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Extremadura, 10071 Cáceres, Spain (e-mail: inmatorres@unex.es)

∗∗∗ Gipsa-lab, Département Automatique, CNRS, Grenoble INP, 38402
Saint Martin d’Hères cedex, France (e-mail:

christophe.berenguer@grenoble-inp.fr)

Abstract: This paper provides a methodology to assess the efficiency of mean residual life
(MRL) in condition-based maintenance decision-making for a system subjected to the competing
and dependent risks of degradation and shock. Based on this system, the cost models of two
quite simple policies implementing MRL-based or degradation-based preventive replacement are
developed and compared with each other. Analyzing the equivalence and the performance of
both policies allow us to give some conclusions on the interest of the MRL indicator.
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1. INTRODUCTION

With the dissemination of condition monitoring (CM)
techniques, condition-based maintenance (CBM) is nowa-
days a promising approach to improve the durability, reli-
ability and maintainability of industrial systems. The ma-
jority of CBM models are of the control-limit type where a
maintenance decision is made whenever a quantity related
to the system state reaches a predetermined threshold
(see Wang (2002)). Such a quantity is called conditional
indicator. The construction of this kind of indicator is an
important task that decides the performance of a CBM
strategy, and its quality depend closely on the capacity to
characterize precisely the system health state.

For a deteriorating system, the degradation level is a tra-
ditional conditional indicator for CBM decision-making.
Numerous degradation-based maintenance models have
been developed and their performance has been proved
through practical applications (see e.g., Jardine et al.
(2006), Van Noortwijk (2009)). However, since the system
failure in the reality is not solely due to degradation but
also is due to the other causes, the degradation level does
not suffice to describe completely the system health state.
In this context, it is necessary to construct a more robust
indicator for CBM decision. The MRL, that corresponds
to the expected time remaining to system failure (see
Sikorskaa et al. (2011)), is an other way to reflect the
system health state. The advantage is that the definition
of MRL is not strictly limited to a failure mechanism
(e.g., degradation, shock, etc.), and it may be then a
good alternative to characterizing a system with multiple
failure modes. However, if we agree that the MRL is very
promising for maintenance planning (see e.g., Peng et al.
(2010), Ahmad and Kamaruddin (2012)), it is surprising

that very few CBM strategies based on the MRL are
proposed. Hence the following question arises naturally:
how to develop such a strategy, and can the introducing
of MRL in maintenance decision-making effectively lead to
more saving in maintenance cost when degradation level is
already available? The present paper aims to answer this
question by proposing a MRL-based maintenance policy
and investigating its performance by comparing with a
classical degradation-based maintenance policy. Both poli-
cies are applied for a system which is subjected to the
dependent and competing failures due to degradation and
shock. Comparisons of the optimal maintenance cost rate
for these policies allow us to show the efficiency of MRL
indicator and to give the appropriate conditions for its
application.

The remainder of this paper is organized as follows. Section
2 deals with the system modeling. In section 3, a condition
approach is used to compute the MRL of the system. The
structures and the cost models of two CBM policies (i.e.
the policy implementing MRL-based preventive decision
and the policy implementing degradation-based preventive
decision) are introduced in section 4. The sections 5 and 6
are devoted to analyze and discuss the equivalence and
the performance of both proposed policies. Finally, we
conclude the paper in section 7.

2. SYSTEM MODELING

The considered system is subjected to the competing
failures of degradation and shock. Such a system can
be described by a Degradation-Threshold-Shock (DTS)
model where the system fails when the degradation process
reaches a critical threshold or when a shock occurs (see
Lehmann (2009)). As advocated by Singpurwalla (1995),



this kind of model can be seen as a versatile and realistic
extension of many classical failure models based either only
on degradation or only on parametric lifetime distribu-
tions. The “classical” DTS models assume that the degra-
dation process and the shock process are independent (see
e.g., Li and Pham (2005), Van Noortwijk et al. (2007)).
But, in many practical situations, the dependence between
them is of importance and should not be neglected in the
modeling. Therefore, the present paper aims to add this
dimension to the DTS model by considering that the shock
failure rate depends on the degradation level of the system.
And we call the proposed model Degradation-Threshold-
Dependent Shock (DTDS).

2.1 Degradation modeling

We consider a stochastic deteriorating system, for which
the degradation level at time t can be summarized by a
random aging variable Xt. Without any repair or replace-
ment action, {Xt}t≥0 is a continuous-time monotonically
increasing stochastic process, with X0 = 0. In this paper,
we assume that {Xt}t≥0 is a homogeneous Gamma process

(see Van Noortwijk (2009) for a thorough review on the
use of Gamma processes in maintenance modelling). So,
for all 0 ≤ s ≤ t, the increment of {Xt}t≥0 between s and
t, Xt −Xs, follows a Gamma density function with shape
parameter α · (t− s) and scale parameter β:

fα·(t−s),β (u) =
βα·(t−s)uα·(t−s)−1e−βu · 1{u≥0}

Γ (α · (t− s))
, (1)

where 1{·} and Γ (·) denote the indicator function and
Gamma function respectively

Γ (y) =

∫ ∞

0

uy−1e−udu, for y > 0. (2)

Such a process depends on both parameters α and β which
allows to model various degradation behaviors from almost
deterministic to highly variable. The average degradation
rate is m = α

β
and it variance is σ2 = α

β2 . The system

is considered to be in the failed state due to degradation
when Xt is greater than a fixed failure threshold L.

To characterize the degradation-based failures, we study
two types of hitting time of the deteriorating Gamma
process. The first hitting time, denoted by τA, is the time
at which the degradation reaches a level A. As shown in
Van Noortwijk (2009), its survival function is given by:

F̄τA (t) = 1−
Γ (αt,Aβ)

Γ (αt)
, (3)

and its density function is computed as:

fτA (t) =
α

Γ(αt)

∫ ∞

Aβ

{log (z)− ψ (αt)} zαt−1e−zdz, (4)

where Γ (α, x) =
∫∞

x
zα−1e−zdz and ψ (α) = Γ′(α)

Γ(α) are

respectively the Gamma function and Digamma function.
Considering now another degradation level B > A, τB−τA
is the second type of hitting time considered here. Its exact
survival function has been derived by Bérenguer et al.
(2003), but in a complex form. In order to simplify and
reduce the numerical computation, we use the approxima-
tion proposed by Huynh et al. (2011) as follows:

F̄τB−τA (t) ≃ F̄τ
B−A−

1
2β

(t) , (5)

where the condition of application is 1 < βA < βB − 1
2 .

2.2 Shock failures modeling

In most practical situations the system failure is not solely
due to degradation but also to shocks. We assume in this
paper that the system fails when a shock occurs. Moreover,
the degradation process and the shock process can depend
on each other: the higher the degradation the more the
system is vulnerable to shocks (see Huynh et al. (2010);
Ye et al. (2011)). Hence if Nt is the number of shocks
in (0, t], the shock arrival times can be modeled by a
non-homogeneous Poisson process {Nt}t≥0 with stochastic
increasing intensity which depends on both degradation
level Xt and working time t:

r (t,Xt) = r1 (t) 1{Xt<Ms} + r2 (t) 1{Xt≥Ms}, (6)

where r1(t) and r2(t) denote two continuous and non-
decreasing failure rates at time t with r1(t) ≤ r2(t), ∀t ≥ 0.
The quantityMs represents a fixed degradation level. The
expression 6 means that the system is more prone to
shock failures when the degradation increases and exceeds
a given level.

From (6), the survival function of failure times due to
shocks can be computed by:

F̄s (t) = F̄1 (t) F̄τM (t) + F̄2 (t)

∫ t

0

F̄1 (u)

F̄2 (u)
fτMs

(u) du, (7)

where F̄τM and fτMs
are given from (3) and (4), F̄i, i = 1, 2,

is the survival function associated with the failure rate ri:

F̄i(t) = e
−
∫

t

0
ri(u)du. (8)

Fig. 1 shows an illustration of the proposed DTDS model.
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Fig. 1. Illustration of DTDS model

3. CONDITIONAL MEAN RESIDUAL LIFE

Mean residual life is an important reliability indicator
for maintenance decision-making since it can provide an



idea about how long a system at any particular age and
deteriorating is expected to survive. Generally, as shown
in Jardine et al. (2006), the MRL function at time t can
be computed by:

E [τf − t | τf > t,Z0:t] , (9)

where τf is the system lifetime, and Z0:t is the CM
information related to system state obtained at time t. In
the literature, the calculation of MRL function is usually
free from the effect of CM data (see e.g. Bebbington et al.
(2008), Navarro and Rychlik (2010)). However, since this
approach can lead to a large variability of MRL, the MRL
is then not very useful for maintenance planning (see
Banjevic (2009)). In order to reduce this inaccuracy, as
proposed by Wang and Zhang (2005), the system CM data
must be taken into account when estimating the MRL.
In this paper, the system monitoring is assumed perfect
and the system evolution is memoryless, the CM data of
the system are then limited to its degradation level (i.e.,
Z0:t ≡ Xt). Hence from (9), the MRL at time t, given the
degradation level Xt = z, is calculated by:

mz (t) = E [τf − t | τf > t,Xt = z] =

∫ ∞

t

R (u | z)du,

(10)
where R (u | z) is the conditional reliability of system at
time u > t, given Xt = z and that the system is still
running at time t.

In the considered DTDS model, the system fails whenever
degradation level exceeds a fixed threshold L or a shock
occurs, R (u | z) is hence computed by:

R (u | z) = P (Xu < L,Nu = 0 | Xt = z)

=R1 · 1{z<Ms} +R2 · 1{z≥Ms}, (11)

where R1 and R2 are given respectively by:

R1 = F̄τMs−z
(u− t)

F̄1 (u)

F̄1 (t)
+

∫ u

t

F̄τL−τMs
(u− v)

×
F̄1 (v) F̄2 (u)

F̄1 (t) F̄2 (v)
fτMs−z

(v − t) dv, (12)

R2 = F̄τL−z
(u− t)

F̄2 (u)

F̄2 (t)
, (13)

where F̄τMs−z
, F̄τL−z

, fτMs−z
and F̄τL−τMs

are calculated

from (3), (4) and (5) respectively, F̄i, i = 1, 2, is given
by (8). As such, the conditional MRL of DTDS model is
computed by (10) and (11).

Fig. 2 shows the MRL surfaces as a function of t and z
when the shock rate functions r1 (t) and r2 (t) are constant
(see Fig. 2a) or linear (see Fig. 2b) of time t.

Remark 1. Since the conditional MRL of DTDS model,
mz (t), depend on both variables t and z, it reflect not
only the system degradation level z but also the shock
failure rate r (t,Xt).

• When r (t,Xt) is constant of time t, mz (t) does
not depend on t (see Fig. 2a), hence mz (t) and Xt

return the same information on the system. The MRL
prediction may be useless, and a solitary degradation
level is sufficient for maintenance decision-making.

• When r (t,Xt) depend on time t, mz (t) depends
on both z and t (see Fig. 2b), so it contains more
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Fig. 2. MRL - α = 0.1, β = 0.1, L = 30, Ms = 15.

information on the system compared to degradation
level. In this cas, it is interesting to predict and
integrate the MRL in maintenance decision-making.

Lemma 2. For a fixed degradation level z, 0 ≤ z ≤ L,
the conditional MRL, mz (t), is a non-decreasing function
of time. For a fixed time t, 0 ≤ t, the conditional MRL,
mz (t), is a non-decreasing function of degradation level.

Proof. Detailed proof is represented in Huynh (2011).

Corollary 3. For all times 0 ≤ u ≤ v and all degradation
levels 0 ≤ x ≤ y ≤ L, the conditional MRL of DTDS
model has the following properties:

mz (u) ≥ mz (v) ≥ my (v) and mz (u) ≥ my (u) ≥ my (v) .

4. CONDITION-BASED MAINTENANCE MODELS

In order to quantify the value of the MRL indicator in
maintenance decision-making, we develop in this section
the cost model of two quite simple CBM policies. For
the first policy, the preventive replacement decision bases
on the condition MRL, while for the second one, it relies
directly on the degradation level.

4.1 Assumptions and objective cost function

Consider a system described by the DTDS model as in
section 2. We assume that the system degradation is hid-



den and that the system failure is non-self-announcing.
This means that the systems reveals only its degradation
state and its failures through an instantaneous, perfect
and non-destructive inspection (cost Ci). Two mainte-
nance operations are available on the system: a preventive
replacement (cost Cp > Ci) and a corrective replacement
(cost Cc > Cp). A replacement can be carried out only
at inspections, restores the system to an as-good-as-new
(AGAN) condition, and takes negligible time. Therefore,
there exits an inactivity time interval after a system fail-
ure, and an additional cost is incurred from the failure
time until the next inspection time at a cost rate Cd.

To evaluate the performance of the maintenance policies,
we use in this work a cost criterion which is the long-
run expected maintenance cost rate including the un-
availability cost C∞. Since the system is AGAN after a
replacement, we can use the classical renewal theorem to
evaluate analytically C∞ (see Tijms (2003)):

C∞ = lim
t→∞

E [C (t)]

t
=
E [C (S)]

E [S]
, (14)

where C (·) is the cumulative maintenance cost, and S is
the length of a renewal cycle.

4.2 MRL-based maintenance model - (∆T,m)

Under the (∆T,m) policy, the system is regularly in-
spected with period ∆T . At each inspection, the condi-
tional MRL is estimated from the detected degradation
level of system. If the value of MRL reaches threshold
m and if no failure occurred, the system is preventively
replaced. But if the system has already failed, it is cor-
rectively replaced. In this case, because of the system
inactivity after failure, an addition cost is incurred from
the failure time until the replacement time. The inspection
period ∆T and the preventive replacement thresholdm are
the two decision variables to be optimized.

Applying (14), the long-run expected maintenance cost
rate of (∆T,m) policy can be given by:

C∆T,m
∞ (∆T,m) =

CiE
[

N
∆T,m
i

]

+ Cc

(

1− P∆T,m
p

)

E [S∆T,m]

+
CpP

∆T,m
p + CdE

[

W
∆T,m
d

]

E [S∆T,m]
, (15)

where N
∆T,m
i , P∆T,m

p and W
∆T,m
d are respectively the

inspection number, the probability of preventive replace-
ment, and the inactivity time interval in a renewal cycle
S∆T,m under (∆T,m) policy. The optimal values of deci-
sion variables ∆Topt and mopt are obtained by minimizing
C∆T,m

∞ (∆T,m) where 0 ≤ ∆T and 0 ≤ m ≤MTTF .

4.3 Degradation-based maintenance model - (∆T,M)

The (∆T,M) policy is used as a benchmark here. Under
this policy, the system is regularly inspected with period
∆T . At each inspection, if the system degradation level
exceeds a degradation threshold M and if no failure
occurred, the system is preventively replaced. But if the
system has already failed, it is correctively replaced. In
this case, because of the system inactivity after failure,

an addition cost is incurred from the failure time until
the replacement time. The inspection period ∆T and the
preventive replacement threshold M are the two decision
variables to be optimized.

Applying (14), the long-run expected maintenance cost
rate of (∆T,M) policy can be given by:

C∆T,M
∞ (∆T,M) =

CiE
[

N
∆T,M
i

]

+ Cc

(

1− P∆T,M
p

)

E [S∆T,M ]

+
CpP

∆T,M
p + CdE

[

W
∆T,M
d

]

E [S∆T,M ]
, (16)

where N∆T,M
i , P∆T,M

p and W
∆T,M
d are respectively the

inspection number, the probability of preventive replace-
ment, and the inactivity time interval in a renewal cycle
S∆T,M under the (∆T,M) policy. The optimal values of
decision variables ∆Topt and Mopt are obtained by mini-
mizing C∆T,M

∞ (∆T,M) where 0 ≤ ∆T and 0 ≤M ≤ L.

5. ANALYZING THE EQUIVALENCE OF (∆T,M)
POLICY AND (∆T,m) POLICY

The structures of the considered policies show that the
difference between them resides in the way to make the
preventive replacement decision. So, to analyze the equiv-
alence of them, it is sufficient to study the equivalence
of their preventive replacement probabilities. We consider
two cases according to r (t,Xt) independent or dependent
of time t.

5.1 Case of r (t,Xt) independent of time

When the shock rate r (t,Xt) is independent of time,
the value of the conditional MRL depend only on the
degradation level Xt = z, and we denote it simply by mz.
Let zm be the minimal degradation level z at which the
value of the conditional MRL is less than m:

zm = inf {0 ≤ z ≤ L,mz ≤ m} . (17)

The structure of (∆T,m) policy and the independence in
time of MRL lead to represent the event of preventive
replacement Ep at time k∆T as follows:

Ep ,
{

mz(k−1)∆T
> m ≥ mzk∆T

, k∆T < τL,
}

⇔
{

X(k−1)∆T < zm ≤ Xk∆T , k∆T < τL, Nk∆T = 0
}

⇔{(k − 1)∆T < τzm ≤ k∆T < τL, Nk∆T = 0} , (18)

where τzm is the hitting time of zm. This preventive
replacement event is similar to the one of (∆T,M) policy.
Thus, the preventive replacement probabilities of both
policies are equivalent:

P∆T,m
p (∆T,m) ≡ P∆T,M

p (∆T, zm) . (19)

Remark 4. For the DTDS model, when the shock rate
function is independent of time, both (∆T,m) policy and
(∆T,M) policy are equivalent.

5.2 Case of r (t,Xt) dependent on time

When the shock rate r (t,Xt) is dependent of time, the
value of the conditional MRL depend on both the degra-
dation level Xt = z and on the time t. For the fixed time



t, let zt,m be the minimal degradation level z at which the
value of the conditional MRL is less than m:

zt,m = inf {0 ≤ z ≤ L,mz (t) ≤ m} . (20)

According to (∆T,m) policy, a preventive replacement is
performed at k∆T when:

Ep ,
{

mz(k−1)∆T
((k − 1)∆T ) > m ≥ mzk∆T

(k∆T ) ,

k∆T < τL, Nk∆T = 0}

⇔
{

X(k−1)∆T < z(k−1)∆T,m, zk∆T,m ≤ Xk∆T ,

k∆T < τL, Nk∆T = 0}

⇔
{

(k − 1)∆T < τz(k−1)∆T,m
, τzk∆T,m

≤ k∆T < τL,

Nk∆T = 0} , (21)

where τzt,m is the hitting time of zt,m. This event is
completely different to the preventive replacement event
in (∆T,M) policy. So, the preventive replacement proba-
bilities of both policies are not equivalent in this case:

P∆T,m
p (∆T,m) 6≡ P∆T,M

p (∆T, zt,m) . (22)

Remark 5. For the DTDS model, when the shock rate
depend on time, the (∆T,m) policy is not equivalent to
the (∆T,M) policy.

6. ANALYZING THE PERFORMANCE OF (∆T,M)
POLICY AND (∆T,m) POLICY

We have shown in the previous section that the (∆T,M)
policy and the (∆T,m) policy are equivalent (resp. dif-
ferent) when the shock rate of DTDS model, r (t,Xt), is
independent (resp. dependent) of time. In this section, we
study in detail the performance of (∆T,m) policy when
r (t,Xt) depends on time. For this end, we compare the op-
timal maintenance cost rates of the two considered policies
in different configurations of maintenance costs and system
characteristics. The comparison results allow weighing the
benefit of integrating the MRL in maintenance decision-
making instead of the degradation level.

6.1 Numerical results

We consider that case that the shock rates are linear in
time: r1 (t) = 0.0025t + 0.01 and r2 (t) = 0.0025t + 0.1.
Three situations of maintenance costs are investigated:

(1) Variable inspection cost: Ci varies from 2 to 20 with
unit step equals 1, Cc = 100, Cp = 30, and Cd = 50.

(2) Variable preventive replacement cost: Ci = 5, Cc =
100, Cp varies from 10 to 70 with unit step equals 1,
and Cd = 50.

(3) Variable cost rate of system inactivity: Ci = 5, Cp =
30, Cc = 100, and Cd varies from 10 to 150 with unit
step equals 1.

These maintenance costs are applied to two configurations
of degradation process: α = β = 0.5 (almost deterministic
degradation σ2 = 2, m = 1) and α = β = 0.1 (highly
variable degradation σ2 = 10, m = 1). The other param-
eters of model are chosen by L = 30 and Ms = 15. The
numerical results are illustrated in the Fig. 3.

Fig. 3a, Fig. 3b and Fig. 3c show the evolution of the
optimal long-run expected maintenance cost rate for the
previous case studies. In each figure, the solid lines and
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Fig. 3. Comparison of (∆T,m) policy and (∆T,M) policy

the dashed lines reflect respectively the (∆T,m) policy
and the (∆T,M) policy. And the lower line corresponds
to the policy with higher performance.

6.2 Analysis and discussions on numerical results

The numerical results show that the (∆T,m) policy is
always more profitable than the (∆T,M) policy. This



phenomenon can be explained by the fact that the condi-
tional MRL contains more information on the system state
compared to degradation level, hence making a preventive
maintenance decision relied on the conditional MRL can
lead to more saving than making a preventive maintenance
decision based on the degradation level. Moreover, one
can remark that the avantage of (∆T,m) policy is clearer
when the variance of degradation process becomes more
important. The reason is that, for the DTDS model, not
only the failure time due to degradation but also the one
due to shock are more dispersive when the variance of
degradation process increases (see Huynh (2011)). So con-
sidering the amount of information incorporated into each
conditional indicator, the higher the variance the more the
degradation level is less advantageous in characterizing the
functional behavior of system.

Nevertheless, from practical viewpoint, the (∆T,m) is not
always pertinent compared to (∆T,M) policy. One can
see in the Fig. 3 that the optimal expected maintenance
cost rates of both considered policies are more or less
identical when the variance of degradation is low, the
preventive replacement is expensive, and/or the inspection
and the system inactivity correspond to low costs. For
these situations, the (∆T,M) policy is preferable, because
the MRL prediction takes time but less useful. This shows
the necessary of developing analytical models to make a
choice on the use of condition MRL or degradation level
for maintenance decision-making.

7. CONCLUSION

The present paper provides a case study to evaluate the
advantage of constructing a MRL indicator for CBM
decision-making. A condition-based approach is used to
calculate the MRL of the DTDS model. Based on this
model, the maintenance cost model of a CBM policy imple-
menting MRL-based decision is developed and compared
to the one implementing degradation-based decision. The
theoretical and numerical results show that the MRL is
a more general and effective reliability indicator for CBM
compared with the degradation level. However, the choice
to resort to MRL prediction has to be cautious and should
rely for each configuration on precise quantification step.

In spite of very promising results, the study in this paper
is based on a rather strong assumption: perfect and direct
monitoring, and Markovian system. Our future work aims
to relax this assumption by considering jointly the noisy
measurements, the environmental covariates and the non-
stationary non-Markovian failure mechanisms of systems.
Also, a MRL-based CBM policy with dynamic decision
structures will be considered in order avoid more efficiently
inopportune interventions.
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