+)

6. σ× is a realizer of (nat×)

7. ρA
∗

is a realizer of (ind)

Proof. 1. Let a be a closed first-order term. Then aN is some n ∈ N, so we have
(S(a))N = n+ 1 6= 0 = 0N and WS(a) 6=0 is the set of all threads on ι.

2. – Let a and b be closed terms, then aN = bN ⇔ (S(a))N = (S(b))N so
Wa 6=b = WS(a) 6=S(b), and the identity strategy on ι realizes (Sinj).

– Let a be a closed term, then (a+ 0)N = aN, so Wa+0 6=a = W⊥, and the
identity strategy on ι realizes (+0).

– Let a and b be closed terms, then (a+ S(b))N = (S(a+ b))N, so

Wa+S(b) 6=S(a+b) = W⊥

and the identity strategy on ι realizes (+S).
– The cases for (×0) and (×S) are the same as for (+0) and (+S)

3. If t is an augmented thread of σ0, then t = qO0P , so

t ∈ Wnat(0) = {qOnP
1 . . . n

P
k | ∃1 ≤ i ≤ k, ni = 0N = 0}

4. If t is an augmented thread of σS on ι(1) → ι(2), let a be a closed first-order
term and let n = aN. By definition of σS , t|ι(1) is a thread. If t|ι(1) ∈ Wnat(a),

there is a move nO in t|ι(1) , so the next move in t is (n+ 1)P in t|ι(2) , so

t|ι(2) ∈ Wnat(S(a)) = {qOnP1 . . . n
P
k | ∃1 ≤ i ≤ k, ni = (S(a))N = n+ 1}

and therefore t ∈ Wnat(a)→nat(S(a)).

5. If t is an augmented thread of σ+ on ι(1) → ι(2) → ι(3), let a and b be closed
first-order terms and let m = aN and n = bN. By definition of σ+, t|ι(1) is a

thread. If t|ι(1) ∈ Wnat(a), there is a move nO in t|ι(1) , so the next move in t

is qP in t|ι(2) . Let u be the thread associated to this qP . u is a thread on ι(2)

and u ∈ Threads(t|ι(2)), so if Threads(t|ι(2)) ⊆ Wnat(b), there is a move nO

in t|ι(2) , so the next move in t is (m+ n)P in t|ι(3) , so

t|ι(3) ∈ Wnat(a+b = {qOnP
1 . . . n

P
k | ∃1 ≤ i ≤ k, ni = (a+ b)N = m+ n}

and therefore t ∈ Wnat(a)→nat(b)→nat(a+b).
6. This is the same proof as the preceding case
7. We first prove by induction on n ∈ N that ρA

∗

n is a realizer of the formula

A[0] ⇒ ∀nx(A[x] ⇒ A[S(x)]) ⇒ A[n]

where n is the closed term S(S(. . . S(0))), so we have nN = n

– The case for 0 is the first part of Lemma 11
– By induction hypothesis we have:

ρA
∗

n
 A[0] ⇒ ∀nx(A[x] ⇒ A[S(x)]) ⇒ A[n]

and by Lemma 11 we have:

ξT
 ∀ny

(

(

A[0] ⇒ ∀nx(A[x] ⇒ A[S(x)]) ⇒ A[y]
)

⇒ A[0] ⇒ ∀nx(A[x] ⇒ A[S(x)]) ⇒ A[S(y)]

)

so since σn
 nat(n) and ρTn+1 = ξT (σn)(ρ
T
n), we get by Lemma 3:

ρA
∗

n+1
 A[0] ⇒ ∀nx(A[x] ⇒ A[S(x)]) ⇒ A[S(n)]

which terminates the induction case since n+ 1 = S(n).
Let now t be an augmented thread of ρA

∗

on the arena

A(1) →
(

ι(1) → A(2) → A(3)
)

→ ι(2) → A(4)

Let suppose that t|A(1) is winning on A[0] and t|ι(1)→A(2)→A(3) is winning
on ∀nx(A[x] ⇒ A[S(x)]). We want to prove that t|ι(2)→A(4) is winning on

∀xnA[x], so let a be a closed first-order term, let n = aN and let suppose
that t|ι(2) is winning on nat(a). Then there must be some nO in t|ι(2) . Let u

be the subsequence of t consisting of the initial qO, the following qP , this nO

and all the moves of t such that the view obtained immediately after having
been played contains nO. Then u is a play of ρA

∗

n . Since a P -move does not
change the current view, the threads of u|A(1) are O-subthreads of t|A(1) (the
projection induces an inversion of polarities), so they are winning on A[0],
and the threads of u|ι(1)→A(2)→A(3) are O-subthreads of t|ι(1)→A(2)→A(3) , so

they are winning on ∀nx(A[x] ⇒ A[S(x)]). Then by the property on ρA
∗

n ,
u|A(4) is winning on A[a]. But u|A(4) is a P -subthread of t|A(4) (no inversion
here), so t|A(4) is winning on A[a]. ⊓⊔

