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Abstract: This work concerns robust static output feedback controller (SOFC) design for uncertain and 

disturbed Takagi-Sugeno (TS) systems using an H-infinity criterion. The main result is based on a 

descriptor formulation of the closed-loop dynamics. The proposed approach allows avoiding appearance 

of crossing terms between the controller’s and the TS system’s input matrices leading to easier LMI 

formulation than existing studies in the literature. Moreover, the proposed SOFC design conditions don’t 

require any restrictions on the output equation and allow dealing with unmeasurable premise variables. 

Indeed, taking advantage of the uncertain TS modeling, nonlinearities associated to unmeasurable 

premises variables can be reported from the nominal part to the uncertainties. To provide LMIs of less 

conservatism, the results are conducted in the non-quadratic framework. Finally, two numerical 

examples and a benchmark of a crane system are proposed to illustrate the efficiency of the SOFC 

design methodology. 

Keywords: Takagi-Sugeno models, Robust Static Output Feedback Controller, Descriptor Redundancy, 

Non-Quadratic Stabilization, LMI, H∞ criterion, Unmeasurable premise variables. 
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1. Introduction 

Takagi-Sugeno fuzzy systems (Takagi and Sugeno, 1985) have shown their interests since they allow 

extending some of the linear control concepts to the nonlinear cases (Takagi and Wang, 2001). Indeed, a 

TS fuzzy model is a collection of linear time invariant systems blended together with nonlinear 

membership functions. Therefore, convenient control approaches for such systems have been proposed 

through the concept of Parallel Distributed Compensation (PDC) (Takagi and Wang, 2001; Sala et al., 

2005). PDC controllers design has been studied using a quadratic Lyapunov functions, see (Takagi and 

Wang, 2001; Takagi et al., 1996; Sala et al., 2005) and references therein. These approaches remain 

conservative since they need to find common Lyapunov matrices for a set of linear matrix inequalities 

(LMI) constraints. Thus, many ways have been proposed to relax these conditions. For instance, 

relaxation schemes have been developed based on rewriting the closed-loop interconnection structure of 

the considered control plant (Xiaodong and Qingling, 2003; Tuan et al., 2001). Other works have 

considered piecewise Lyapunov functions (Johansson et al., 1999) and, more accurately with the fuzzy 

aggregation of TS models, through a non-quadratic approach (also called fuzzy Lyapunov approach) 

(Tanaka et al., 2003; Guerra and Vermeiren, 2004; Rhee and Won, 2006; Feng, 2006; Lam and Leung, 

2007; Chang and Yang, 2010; Guerra et al., 2012). For a review of relaxation issues, one can refer to 

(Sala, 2009). 

Among control theory, regarding to output stabilization of TS fuzzy models, many works have been 

done for observer-based controller (OBC) design (Tanaka et al., 1998; Ma et al., 1998; Yoneyama et al., 

2000; Yoneyama et al., 2001; Guerra et al., 2006; Mansouri et al., 2009), dynamic output feedback 

controller (DOFC) design in both the quadratic and the non-quadratic case (Li et al., 2000; 

Assawinchaichote et al., 2004; Nguang and Shi, 2006; Zerar et al., 2008; Guelton et al., 2008; Guelton 

et al., 2009). Static Output Feedback Controllers (SOFC) are of some interests for practical applications 

since they only require available signals from the plant to be controlled and doesn’t need any online 

differential equation solving, so reducing online computational cost (Syrmos et al., 1997). In (Huang 



 
 

 

and Nguang, 2006) and (Huang and Nguang, 2007), SOFC design methodologies for TS fuzzy systems 

are proposed in terms of Bilinear Matrix Inequalities instead of LMI. In (Chadli et al., 2002), LMI 

conditions have been proposed. However, in these studies, some restrictive modeling assumptions have 

been made such that the output equation must be linear (full column rank matrix) and without direct 

transfers from the inputs to the outputs. Note that these restrictions are due to the occurrence of crossing 

terms in the closed-loop formulation (Zerar et al., 2008; Syrmos et al., 1997; Zhou and Doyle, 1996). 

Moreover, the results proposed in these previous studies being quadratic, they may suffer from 

conservatism. Note also that, unmeasurable premises constitute an important problem in static output 

feedback since it is somewhat difficult to estimate unmeasured variables without introducing a 

dynamical equation (observer) in the feedback and so reduce the applicative interest of SOFC. This 

problem has been seldom treated in the literature dealing with SOFC for TS systems and has been the 

topic of a very recent work where premises selection in SOFC fuzzy structure has been proposed 

(Tognetti et al., 2012). 

In (Tanaka et al., 2007), a descriptor redundancy formulation has been employed to derive new non-

quadratic LMI stability conditions for state feedback PDC controllers. One of the interests of such 

approach is that it allows decoupling crossing terms in the closed-loop dynamics formulation (Bouarar et 

al., 2010). Therefore, based on this property, LMI based non-quadratic robust DOFC design has been 

proposed in (Guelton et al., 2008; Guelton et al., 2009). Following this way, one of our preliminary 

studies has dealt with SOF controller design (Bouarar et al., 2009). In the latter, in aid of the redundancy 

property, non-quadratic LMI based SOFC design using a fuzzy Lyapunov approach for nominal TS 

systems has been proposed. However, this preliminary result isn’t relevant in the case of unmeasurable 

premises. Note that the above described studies dealing with continuous time TS models, 

complementary works has been recently done in the discrete time framework (which is reputed more 

favorable than the continuous time case for LMI purposes). Indeed, the descriptor redundancy has been 

recently used for OBC or SOFC design for discrete-time fuzzy models (Chang and Yang, 2011; Chadli 



 
 

 

and Guerra, 2012). 

The goal of this paper is to propose a descriptor redundancy approach leading to strict LMI based 

robust non-quadratic SOFC design for the class of continuous time uncertain and disturbed TS systems 

without any restrictions on the output equations. Taking advantage of the uncertain plant, it will be 

emphasis through an example how this modeling approach is relevant to deals with unmeasured premise 

variables for SOFC design. Moreover, the non-quadratic framework will be considered with recent 

conservatism improvements (Mozelli et al., 2009b). 

This paper is organized as follows. First, convenient notations and lemma will be described. Then, in 

section 3, the problem statement of robust SOFC design for TS fuzzy models is presented with 

highlights on the descriptor redundancy approach and unmeasurable premises. Afterward, relaxed non-

quadratic LMI based robust SOFC design conditions are proposed for the considered class of uncertain 

TS fuzzy models. Then, an extension to uncertain TS models subject to external disturbances is 

proposed by the use of a H∞  criterion. Finally, two numerical examples are provided to show the 

effectiveness of the proposed approach and an engineering example of a crane system is proposed as a 

benchmark in simulation.  

 

2. Notations and Lemma 

In the sequel, when there is no ambiguity, the time t  in a time varying variable will be omitted for 

space convenience. As usual, in a matrix, ( )∗  indicates a symmetrical transpose quantity. Moreover I  

denotes an identity matrix with appropriate dimension. Let us consider ( )ih z  as scalar convex functions, 

the matrices iY  and ijT  for, { }1, ,i r∈ …  and { }1, ,j l∈ … , with appropriate dimensions, we will denote 

( )
1

r

h i i
i

Y h z Y
=

= ∑ , ( ) ( )
1 1

r r

hh k i ik
k i

T h z h z T
= =

= ∑∑ . Finally, one denotes 
( )

1

r

i i
i

h

d h z X
X

dt
=

⎛ ⎞
⎜ ⎟
⎝ ⎠=
∑

�  and 



 
 

 

( )
( )

1

1 1

r

i i
i

h

d h z X
X

dt

−

− =

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠=

∑i
suuuuuut . 

 

The following lemmas will be useful in the following sections to lead to and to relax LMI conditions. 

 

Lemma 1 (Zhou and Khargonekar, 1988): 

For real matrices X  and Y  with appropriate dimensions and a positive scalar ε , we have: 

 

1T T T TX Y Y X X X Y Yε ε −+ ≤ +  (1) 

 

Lemma 2 (Tuan et al., 2001): Consider the Parameterized Matrix Inequality (PMI) given by: 

 

( ) ( )
1 1

0
r r

k i ik
k i

h z h z
= =

Ω <∑∑   (2) 

 

with ( ) 0ih z ≥  and ( )
1

1
r

i
i

h z
=

=∑ . 

The PMI (2) is verified if the matrix inequalities (3) and (4) hold: 

 

0iiΩ < , for all , 1, 2,...,i j r=  (3) 

 

( )1 1 0
1 2ii ij jir

Ω + Ω + Ω <
−

, for 1 i j r≤ ≠ ≤ , (4) 

 

Note that there exist numerous relaxation schemes in the literature which can be used without affecting 



 
 

 

the mathematical development of the results proposed below, for a review on these techniques, see 

(Sala, 2009). Nevertheless, the one presented in lemma 2 (Tuan et al., 2001) constitutes a good 

compromise between conservatism and computational cost since it doesn’t require additional slack 

variables. 

 

3. Problem statement 

Let us consider the class of uncertain and disturbed TS fuzzy systems described by: 

 

( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( )
1

1

r

i i i i i i
i

r

i i i i i i
i

x t h z t A A t x t B B t u t F t

y t h z t C C t x t D D t u t G t

ϕ

ϕ

=

=

⎧ = + Δ + + Δ +⎪⎪
⎨
⎪ = + Δ + + Δ +
⎪⎩

∑

∑

�
 (5) 

 

where r  represents the number of fuzzy rules. ( ) nx t ∈\ , ( ) mu t ∈\ , ( ) qy t ∈\ , ( ) pz t ∈\  and 

( ) d ntϕ ≤∈\  represent respectively the state, the input, the output, the premisses and the external 

disturbances vectors. ( )( )ih z t  are positive membership functions satisfying the convex sum proprieties 

( )( ) 0ih z t ≥  and ( )( )
1

1
r

i
i

h z t
=

=∑ . n n
iA ×∈\ , n m

iB ×∈\ , q n
iC ×∈\ , q m

iD ×∈\ , d n
iF ×∈\ , d q

iG ×∈\  are real 

matrices. ( ) n n
iA t ×Δ ∈\ , ( ) n m

iB t ×Δ ∈\ , ( ) q n
iC t ×Δ ∈\  and ( ) q m

iD t ×Δ ∈\  are Lebesgue measurable 

uncertainties which can be rewritten as, for , ,S A B C≡  or D , ( ) ( )s s s
i i i iS t H f t NΔ =  (Zhou and 

Khargonekar, 1988). In that case, for the subscript , ,s a b c≡  or d  one has s
iH , s

iN  constant matrices 

with appropriate dimensions and ( )s
if t  uncertain matrices bounded such that ( )( ) ( )Ts s

i if t f t I≤ . 

 

Let us consider the following non-PDC SOFC: 



 
 

 

 

( ) ( )( ) ( )( ) ( )
1

5

1 1

r r

i i i i
i i

u t h z t L h z t W y t
−

= =

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑ ∑  (6) 

 

where 1
m qL ×∈\  and 5 q q

iW ×∈\  are real gain matrices to be synthesized. 

 

Remark 1: To be coherent with the aim of SOFC which is to control a dynamical system from the only 

knowledge of measurable signals, the premises vector ( )z t  is required to depend only on the inputs 

( )u t , the outputs ( )y t  and, eventually on measurable state variables. Therefore, in the case where 

unmeasurable variables ( )z t  exists in the nonlinear model to be controlled, it is still possible to report 

these nonlinearities from the nominal part to the uncertainties of the relevant uncertain TS model (5) to 

design a robust non-PDC SOFC (6) composed of membership functions ( )( )ih z t  which are strictly 

independent of ( )z t . Therefore, the robust static output feedback controller design proposed in the 

sequel cope with unmeasurable premises variables. The benefit of uncertain TS modeling in the case of 

unmeasured variables will be illustrated through the example of a crane system provided in section 6.3. 

 

The classical way to write a closed-loop dynamics consists on substituting (6) into (5) leading, with 

the above defined notations, to: 

 

( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )

11 15 5

11 15 5

h h h h h h h h

h h h h h h h h

x t A B L W I D L W C x t

B L W I D L W G t F tϕ ϕ

−− −

−− −

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

+ − +

�
 (7) 

 

where ( )h h hA A A t= + Δ , ( )h h hB B B t= + Δ , ( )h h hC C C t= + Δ  and ( ) ( )h h hD D D t y t= + Δ . 



 
 

 

 

Hence, the closed-loop dynamics (7) involves numerous crossing terms between the gains ( ) 15
h hL W

−
 

and the system’s matrices hC , hCΔ , hB , hBΔ , hD  and hDΔ . This leads to a strong difficulty to obtain 

convenient LMI conditions for the design of SOFC (6). Indeed, previous studies on SOFC design have 

reduced the problem by making restrictive assumptions such as C  common and column full rank 

matrices, 0hD =  and without uncertainties in the output equation (Huang and Nguang, 2006; Huang and 

Nguang, 2007; Chadli et al., 2002). In the sequel, we will see how this problem of crossing terms in the 

closed-loop dynamics may be overcame. 

 

In (Guelton et al., 2008; Guelton et al., 2009), LMI based design for DOFC controllers has been 

proposed in aid of a descriptor approach. These ones are based on an interesting property called the 

descriptor redundancy (Tanaka et al., 2007; Bouarar et al., 2010; Chen, 2004). In the present study, 

taking advantage of a redundancy formulation for decoupling crossing terms occurring in (7), equations 

(5) and (6) can be easily rewritten as: 

 

( ) ( )( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )0

h h h h h

h h h h h

x t A A t x t B B t u t F t

y t y t C C t x t D D t u t G t

ϕ

ϕ

⎧ = + Δ + + Δ +⎪
⎨

= − + + Δ + + Δ +⎪⎩

�

�
 (8) 

 

and 

 

( ) ( ) ( ) ( )150 h hu t u t L W y t
−

= − +�  (9) 

 

Note that the redundancy consists on introducing virtual dynamics in the output equations of (8) and in 



 
 

 

the control law (9). Then, considering the extended state vector ( ) ( ) ( ) ( ) TT T Tx t x t y t u t⎡ ⎤= ⎣ ⎦� , the 

closed-loop dynamics can be expressed by the following descriptor: 

 

( ) ( )( ) ( ) ( )hh h hEx t A A t x t F tϕ= + Δ +� � �� �� �  (10) 

 

with 
0 0

0 0 0
0 0 0

I
E

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

� , 

( ) 15

0

0

h h

hh h h

h h

A B
A C I D

L W I
−

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

� , ( )
( ) ( )
( ) ( )

0
0

0 0 0

h h

h h h

A t B t
A t C t D t

Δ Δ⎡ ⎤
⎢ ⎥Δ = Δ Δ⎢ ⎥
⎢ ⎥⎣ ⎦

�  and 
0

h

h h

F
F G

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

� . 

 

Therefore, (5) is stabilized via the control law (6) if (10) is stable. Thus, the goal is now to provide 

sufficient LMI stability conditions allowing to find the matrices hL  and 5
hW  ensuring the stability of (10)

. Unlike previous studies on static output feedbackfor continuous time TS models (Huang and Nguang, 

2006; Huang and Nguang, 2007; Chadli et al., 2002) where the quadratic stability conditions are not 

strictly LMI, writing the closed-loop system (10) by the use of descriptor redundancy allows to avoid 

appearance of crossing terms between the state space matrices and the controller’s ones. Therefore, the 

benefit of this descriptor formulation will be emphasized in the following section since it makes easier to 

obtain strict LMI based non-quadratic stability conditions without restrictions on the output equation of 

(5).  

 

4. LMI based conditions for SOFC design 

The main result is presented in this section. Let us first focus on the non-quadratic stabilization of 

uncertain TS systems (5) but without external disturbances ( ( ) 0tϕ = ).  

 



 
 

 

Theorem 1: Consider, for all 1, 2,...,k r= , kφ  the lower bounds of ( )kh z� . The TS fuzzy model (5) 

(with ( ) 0tϕ = ) is asymptotically stable via the non-PDC SOFC (6) if there exist, for all combinations of 

1, 2,...,i r= , 1 i j r≤ ≠ ≤  and 1,2,...,k r= , the matrices ( )1 1 0
T

j jW W= > , 5
jW , 7

jW , 8
jW , 9

jW , iL , ijR  

and the scalars 1a
ijε , 1c

ijε , 7b
ijε , 7d

ijε , 8b
ijε , 8d

ijε , 9b
ijε  and 9d

ijε  such that the following LMI conditions are 

satisfied: 

 

0iiΓ <  (11) 

 

( )1 1 0
1 2ii ij jir

Γ + Γ + Γ <
−

 (12) 

 

1 0k ijW R+ ≥  (13) 

 

where 
T

ij ij ij
ij

ij ij

H⎡ ⎤ϒ + Ζ
Γ = ⎢ ⎥Ζ −Ρ⎢ ⎥⎣ ⎦

� � �
� � ,  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 7 7
1

1

8 1 7 5 5 8 8

9 7 9 8 9 9

rTT T k
i j j i i j j i k ij

k
T T TT T

ij j i i j i j j j i j j i

T T TT T
j i j j i i j j j

AW W A BW W B W R

W B CW DW W W DW W D

W B W W D L W W W

φ
=

⎡ ⎤+ + + − + ∗ ∗⎢ ⎥
⎢ ⎥
⎢ ⎥ϒ = + + − − + + ∗⎢ ⎥
⎢ ⎥− + − − −⎢ ⎥⎣ ⎦

∑
�

, 

( ) ( ) ( ) ( ) ( )
( ) ( )

1 7 8 9 1 7

8 9

0 0

0 0

0 0 0

T T T Ta a a b b b b b c c c d d d
ij i i ij ij ij i i ij i i ij i i

Td d d d
ij ij ij i i

H H H H H H H H

H H H

ε ε ε ε ε ε

ε ε

⎡ ⎤+ + + + +
⎢ ⎥
⎢ ⎥= +⎢ ⎥
⎢ ⎥⎣ ⎦

�
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1

7

1

8

7

8

9

9

0 0
0 0

0 0
0 0
0 0
0 0
0 0
0 0

a
i j
b
i j

c
i j
b
i j

ij d
i j
d
i j

b
i j
d
i j

N W
N W

N W
N W
N W
N W

N W
N W

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥Ζ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

�  and 1 7 1 8 7 8 9 9a b c b d d b d
ij ij ij ij ij ij ij ij ijdiag I I I I I I I Iε ε ε ε ε ε ε ε⎡ ⎤Ρ = ⎣ ⎦
� . 

 

Proof: Let us consider the non-quadratic candidate fuzzy Lyapunov function given by: 

 

( )( ) ( ) ( ) ( )
1T

hv x t x t E W x t
−

= � �� �  (14) 

 

For (16) being a Lyapunov function one needs ( )( ) 0v x t > , ( )( ) 0v x t <� . Thus, classically for descriptor 

systems, see e.g. (Taniguchi et al., 2000; Bouarar et al., 2007), one needs: 

 

( ) ( )1 T

h hE W W E
− −

=� � � �  (15) 

 

Therefore, let us consider 

1 2 3

4 5 6

7 8 9

h h h

h h h h

h h h

W W W
W W W W

W W W

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

� . Multiplying (15), left by T
hW�  and right by hW� , one has 

T
h hW E EW=� � � �  which leads to ( )1 1 0

T

h hW W= >  (ensuring ( )( ) 0v x t > ), 2 0hW =  and 3 0hW = . Then, the 

closed-loop system (10) is stable if: 

 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1

0T T T
h h hv x t x t E W x t x t E W x t x t E W x t

− − −
= + + <

i
suuuuuut� �� � � � � �� � � � � � �  (16) 



 
 

 

 

Considering (10), (16) is obviously satisfied if: 

 

( )( )( ) ( ) ( )( ) ( )1 1
0

TT T
hh h h h hh h hA A t W W A A t E W

− − −
+ Δ + + Δ + <

i
suuuuuut� � � �� � � �  (17) 

 

Multiplying left by T
hW�  and right by hW�  and since 0T

h hW E EW= >� � � � , (17) yields: 

 

( )( ) ( )( ) ( ) 1
0T T T

h hh h hh h h h h hW A A t A A t W EW W W
−

+ Δ + + Δ + <

i
suuuuuut� � � �� � � � � �  (18) 

 

It is well-known that ( ) 1

h h h hW W W W
−

= −

i
suuuuuut �� � � � , see e.g. (Bouarar et al., 2008). Thus (18) can be rewritten as: 

 

( ) 0hhh hh ht EWΨ + ΔΨ − <�� �  (19) 

 

with T T
hhh h hh hh hW A A WΨ = +� �� �  and ( ) ( ) ( )T T

hh h h h ht W A t A t WΔΨ = Δ + Δ� �� � . 

 

Extending hhhΨ  with matrices defined in (10),  it yields: 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 7 7

8 1 4 7 5 5 8 8

1 3,39 5 4 7 6 9 8

TT T
h h h h h h h h

T T TT T
hhh h h h h h h h h h h h h h

T T TT T
h h h h h h h h h h h hhh

A W W A B W W B

W B C W W D W W W D W W D

W B L W W W W W D L W
−

⎡ ⎤+ + + ∗ ∗
⎢ ⎥
⎢ ⎥Ψ = + − + − − + + ∗⎢ ⎥
⎢ ⎥

+ − − + + − Ψ⎢ ⎥⎣ ⎦

 (20) 

 



 
 

 

where ( ) ( ) ( ) ( )( ) ( )1 13,3 5 6 6 5 9 9
TT TT

hhh h h h h h h h hL W W W W L W W
− −

Ψ = + − −
 

 

Let us recall that, due to the nature of the candidate Lyapunov function (14), 4 5 9, ,...,h h hW W W  are slack 

decision matrices that are free of choice. A way to run to LMI conditions is to choose 4 0hW =  and 

6 0hW = . Thus, in order to guarantee the invertibility of 

1

5

7 8 9

0 0
0 0

h

h h

h h h

W
W W

W W W

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

�

 

the matrices 5
hW  and 9

hW  

must be non-singular and 1 0hW > . Consequently, (20) becomes: 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 7 7

8 1 7 5 5 8 8

9 7 9 8 9 9

TT T
h h h h h h h h

T T TT T
hh h h h h h h h h h h h h

T T TT T
h h h h h h h h h

A W W A B W W B

W B C W D W W W D W W D

W B W W D L W W W

⎡ ⎤+ + + ∗ ∗
⎢ ⎥
⎢ ⎥Ψ = + + − − + + ∗⎢ ⎥
⎢ ⎥

− + − − −⎢ ⎥⎣ ⎦

 (21) 

 

Now, extending ( )hh tΔΨ , it yields: 

 

( )
( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )

(1,1)

(2,1) 8 8

9 9 0

hh
T T T Td d d d d d

hh hh h h h h h h h h

T T T T T T T Tb b b d d d
h h h h h h h h

t

t t W N f t H H f t N W

W N f t H W N f t H

⎡ ⎤ΔΨ ∗ ∗
⎢ ⎥
⎢ ⎥ΔΨ = ΔΨ + ∗
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (22) 

 

with 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )(1,1) 1 1 7 7T T T T T T Ta a a a a a b b b b b b
hh h h h h h h h h h h h h h h h ht W N f t H H f t N W W N f t H H f t N WΔΨ = + + +  

and ( ) ( ) ( ) ( )( ) ( ) ( ) ( )(2,1) 8 1 7T T T Tb b b c c c d d d
hh h h h h h h h h h h h ht W N f t H H f t N W H f t N WΔΨ = + +  

 



 
 

 

Expression (22) can be bounded using lemma 1 such that: 

 

( )
( ) ( )

( )
( ) ( ) ( ) ( ) ( ) ( )

(1,1)

(2,2)

1 19 9 9 9 9 9

0

0 0

hh

hh hh hh
T T T Tb b b d d d

hh h h h h hh h h h h

t

W N N W W N N Wε ε
− −

⎡ ⎤ΔΨ ∗ ∗
⎢ ⎥ΔΨ ≤ ΔΨ = ΔΨ ∗⎢ ⎥
⎢ ⎥+⎢ ⎥⎣ ⎦

 (23) 

 

with: 

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

(1,1) 1 7 8 9 1 7

1 11 1 1 7 7 7

T T T Ta a a b b b b b c c c d d d
hh hh h h hh hh hh h h hh h h hh h h

T T Ta a a b b b
hh h h h h hh h h h h

H H H H H H H H

W N N W W N N W

ε ε ε ε ε ε

ε ε
− −

ΔΨ = + + + + +

+ +
 

 

and 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 1(2,2) 8 9 1 1 1 8 8 8

1 17 7 7 8 8 8

T T T T Td d d d c c c b b b
hh hh hh h h hh h h h h hh h h h h

T T T Td d d d d d
hh h h h h hh h h h h

H H W N N W W N N W

W N N W W N N W

ε ε ε ε

ε ε

− −

− −

ΔΨ = + + +

+ +  

 

Note that (23) can be rewritten as: 

 

( ) 1T
hh hh hh hh hhH

−
ΔΨ = + Ζ Ρ Ζ� � � �  (24) 

 

with 

( ) ( ) ( ) ( ) ( )
( ) ( )

1 7 8 9 1 7

8 9

0 0

0 0

0 0 0

T T T Ta a a b b b b b c c c d d d
hh h h hh hh hh h h hh h h hh h h

Td d d d
hh hh hh h h

H H H H H H H H

H H H

ε ε ε ε ε ε

ε ε

⎡ ⎤+ + + + +
⎢ ⎥
⎢ ⎥= +⎢ ⎥
⎢ ⎥⎣ ⎦

�

 



 
 

 

1

7

1

8

7

8

9

9

0 0
0 0

0 0
0 0
0 0
0 0
0 0
0 0

a
h h
b
h h

c
h h
b
h h

hh d
h h
d
h h

b
h h
d
h h

N W
N W

N W
N W
N W
N W

N W
N W

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥Ζ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

�  and 1 7 1 8 7 8 9 9a b c b d d b d
hh hh hh hh hh hh hh hh hhdiag I I I I I I I Iε ε ε ε ε ε ε ε⎡ ⎤Ρ = ⎣ ⎦
� . 

 

Therefore, from (21) and (24), (19) is verified if the following condition holds: 

 

( ) 1
0T

hh hh hh hh hhhh hH EW
−

Ψ + + Ζ Ρ Ζ − <�� � �� � �  (25) 

 

Applying the Schur complement on (25), one obtains: 

 

0
T

hh hh h hhhh

hh hh

H EW⎡ ⎤Ψ + − Ζ <⎢ ⎥
Ζ −Ρ⎢ ⎥⎣ ⎦

�� � � �
� �

 (26) 

 

Let us now focus on ( )1 1

1

r

h k k
k

W h z W
=

= ∑ ��  included in the term hEW− �� � . From the convex property of the 

membership functions ( )kh z  one has ( )
1

1
r

k
k

h z
=

=∑ , thus ( )
1

0
r

k
k

h z
=

=∑ �  and so, for any fuzzy matrices 

( ) ( )
1 1

r r

i j ij
i j

h z h z R
= =
∑∑ , one has ( ) ( ) ( )

1 1 1
0

r r r

i j k ij
i j k

h z h z h z R
= = =

=∑∑∑ � . Therefore, one can write: 

 

( ) ( ) ( )1 1 1

1 1

r r

h k k ij k k ij
k k

W h z W R W Rφ
= =

= + ≥ +∑ ∑��  (27) 

 



 
 

 

with, for 1,...,k r= , 1 0k ijW R+ ≥  and where kφ  are the lower bounds of ( )kh z� . 

 

Finally, from (26) and (27), after applying lemma 2, (26) is satisfied if the conditions proposed in 

theorem 1 hold. That ends the proof. ■ 

 

Remark 2: Equation (27) improve the proposed relaxation for non-quadratic TS based stability 

conditions proposed in (Mozelli et al., 2009b). Indeed, in the latter study a common slack decision 

variable R  has been introduced instead of fuzzy distributed ones ijR , for 1,...,i r=  and 1,...,j r= . 

Moreover, it also improve the SOFC design conditions proposed in (Bouarar et al., 2009) for TS 

systems without uncertainties where a particular case of the present relaxation is considered with 

1
r

ijR W= − . Note also that it can be argue that introducing fuzzy distributed slack variables may increase 

the number of decision variables and so the computational cost. Nevertheless, with the growing devices 

computational capabilities, this concern may be considered as less of a drawback and, if a solution 

cannot be found from theorem 1 due to computational crashes, it is still possible to check if a solution 

exists by setting ijR R=  common. 

 

5. H∞ controller design 

This section aims at extending the previous results to the case of TS fuzzy systems with external 

disturbances. Hence, considering ( ) 0tϕ ≠  and using a H∞  criterion, the objective is now to stabilize (5) 

such that the influence of the external disturbance ( )tϕ  on the output behavior is minimized. Let us 

consider the following H∞  criterion (Takagi and Wang, 2001): 

 



 
 

 

( ) ( ) ( ) ( )( )2

0
0T Ty t y t t t dtλ ϕ ϕ

∞
− ≤∫  (28) 

 

Recall that ( ) ( ) ( ) ( ) TT T Tx t x t y t u t⎡ ⎤= ⎣ ⎦� , thus (28) can be rewritten as: 

 

( ) ( ) ( ) ( )( )2

0
0T Tx t Qx t t t dtλ ϕ ϕ

∞
− ≤∫ �� �  (29) 

 

with 
0 0 0
0 0
0 0 0

Q I
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

� . 

 

In that case, the stability of the closed-loop system (10) is guaranteed under the constraint (29) if the 

LMI conditions summarized in the following theorem hold. 

 

Theorem 2: Consider, for all 1, 2,...,k r= , kφ  the lower bounds of ( )kh z� . The TS fuzzy model (5) is 

asymptotically stabilized via the non-PDC SOFC (6) and guarantees the attenuation level λ η=  if 

there exist, for all combinations of 1,2,...,i r= , 1 i j r≤ ≠ ≤  and 1,2,...,k r= , the matrices 

( )1 1 0
T

j jW W= > , 5
jW , 7

jW , 8
jW , 9

jW , iL , ijR  and the positive scalars 1a
ijε , 1c

ijε , 7b
ijε , 7d

ijε , 8b
ijε , 8d

ijε , 9b
ijε  

and 9d
ijε  such that the following LMI conditions are satisfied. 

 

Minimize 0η >  such that: 

 

0iiΘ <  (30) 

 



 
 

 

( )1 1 0
1 2ii ij jir

Θ + Θ + Θ <
−

 (31) 

 

1 0k ijW R+ ≥  (32) 

 

where 

( )
( ) ( ) ( )

5

0

0 0
0 0

0 0 0 0
0 0 0

ij ij

ij
ij ij

j
T T

i i

H

W I
F G Iη

∗⎡ ⎤
⎢ ⎥ϒ + ∗ ∗ ∗⎢ ⎥
⎢ ⎥

Θ = ⎢ ⎥
Ζ −Ρ⎢ ⎥

⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

� �

� �  and with the matrices ijϒ� , ijH� , ijΖ�  and ijΡ�  defined in 

theorem 1. 

 

Proof: The stability of the closed-loop system (10) is guaranteed, under the constraint (29), if: 

 

( )( ) ( ) ( ) ( ) ( )2 0T Tv x t x t Qx t t tλ ϕ ϕ+ − <�� � �  (33) 

 

That is to say if: 

 

( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )

1 1 1

1 1 2 0

TT T T
hh h h h hh h h

TT T T T
h h h h

x t A A t W W A A t EW Q x t

t F W x t x t W F t t tϕ ϕ λ ϕ ϕ

− − −

− −

⎛ ⎞
⎜ ⎟+ Δ + + Δ + +⎝ ⎠

+ + − <

i
suuut� � � � �� � � �� �

� � � �� �
 (34) 

 

which is obviously satisfied if: 

 



 
 

 

( )( ) ( ) ( )( ) ( )1 1 1

1 2

* 0
TT T

hh h h h hh h h

T
h h

A A t W W A A t EW Q

F W Iλ

− − −

−

⎡ ⎤
+ Δ + + Δ + +⎢ ⎥ <

⎢ ⎥
−⎢ ⎥⎣ ⎦

i
suuut� � � � �� � � �

� �
 (35) 

 

Multiplying left by 
0

0

T
hW

I
⎡ ⎤
⎢ ⎥
⎣ ⎦

�
 and right by 

0
0

hW
I

⎡ ⎤
⎢ ⎥
⎣ ⎦

�
, one obtains: 

 

( )( ) ( )( ) ( )1

2

* 0
T T T T

h hh h hh h h h h h h h

T
h

W A A t A A t W EW W W W QW

F Iλ

−
⎡ ⎤

+ Δ + + Δ + +⎢ ⎥ <
⎢ ⎥

−⎢ ⎥⎣ ⎦

i
suuut� � � � �� �

�
 (36) 

 

Following the same way as for the proof of theorem 1, (36) is satisfied if (32) holds as well as: 

 

( ) ( )1

2

*
0

T T
hh hh hh hh hh h h

T
h

H W QW

F Iλ

−⎡ ⎤ϒ + + Ζ Ρ Ζ +
⎢ ⎥ <
⎢ ⎥−⎣ ⎦

�� � � �

�
 (37) 

 

Note that ( )5 5

0 0 0

0 0

0 0 0

TT
h h h hW QW W W

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

�� � , using the Schur complement and lemma 2, (30) and (31) yield. 

That ends the proof. ■ 

 

Discussion on non-quadratic approaches limits: 

The LMI conditions proposed in theorems 1 and 2 depend on the lower bounds of ( )kh z�  for 1,...,k r= . 

Even if it is often pointed out as a criticism to fuzzy Lyapunov approaches since these parameters may 

be difficult to choose, a way to obtain these bounds has been proposed in (Tanaka et al., 2003) in some 

special cases. Moreover, let us recall that this approach remains one of the least conservative in terms of 



 
 

 

LMI based design (Mozelli et al., 2009b). In (Tanaka et al., 2007; Guerra et al., 2007; Guelton et al., 

2009), a fuzzy Lyapunov candidate function has been reduced leading to relaxed quadratic stability. 

Indeed, some elements in the Lyapunov matrix can be set common in order to make the LMIs free of 

membership function’s lower bounds. In the present study, this remains on setting 1W  common matrices 

in the previous theorems. However, following the latter way, the ‘price’ to pay for more practical 

applicability is obviously an increase of the conservatism. An elegant way has also been recently 

proposed to overcome the knowledge of the membership function derivative bounds in (Bernal and 

Guerra, 2010; Guerra et al., 2012). However, in these studies, the design goal has been reduced to a 

local view point and lead to complex LMI formulation which are, at this time only available for standard 

stability analysis and stabilization. Another approach based on line integral Lyapunov functions, which 

is not investigated in this paper, has been proposed to avoid appearance of membership function 

derivatives in non-quadratic stability conditions (Rhee and Won, 2006; Guelton et al., 2010, Mozelli 

2009a). Therefore, some further research efforts will have to be done to extend these approaches to 

SOFC design. However, Let us point out that the goal of the present study is not to reach the difficulties 

of non-quadratic approaches but to overcome and derive LMI based SOFC design for a general class of 

TS systems (5) without constraining assumptions on output equation and including the most commonly 

used and effective non-quadratic approach for conservatism reduction. 

 

6. Numerical examples 

In this section, in order to show the efficiency and the applicability of the proposed fuzzy approaches, 

three examples are considered. The aim of the first one is to compare the conservatism of the approach 

proposed in theorem 2 without uncertainties, the quadratic stability conditions discussed in the above 

section ( 1W  set as a common matrix in theorem 1 and 2) and the non-quadratic conditions proposed in 

our preliminary study (Bouarar et al., 2009) through a numerical example. Then, a second example is 



 
 

 

devoted to show the effectiveness of the SOFC based design on a 4th order and 4 rules numerical 

uncertain and disturbed TS system containing nonlinearities in the output equation. Finally, the 

benchmark of a crane system is considered in simulation as a third example to illustrate the validity of 

the proposed approach on an engineering application with unmeasurable premises variables reported as 

uncertainties. 

 

6.1. Example 1:  

Let us consider the following uncertain and disturbed TS fuzzy model: 

 

( ) ( )( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( )( )

2

1

2

1

i i i i
i

i i i i
i

x t h z t A x t B u t F t

y t h z t C x t D u t G t

ϕ

ϕ

=

=

⎧ = + +⎪⎪
⎨
⎪ = + +
⎪⎩

∑

∑

�
 (38) 

 

with 1

5 4
1 2

A
− −⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
, 2

2 4
10 2

A
− −⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 1

0
10

B
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 2

0
3

B
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 1

2 10
5 1

C
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 2

3 20
7 2

C
−⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
, 

1

3
1

D
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 2

2
0.5

D
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 1 2

0
0.25

F F
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

, 1

0.5
0.5

G
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, ( ) ( ) ( )1 2
T

x t x t x t= ⎡ ⎤⎣ ⎦ , 

( ) ( ) ( )1 2
T

y t y t y t= ⎡ ⎤⎣ ⎦ , ( ) ( )1z t y t=  and ( )( ) ( )( ) ( )( )2
1 1 2cos 1h z t y t h z t= = − . 

 

Using the Matlab LMI Toolbox, the attenuation level value corresponding to the quadratic approach ( 1W  

set as common matrix and 1ijR W= −  in theorem 2) is 1.2758λ = . This solution can be improved since 

the non-quadratic LMI conditions are reputed of less conservatism. Nevertheless, in that case, the 

respectively lower bounds 1φ  and 2φ  of ( )1h z�  and ( )2h z� , which are difficult to choose in practice, are 

required. For the sake of generality, one proposes to study the influence of these bounds on the 



 
 

 

conservatism of the proposed LMI conditions regarding to the above discussed quadratic result and the 

non-quadratic conditions proposed in our preliminary study (Bouarar et al., 2009). Thus, the attenuation 

level has been computed from theorem 2 of the present study and theorem 2 in (Bouarar et al., 2009) for 

2 1φ = −  and [ ]1 4 0.5φ ∈ − − . These results are summarized in Fig. 1. From the latter, one can conclude 

that, to stabilize (38) without uncertainties, the proposed non-quadratic approach (theorem 2) leads to 

the lower conservatism results since the H∞  performances are improved. 

 

6.2. Example 2:  

Let us consider the following 4th order-4 rules uncertain and disturbed TS system with nonlinear output 

equation: 

 

( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( )

4

1
4

1

i i i i i i
i

i i i i i i
i

x t h z t A A t x t B B t u t F t

y t h z t C C t x t D D t u t G t

ϕ

ϕ

=

=

⎧ = + Δ + + Δ +⎪⎪
⎨
⎪ = + Δ + + Δ +
⎪⎩

∑

∑

�
 (39) 

 

where ( ) ( ) ( ) ( ) ( )1 2 3 4
T

x t x t x t x t x t= ⎡ ⎤⎣ ⎦ , ( ) ( ) ( ) ( ) ( )1 2 3 4
T

y t y t y t y t y t= ⎡ ⎤⎣ ⎦ , ( ) ( )1z t y t≡ , 

( )( ) ( )( )1
1

1 sin
2

y t
h z t

+
= , ( )( ) ( )( )1

2

1 cos
2

y t
h z t

+
= , ( )( ) ( )( )2

1
3

cos 1
2

y t
h z t

−
= , 

( )( ) ( )( ) ( )( ) ( )( )( )4 1 2 31h z t h z t h z t h z t= − + +  and the nominal system’s matrices: 

1

-10 0.5 -1 0
0.5 3 0 1
1 1 -4 -1

0.5 -1 0 -6

A

⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 2

-3 -1 -1 0
1 3 1.5 0.5

1.5 0 -3.5 0
-0.5 0.5 0 -8

A

⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 3

-5 0 1 0
0.2 4 0 0
1.5 0.5 -1 -1
0.55 -0.5 0 -4

A

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

,  



 
 

 

4

-15 0.5 1 0
0 5 2.5 0

0.5 0 -1.5 0
-1 0.4 0 -7

A

⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 1

2.5
1

2.8
0

B

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 2

1.5
0.5
5.5
0

B

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

, 3

0.5
0
1
0

B

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 4

0.5
0.15

5.5
0.5

B

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

, 1

2 1 0 0
0 3 0 0
1 0.5 0 0

0 1 0 0

C

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− −
⎢ ⎥−⎣ ⎦

, 

2

3 2 0 0
1 2 0 0

5.5 0.5 0 0
0.5 1 0 0

C

⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥−
⎢ ⎥−⎣ ⎦

, 3

2.5 1.5 0 0
0 1.5 0 0
2 1 0 0

0.5 2 0 0

C

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥−⎣ ⎦

, 4

1 0.8 0 0
0 0.5 0 0
5.5 0.6 0 0

2.5 2 0 0

C

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

, 1

0.3
0.1
0.1
0.1

D

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 

2

0.1
0.2
0
0

D

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 3

0.15
0.2
0.25

0

D

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 4

0.35
0.4

0.15
0

D

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

,  1

0
0.25
0
0

F

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 2

0.25
0.25

0
0

F

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 3

0.2
0.5

0.2
0

F

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 4

0.5
0.2
0.6
0

F

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 

1

0.3
0.3
0
0

G

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 2

0.35
0.2
0.1
0

G

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 3

0.2
0.35

0
0.2

G

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 4

0.3
0

0.45
0.1

G

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

,  

as well as the uncertain matrices ( ) ( )a a
i i a iA t H f t NΔ = , ( ) ( )b b

i i b iB t H f t NΔ = , ( ) ( )c c
i i c iC t H f t NΔ =  and 

( ) ( )d d
i i d iD t H f t NΔ =  with: 

 1

0
0.1

0.25
0.1

aH

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 2

0
0.1

0.15
0.1

aH

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 3

0
0.15
0.05
0.1

aH

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 4

0
0.2

0.25
0.3

aH

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 1

0
0.2
0
0

bH

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 2

0
0.1
0
0

bH

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 3

0
0.25

0
0

bH

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 

4

0
0.2
0

0.1

bH

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 1

0.1
0.1
0

0.1

cH

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 2

0.1
0.1
0

0.1

cH

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 3

0
0.2
0
0

cH

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 4

0.2
0.15

0
0

cH

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 1

0.5
0.5
0

0.2

dH

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 2

0.1
0.1
0.1
0.1

dH

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 

3

0.5
0

0.25
0.1

dH

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 4

0.25
0.2
0.3
0

dH

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, [ ]1 0.1 0.1 -0.1 0.2aN = , [ ]2 -0.1 0.1 0.1 -0.2aN = , 

[ ]3 -0.1 -0.1 0.1 0aN = , [ ]1 0 -0.2 0.3 -0.4aN = , 1 0.1bN = , 2 0.175bN = − , 3 0.15bN = , 4 0.25bN = − , 



 
 

 

[ ]1 0.1 0.1 0.1 0.15cN = , [ ]2 -0.1 -0.1 0.1 -0.2cN = , [ ]3 0.2 -0.1 0 -0.15cN = , 

[ ]4 -0.2 -0.15 0.15 -0.25cN = , 1 0.15dN = − , 2 0.05dN = , 3 0.25dN = − , 4 0.15dN = . 

 

The goal is to design a robust H∞  controller that guarantee the attenuation of the external 

disturbances ( )tϕ  affecting the system output and state vector. The following SOFC gain matrices, 

guaranteeing a minimized H∞  attenuation level 0.8533λ = , are obtained using the Matlab LMI Toolbox 

through theorem 2 with the prescribed lower bounds values 1 1φ = − , 2 0.8φ = − , 3 2φ = − , 4 1.5φ = − . 

5
1

1.3685 0.0901 0.0221 -0.0121
0.0901 1.1756 -0.0078 -0.0488
0.0221 -0.0078 1.4464 -0.0746
-0.0121 -0.0488 -0.0746 1.4055

W

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 5
2

1.2426 0.0375 -0.0137 0.0422
0.0375 1.4033 -0.0236 0.0112
-0.0137 -0.0236 1.1421 0.0506
0.0422 0.0112 0.0506 1.3595

W

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 

 5
3

1.1476 0.1207 -0.0695 -0.0071
0.1207 1.2730 0.0722 -0.1092
-0.0695 0.0722 1.4095 0.0409
-0.0071 -0.1092 0.0409 1.1276

W

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 5
4

1.3887 -0.0662 -0.0462 -0.1025
-0.0662 1.4318 -0.0098 0.0479
-0.0462 -0.0098 1.2250 -0.0237
-0.1025 0.0479 -0.0237 1.3264

W

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

,  

[ ]1 -0.0842 0.218 0.0701 0.0352L = , [ ]2 -0.1448 0.116 0.1203 -0.0019L = ,  

[ ]3 0.2542 -0.2131 0.0919 -0.2372L =  and [ ]4 -0.0086 0.0368 0.006 -0.0153L = . 

 

For simulation realization, the disturbance signal ( )tϕ  have been chosen as a white noise with unit 

variance characterized by a bounded energy added to a step (amplitude 0.5  for [ ]5 ,10t s s∈ , 

0 elsewhere). Moreover, the uncertain variables have been set as ( ) ( )0.25sin 0.5af t t= , 

( ) ( )0.3cos 2bf t t= , ( ) ( )sin
0.2c

t
f t

t
π

π
= , ( ) ( )20.15cos 2df t t= . Fig 2, 3 and 4 show respectively the 

system’s state and output responses, the control signal and the disturbance evolutions for the initial 

conditions ( ) [ ]0 0.5 0.3 0.5 -0.5 Tx =  and ( ) [ ]0 -0.5 0.5 0.5 -0.5 Ty = . The synthesized robust 



 
 

 

SOFC is correctly stabilizing the system and attenuates the external disturbances effect with a 

minimized H∞  attenuation level 0.8533λ = .  

 

6.3. Example 3:  

 

Let us consider the crane system depicted in figure 5 with the parameters and variables given in table 1. 

From the well-known Lagrange formalism, the motion equations of the crane system are given by: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2
1

2

cos sin

cos sin
s dar t c t t c t t k r t k r t u t t

b t cr t t cg t t

θ θ θ θ ϕ

θ θ θ ϕ

⎧ + − + + = +⎪
⎨

+ + =⎪⎩

�� ��� �
�� ��

 (40) 

 

with a m M= + , 2
yyb mL I= + , c mL=  and where ( )1 tϕ  and ( )2 tϕ  are external disturbance, i.e. 

respectively an external force vector on the cart and an external torque on the pendulum and the 

parameters given table 1. 

 

By considering the inertia matrix ( )
cos

cos
a c

M
c b

θ
θ

θ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 and its inverse 

( )1
2 2

cos1
coscos
b c

M
c aab c

θ
θ

θθ
− −⎡ ⎤

= ⎢ ⎥−− ⎣ ⎦
, (40) can be rewritten as: 

 

( )

( )

2 2
1 22 2

2 2
1 22 2

1 sin cos sin cos
cos

1 cos sin cos sin cos cos cos
cos

s d

s d

r bk r bc c g k br bu b c
ab c

ck r acg c ck r cu c a
ab c

θ θ θ θ ϕ ϕ θ
θ

θ θ θ θ θ θ θ θ ϕ θ ϕ
θ

⎧ = − + + − + + −⎪⎪ −
⎨
⎪ = − − + − − +
⎪ −⎩

��� �

�� � �
 (41) 

 

Note that the robot’s velocities ( )r t�  and ( )tθ�  aren’t considered available for measurement. Therefore, 



 
 

 

from the dynamical model (41) and to cope with the goal of designing a robust non-PDC SOFC which 

doesn’t require unmeasurable premise variables (see remark 1), the nonlinear terms ( ) ( )2 sinbc t tθ θ�  and 

( ) ( ) ( )2 2 cos sinc t t tθ θ θ− �  will be cast as uncertainties. Moreover, the motion of the system being 

physically restricted, the angular velocity can be bounded such that ( )tθ α<�  and so one can denote the 

nonlinear term ( )( ) ( )2

2

t
t

θ
δ θ

α
=
�

� , normalized such that ( )( )2 1tδ θ ≤� . Then, let 

( ) ( ) ( ) ( ) ( )
T

x t r t t r t tθ θ⎡ ⎤= ⎣ ⎦
��  be the state vector of the crane, ( ) ( ) ( ) T

y t q r t tθ= = ⎡ ⎤⎣ ⎦  the output 

vector, ( ) ( ) ( )1 2
T

t t tϕ ϕ ϕ= ⎡ ⎤⎣ ⎦  the vector of external disturbances. From (41) an uncertain state space 

model is given by: 

 

( ) ( )( ) ( ) ( )( )( )( ) ( ) ( )( ) ( ) ( )( ) ( )
( ) ( )

,x t A t A t t x t B t u t F t t

y t Cx t

θ θ δ θ θ θ ϕ⎧ = + Δ + +⎪
⎨
⎪ =⎩

��
 (42) 

 

with ( ) ( ) ( ) ( )
( ) ( ) ( )

3 2
1 2

1 2 1

0 0 1 0
0 0 0 1

0
0

s d

s d

A
k b c g k b

k c acg k c

θ η θ
η θ η θ

η θ η θ η θ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥− −
⎢ ⎥−⎣ ⎦

,  

( )( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )23
2

2 2
1 2

0 0 0 0
0 0 0 0

, 0 0 0

0 0 0

a a aA H t Nbc

c

θ δ θ η θ θα δ θ η θ

α δ θ η θ η θ

⎡ ⎤
⎢ ⎥
⎢ ⎥

Δ = = Δ⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

� �

�

, ( ) ( )a t δ θΔ = � , 

0
1
0
0

T

aN

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 

( ) ( ) ( )
( ) ( )

3 2
2

2 2
1 2

0
0

aH
bc

c

θ η θ
α η θ

α η θ η θ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦

, ( ) ( )

( )

3

1

0
0

B
b

c

θ η θ

η θ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦

, ( ) ( ) ( )
( )

3
1

1

0 0
0 0

F
b c

c a

θ η θ
η θ

η θ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥−⎣ ⎦

, 



 
 

 

1 0 0 0
0 1 0 0

C ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 and where, for [ ]0 0,θ θ θ∈ − , ( ) [ ]1 cos ,1η θ θ β= ∈  with 0cosβ θ= , 

( ) [ ]2
sin ,1θη θ ρ

θ
= ∈  with 0

0

sinθρ
θ

= , and ( )3 2 2 2 2 2

1 1 1,
cosab c ab c ab c

η θ
θ β

⎡ ⎤
= ∈ ⎢ ⎥− − −⎣ ⎦

 are bounded 

nonlinearities.  

 

Therefore, one may apply the sector nonlinearity approach (Tanaka & Wang, 2001) such that: 

 

( ) ( )

( )( )

( ) ( )

( )( )

( )

11 12

1 1
1

1
1

1 1
w t w tθ θ

η θ β η θ
η θ β

β β
− −

= +
− −��	�
 ��	�


 (43) 

( ) ( )

( )( )

( ) ( )

( )( )

( )

21 22

2 2
2

1
1

1 1
w t w tθ θ

η θ ρ η θ
η θ ρ

ρ ρ
− −

= +
− −��	�
 ��	�


 (44) 

( )
( ) ( ) ( )( )

( )
( )( )

( ) ( ) ( )( )
( )

( )( )31 32 1

2 2 2 2 2 2
3 2

3 2 2 22 2 2 2

1 11 1
1 1

w t w t

ab c ab c ab c ab c

ab c ab cc c
θ θ

β η θ β η θ
η θ

ββ β

− − − − − −⎛ ⎞ ⎛ ⎞= + ⎜ ⎟⎜ ⎟− −− − ⎝ ⎠⎝ ⎠�������	������
 �������	������

 (45) 

 

leading to define the 8 following membership functions as ( ) ( ) ( ) ( )1 11 21 31h w w wθ θ θ θ= , 

( ) ( ) ( ) ( )2 11 21 32h w w wθ θ θ θ= , ( ) ( ) ( ) ( )3 11 22 31h w w wθ θ θ θ= , ( ) ( ) ( ) ( )4 11 22 32h w w wθ θ θ θ= , 

( ) ( ) ( ) ( )5 12 21 31h w w wθ θ θ θ= , ( ) ( ) ( ) ( )6 12 21 32h w w wθ θ θ θ= , ( ) ( ) ( ) ( )7 12 22 31h w w wθ θ θ θ= , 

( ) ( ) ( ) ( )8 12 22 32h w w wθ θ θ θ=  and the relevant 8 rules uncertain T-S model of the crane given by: 

 

( ) ( )( ) ( )( ) ( ) ( ) ( )( )
( ) ( )

8

1
i i i i i

i
x t h t A A t x t B u t F t

y t Cx t

θ ϕ
=

⎧ = + Δ + +⎪
⎨
⎪ =⎩

∑�
 (46) 



 
 

 

 

with 
2

1 2 2 2 2 2 2

2 2 2 2 2 2

0 0 1 0
0 0 0 1

0

0

s d

s d

k b k bc gA
ab c ab c ab c

k c k cacg
ab c ab c ab c

β β β

β β β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= − −⎢ ⎥
− − −⎢ ⎥

⎢ ⎥
−⎢ ⎥

− − −⎣ ⎦

, 
2

2 2 2 22

2 2 2

0 0 1 0
0 0 0 1

0

0

s d

s d

k b k bc gA
ab c ab c ab c
k c k cacg

ab c ab c ab c

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= − −⎢ ⎥

− − −⎢ ⎥
⎢ ⎥

−⎢ ⎥− − −⎣ ⎦

 ,  

2

3 2 2 2 2 2 2

2 2 2 2 2 2

0 0 1 0
0 0 0 1

0

0

s d

s d

k b k bc gA
ab c ab c ab c

k c k cacg
ab c ab c ab c

ρ
β β β

ρ
β β β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= − −⎢ ⎥
− − −⎢ ⎥

⎢ ⎥
−⎢ ⎥

− − −⎣ ⎦

, 
2

4 2 2 2

2 2 2

0 0 1 0
0 0 0 1

0

0

s d

s d

k b k bc gA
ab c ab c ab c
k c k cacg

ab c ab c ab c

ρ

ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= − −⎢ ⎥

− − −⎢ ⎥
⎢ ⎥

−⎢ ⎥− − −⎣ ⎦

,  

2

5 2 2 2 2 2 2

2 2 2 2 2 2

0 0 1 0
0 0 0 1

0

0

s d

s d

k b k bc gA
ab c ab c ab c

k c k cacg
ab c ab c ab c

β
β β β

β β
β β β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= − −⎢ ⎥
− − −⎢ ⎥

⎢ ⎥
−⎢ ⎥

− − −⎣ ⎦

, 
2

6 2 2 2

2 2 2

0 0 1 0
0 0 0 1

0

0

s d

s d

k b k bc gA
ab c ab c ab c
k c k cacg

ab c ab c ab c

β

β β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= − −⎢ ⎥

− − −⎢ ⎥
⎢ ⎥

−⎢ ⎥− − −⎣ ⎦

,  

2

7 2 2 2 2 2 2

2 2 2 2 2 2

0 0 1 0
0 0 0 1

0

0

s d

s d

k b k bc gA
ab c ab c ab c

k c k cacg
ab c ab c ab c

βρ
β β β

β βρ
β β β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= − −⎢ ⎥
− − −⎢ ⎥

⎢ ⎥
−⎢ ⎥

− − −⎣ ⎦

, 
2

8 2 2 2

2 2 2

0 0 1 0
0 0 0 1

0

0

s d

s d

k b k bc gA
ab c ab c ab c
k c k cacg

ab c ab c ab c

βρ

β βρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= − −⎢ ⎥

− − −⎢ ⎥
⎢ ⎥

−⎢ ⎥− − −⎣ ⎦

, 

1 3 2 2

2 2

0
0
bB B

ab c
c

ab c

β

β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= = ⎢ ⎥−⎢ ⎥
⎢ ⎥
−⎢ ⎥−⎣ ⎦

, 2 4 2

2

0
0
bB B

ab c
c

ab c

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= = ⎢ ⎥−⎢ ⎥
⎢ ⎥−⎢ ⎥−⎣ ⎦

, 5 7 2 2

2 2

0
0
bB B

ab c
c

ab c

β
β

β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= = ⎢ ⎥−⎢ ⎥
⎢ ⎥
−⎢ ⎥−⎣ ⎦

, 6 8 2

2

0
0
bB B

ab c
c

ab c
β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= = ⎢ ⎥−⎢ ⎥
⎢ ⎥−⎢ ⎥−⎣ ⎦

, 



 
 

 

1 3 2 2 2 2

2 2 2 2

0 0
0 0
b cF F

ab c ab c
c a

ab c ab c

β β

β β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= = −⎢ ⎥− −⎢ ⎥
⎢ ⎥
−⎢ ⎥− −⎣ ⎦

, 2 4 2 2

2 2

0 0
0 0
b cF F

ab c ab c
c a

ab c ab c

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= = −⎢ ⎥− −⎢ ⎥
⎢ ⎥−⎢ ⎥− −⎣ ⎦

,  

5 7 2 2 2 2

2 2 2 2

0 0
0 0
b cF F

ab c ab c
c a

ab c ab c

β
β β

β
β β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= = −⎢ ⎥− −⎢ ⎥
⎢ ⎥
−⎢ ⎥− −⎣ ⎦

, 6 8 2 2

2 2

0 0
0 0
b cF F

ab c ab c
c a

ab c ab c

β

β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= = −⎢ ⎥− −⎢ ⎥
⎢ ⎥−⎢ ⎥− −⎣ ⎦

, 
2

1 2 2

2 2

2 2

0
0

a
bcH

ab c
c

ab c

α
β

α
β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
−⎢ ⎥

⎢ ⎥
−⎢ ⎥

−⎣ ⎦

,  

2

2 2

2 2

2

0
0

a
bcH

ab c
c

ab c

α

α

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥

−⎢ ⎥
⎢ ⎥
−⎢ ⎥−⎣ ⎦

, 
2

3 2 2

2 2

2 2

0
0

a
bcH

ab c
c

ab c

α ρ
β

α ρ
β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
−⎢ ⎥

⎢ ⎥
−⎢ ⎥

−⎣ ⎦

, 
2

4 2

2 2

2

0
0

a
bcH
ab c
c
ab c

α ρ

α ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥

−⎢ ⎥
⎢ ⎥
−⎢ ⎥−⎣ ⎦

, 
2

5 2 2

2 2

2 2

0
0

a
bcH

ab c
c

ab c

α
β

α β
β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
−⎢ ⎥

⎢ ⎥
−⎢ ⎥

−⎣ ⎦

,  

2

6 2

2 2

2

0
0

a
bcH

ab c
c
ab c

α

α β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥

−⎢ ⎥
⎢ ⎥
−⎢ ⎥−⎣ ⎦

, 
2

7 2 2

2 2

2 2

0
0

a
bcH

ab c
c
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⎢ ⎥
⎢ ⎥
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−⎢ ⎥
⎢ ⎥
−⎢ ⎥−⎣ ⎦

. 

 

For simulation purpose, the maximal angular velocity has been set as 14 rad sα π −= ⋅  and the maximal 

angular position as 0 2
πθ = . A convenient non-PDC SOFC (6) has been designed through theorem 2 and 

the Matlab LMI toolbox with the bounds of the membership functions sets as 10iφ = − . The result is 

given by the following gain matrices for a minimal attenuation level 0.8341λ = : 

5
1

0.9667 0
0 0.9588

W ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
, 5

2

0.9668 0
0 0.9588

W ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
, 5

3

0.9663 0
0 0.9588

W ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
, 5

4

0.9675 0
0 0.9588

W ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
,  



 
 

 

5
5

0.964 0
0 0.9588

W ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
, 5

6

0.9639 0
0 0.9588

W ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
, 5

7

0.9646 0
0 0.9588

W ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
, 5

8

0.9638 0
0 0.9588

W ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
,  

[ ]1 0.2202 -0.0009L = , [ ]2 0.2555 -0.0021L = , [ ]3 0.2245 -0.0001L = , [ ]4 0.2202 -0.0007L = , 

[ ]5 0.1238 0.0022L = , [ ]6 0.0906 0.0033L = , [ ]7 0.1793 0.002L =  and [ ]8 0.1612 0.0011L = . 

 

For simulation purpose, the external disturbances ( )1 tϕ  and ( )2 tϕ  has been respectively set as white 

noises with unit variance characterized by bounded energy added to steps such that 1 10ϕ ≈  for 

[ ]1 , 2t s s∈  ( 0  elsewhere), and 2 10ϕ ≈ −  for [ ]3 ,3.5t s s∈  ( 0  elsewhere). Simulations where performed 

with and without external disturbance to highlight the efficiency of the H∞  attenuation. Fig 6 and 7 

show respectively the system’s state, the control signal and the disturbance evolutions for the initial 

conditions ( )0 1 0 0
4

T

x π⎡ ⎤= ⎢ ⎥⎣ ⎦
. It can be conclude that the synthesized robust non-PDC SOFC is 

correctly controlling the crane system in spite of the presence of external disturbances. 

 

7. Conclusion 

In this paper, the problem of robust static output feedback stabilization for continuous time uncertain 

and disturbed Takagi-Sugeno models has been considered. A non-PDC static output feedback control 

law has been proposed and its design has been involved through a fuzzy Lyapunov approach. Thanks to 

the descriptor redundancy, crossing terms have been avoided in the closed-loop dynamic formulation 

and so LMI conditions have been obtained without any assumptions on the output equation of the 

considered TS model. Then, a H∞  criterion has been employed to derive conditions which ensure a 

minimal attenuation level of external disturbances. It has been shown that the proposed SOFC based 

design lead to low conservatism results regarding to previous works. Moreover, it has been emphasis 



 
 

 

that, thank to the uncertain TS modeling, such approach is suitable for the design of a robust non-PDC 

static output feedback controller without the need of unmeasurable variables estimations. Finally, two 

academic examples has been considered to illustrate the efficiency the proposed fuzzy Lyapunov based 

SOFC design.  
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Fig. 1: Attenuation level λ  for several values of 1φ  (example 1). 
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Fig. 2: Time responses of the T-S system’s states with external disturbances (example 2) 
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 Fig. 3: Evolution of the outputs of the T-S systems with external disturbances (example 2) 

 

0 5 10 15
-1.5

-1

-0.5

0

0.5

Time (s)

u(
t)

0 5 10 15
0

0.5

1

1.5

Time (s)

φ(
t)

 
Fig. 4: Evolution of the control signal and external disturbances (example 2). 
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Fig.5. Crane system (example3). 

Table 1. Model parameters of the crane system (example 3). 

Parameters Designation Value 

m  Pendulum mass ( )10 kg  

M  Cart mass ( )3 kg  

sk  Spring stiffness 10  

dk  Damping coefficient 10 

L  Length of the pendulum ( )0.5  m  

yyI  Inertia of the pendulum around the yG  axis ( )20.3 /kg m  

g  Gravity acceleration ( )29.81 /m s  

( )r t  Position of the cart along the xG  axis ( )m−  

( )tθ  Pendulum angular position ( ) rad−  

( )u t  Input signal (Force on the cart within xG ) ( ) Nm−  
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Fig. 6. Evolution of the states of the crane system (example 3). 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

u(
t)

 

 
with disturbances
without disturbances

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0
5

10

φ 1(t)

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-10
-5
0

φ 2(t)

 

 

 

Fig. 7. Evolution of the control signal and external disturbances (example 3). 


