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This work concerns robust static output feedback controller (SOFC) design for uncertain and disturbed Takagi-Sugeno (TS) systems using an H-infinity criterion. The main result is based on a descriptor formulation of the closed-loop dynamics. The proposed approach allows avoiding appearance of crossing terms between the controller's and the TS system's input matrices leading to easier LMI formulation than existing studies in the literature. Moreover, the proposed SOFC design conditions don't require any restrictions on the output equation and allow dealing with unmeasurable premise variables. Indeed, taking advantage of the uncertain TS modeling, nonlinearities associated to unmeasurable premises variables can be reported from the nominal part to the uncertainties. To provide LMIs of less conservatism, the results are conducted in the non-quadratic framework. Finally, two numerical examples and a benchmark of a crane system are proposed to illustrate the efficiency of the SOFC design methodology.

Introduction

Takagi-Sugeno fuzzy systems [START_REF] Takagi | Fuzzy identification of systems and its applications to modeling and control[END_REF] have shown their interests since they allow extending some of the linear control concepts to the nonlinear cases (Takagi and Wang, 2001). Indeed, a TS fuzzy model is a collection of linear time invariant systems blended together with nonlinear membership functions. Therefore, convenient control approaches for such systems have been proposed through the concept of Parallel Distributed Compensation (PDC) (Takagi and Wang, 2001;[START_REF] Sala | Perspectives of fuzzy systems and control[END_REF]. PDC controllers design has been studied using a quadratic Lyapunov functions, see (Takagi and Wang, 2001;Takagi et al., 1996;[START_REF] Sala | Perspectives of fuzzy systems and control[END_REF] and references therein. These approaches remain conservative since they need to find common Lyapunov matrices for a set of linear matrix inequalities (LMI) constraints. Thus, many ways have been proposed to relax these conditions. For instance, relaxation schemes have been developed based on rewriting the closed-loop interconnection structure of the considered control plant [START_REF] Xiaodong | New approaches to H∞ controller design based on fuzzy observers for fuzzy T-S systems via LMI[END_REF][START_REF] Tuan | Parametrized linear matrix inequality techniques in fuzzy control design[END_REF]. Other works have considered piecewise Lyapunov functions [START_REF] Johansson | Piecewise quadratic stability of fuzzy systems[END_REF] and, more accurately with the fuzzy aggregation of TS models, through a non-quadratic approach (also called fuzzy Lyapunov approach) [START_REF] Tanaka | A multiple Lyapunov function approach to stabilization of fuzzy control systems[END_REF][START_REF] Guerra | LMI based relaxed nonquadratic stabilizations for nonlinear systems in the Takagi-Sugeno's form[END_REF][START_REF] Rhee | A new Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF][START_REF] Feng | A Survey on Analysis and Design of Model-Based Fuzzy Control Systems[END_REF][START_REF] Lam | LMI-based stability and performance conditions for continuous-time nonlinear systems in Takagi-Sugeno's form[END_REF][START_REF] Chang | Relaxed stabilization conditions for continuous-time Takagi-Sugeno fuzzy control systems[END_REF][START_REF] Guerra | Non-quadratic local stabilization for continuous-time Takagi-Sugeno models[END_REF]. For a review of relaxation issues, one can refer to [START_REF] Sala | On the conservativeness of fuzzy and fuzzy-polynomial control of nonlinear systems[END_REF].

Among control theory, regarding to output stabilization of TS fuzzy models, many works have been done for observer-based controller (OBC) design [START_REF] Tanaka | Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs[END_REF][START_REF] Ma | Analysis and design of fuzzy controller and fuzzy observer[END_REF][START_REF] Yoneyama | Output stabilization of Takagi-Sugeno fuzzy systems[END_REF][START_REF] Yoneyama | Design of output feedback controllers for Takagi-Sugeno fuzzy systems[END_REF][START_REF] Guerra | Conditions of output stabilization for nonlinear models in the Takagi-Sugeno's form[END_REF][START_REF] Mansouri | Output feedback LMI tracking control conditions with H∞ criterion for uncertain and disturbed T-S models[END_REF], dynamic output feedback controller (DOFC) design in both the quadratic and the non-quadratic case [START_REF] Li | Dynamic parallel distributed compensation for Takagi-Sugeno fuzzy systems: An LMI approach[END_REF][START_REF] Assawinchaichote | Output feedback control design for uncertain singularly perturbed systems: an LMI approach[END_REF][START_REF] Nguang | Robust H∞ output feedback control design for fuzzy dynamic systems with quadratic stability constraints: An LMI approach[END_REF][START_REF] Zerar | Linear fractional transformation based H-infinity output stabilization for Takagi-Sugeno fuzzy models[END_REF][START_REF] Guelton | Fuzzy Lyapunov LMI based output feedback stabilization of Takagi-Sugeno systems using descriptor redundancy[END_REF][START_REF] Guelton | Dynamic output feedback fuzzy Lyapunov stabilization of Takagi-Sugeno systems -a descriptor redundancy approach[END_REF]. Static Output Feedback Controllers (SOFC) are of some interests for practical applications since they only require available signals from the plant to be controlled and doesn't need any online differential equation solving, so reducing online computational cost [START_REF] Syrmos | Static output feedback -A survey[END_REF]. In [START_REF] Huang | Robust H∞ static output feedback control of fuzzy systems: An ILMI approach[END_REF] and [START_REF] Huang | Static output feedback controller design for fuzzy systems: An ILMI approach[END_REF], SOFC design methodologies for TS fuzzy systems are proposed in terms of Bilinear Matrix Inequalities instead of LMI. In [START_REF] Chadli | Static output feedback for Takagi-Sugeno systems: an LMI approach[END_REF], LMI conditions have been proposed. However, in these studies, some restrictive modeling assumptions have been made such that the output equation must be linear (full column rank matrix) and without direct transfers from the inputs to the outputs. Note that these restrictions are due to the occurrence of crossing terms in the closed-loop formulation [START_REF] Zerar | Linear fractional transformation based H-infinity output stabilization for Takagi-Sugeno fuzzy models[END_REF][START_REF] Syrmos | Static output feedback -A survey[END_REF][START_REF] Zhou | Robust optimal control[END_REF].

Moreover, the results proposed in these previous studies being quadratic, they may suffer from conservatism. Note also that, unmeasurable premises constitute an important problem in static output feedback since it is somewhat difficult to estimate unmeasured variables without introducing a dynamical equation (observer) in the feedback and so reduce the applicative interest of SOFC. This problem has been seldom treated in the literature dealing with SOFC for TS systems and has been the topic of a very recent work where premises selection in SOFC fuzzy structure has been proposed [START_REF] Tognetti | Reduced-order dynamic output feedback control of continuous-time T-S fuzzy systems[END_REF].

In [START_REF] Tanaka | A Descriptor System Approach to Fuzzy Control System Design via Fuzzy Lyapunov Functions[END_REF], a descriptor redundancy formulation has been employed to derive new nonquadratic LMI stability conditions for state feedback PDC controllers. One of the interests of such approach is that it allows decoupling crossing terms in the closed-loop dynamics formulation (Bouarar et al., 2010). Therefore, based on this property, LMI based non-quadratic robust DOFC design has been proposed in [START_REF] Guelton | Fuzzy Lyapunov LMI based output feedback stabilization of Takagi-Sugeno systems using descriptor redundancy[END_REF][START_REF] Guelton | Dynamic output feedback fuzzy Lyapunov stabilization of Takagi-Sugeno systems -a descriptor redundancy approach[END_REF]. Following this way, one of our preliminary studies has dealt with SOF controller design [START_REF] Bouarar | Static output feedback controller design for Takagi-Sugeno systems -A fuzzy Lyapunov LMI approach[END_REF]. In the latter, in aid of the redundancy property, non-quadratic LMI based SOFC design using a fuzzy Lyapunov approach for nominal TS systems has been proposed. However, this preliminary result isn't relevant in the case of unmeasurable premises. Note that the above described studies dealing with continuous time TS models, complementary works has been recently done in the discrete time framework (which is reputed more favorable than the continuous time case for LMI purposes). Indeed, the descriptor redundancy has been recently used for OBC or SOFC design for discrete-time fuzzy models [START_REF] Chang | A descriptor representation approach to observer-based H∞ control synthesis for discrete-time fuzzy systems[END_REF][START_REF] Chadli | LMI solutions for robust static output feedback control of Takagi-Sugeno fuzzy models[END_REF].

The goal of this paper is to propose a descriptor redundancy approach leading to strict LMI based robust non-quadratic SOFC design for the class of continuous time uncertain and disturbed TS systems without any restrictions on the output equations. Taking advantage of the uncertain plant, it will be emphasis through an example how this modeling approach is relevant to deals with unmeasured premise variables for SOFC design. Moreover, the non-quadratic framework will be considered with recent conservatism improvements (Mozelli et al., 2009b). This paper is organized as follows. First, convenient notations and lemma will be described. Then, in section 3, the problem statement of robust SOFC design for TS fuzzy models is presented with highlights on the descriptor redundancy approach and unmeasurable premises. Afterward, relaxed nonquadratic LMI based robust SOFC design conditions are proposed for the considered class of uncertain TS fuzzy models. Then, an extension to uncertain TS models subject to external disturbances is proposed by the use of a H ∞ criterion. Finally, two numerical examples are provided to show the effectiveness of the proposed approach and an engineering example of a crane system is proposed as a benchmark in simulation.

Notations and Lemma

In the sequel, when there is no ambiguity, the time t in a time varying variable will be omitted for space convenience. As usual, in a matrix, ( ) * indicates a symmetrical transpose quantity. Moreover I denotes an identity matrix with appropriate dimension. Let us consider ( ) i h z as scalar convex functions, the matrices i Y and ij T for,

{ } 1, , i r ∈ … and { } 1, , j l ∈ … , with appropriate dimensions, we will denote ( ) 1 r h i i i Y h z Y = = ∑ , ( ) ( ) 1 1 r r hh k i ik k i T h z h z T = = = ∑∑
. Finally, one denotes ( )

1 r i i i h d h z X X dt = ⎛ ⎞ ⎜ ⎟ ⎝ ⎠ = ∑ and ( ) ( ) 1 1 1 r i i i h d h z X X dt - - = ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ = ∑ i .
The following lemmas will be useful in the following sections to lead to and to relax LMI conditions.

Lemma 1 [START_REF] Zhou | Robust stabilization of linear systems with norm-bounded timevarying uncertainty[END_REF]:

For real matrices X and Y with appropriate dimensions and a positive scalar ε , we have:

1 T T T T X Y Y X X X Y Y ε ε - + ≤ + (1)
Lemma 2 [START_REF] Tuan | Parametrized linear matrix inequality techniques in fuzzy control design[END_REF]: Consider the Parameterized Matrix Inequality (PMI) given by: ( ) ( )

1 1 0 r r k i i k k i h z h z = = Ω < ∑∑ (2)
with ( )

0 i h z ≥ and ( ) 1 1 r i i h z = = ∑ .
The PMI (2) is verified if the matrix inequalities (3) and (4) hold:

0 ii Ω < , for all , 1, 2,..., i j r = (3) 
( )

1 1 0 1 2 ii ij ji r Ω + Ω + Ω < - , for 1 i j r ≤ ≠ ≤ , (4) 
Note that there exist numerous relaxation schemes in the literature which can be used without affecting the mathematical development of the results proposed below, for a review on these techniques, see [START_REF] Sala | On the conservativeness of fuzzy and fuzzy-polynomial control of nonlinear systems[END_REF]. Nevertheless, the one presented in lemma 2 [START_REF] Tuan | Parametrized linear matrix inequality techniques in fuzzy control design[END_REF] constitutes a good compromise between conservatism and computational cost since it doesn't require additional slack variables.

Problem statement

Let us consider the class of uncertain and disturbed TS fuzzy systems described by:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 
1 1 r i i i i i i i r i i i i i i i x t h z t A A t x t B B t u t F t y t h z t C C t x t D D t u t G t ϕ ϕ = = ⎧ = + Δ + + Δ + ⎪ ⎪ ⎨ ⎪ = + Δ + + Δ + ⎪ ⎩ ∑ ∑ (5)
where r represents the number of fuzzy rules. ( ) 

1 1 r i i h z t = = ∑ . n n i A × ∈ , n m i B × ∈ , q n i C × ∈ , q m i D × ∈ , d n i F × ∈ , d q i G × ∈ are real matrices. ( ) n n i A t × Δ ∈ , ( ) n m i B t × Δ ∈ , ( ) q n i C t × Δ ∈ and 
( ) q m i D t × Δ ∈
) ( ) ( ) T s s i i f t f t I ≤ .
Let us consider the following non-PDC SOFC:

( ) ( ) ( ) ( ) ( ) ( ) 1 5 1 1 r r i i i i i i u t h z t L h z t W y t - = = ⎛ ⎞ ⎛ ⎞ = ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ∑ ∑ (6)
where 1 m q L × ∈ and 5

q q i W × ∈
are real gain matrices to be synthesized.

Remark 1: To be coherent with the aim of SOFC which is to control a dynamical system from the only knowledge of measurable signals, the premises vector ( ) z t is required to depend only on the inputs ( ) u t , the outputs ( ) y t and, eventually on measurable state variables. Therefore, in the case where unmeasurable variables ( ) z t exists in the nonlinear model to be controlled, it is still possible to report these nonlinearities from the nominal part to the uncertainties of the relevant uncertain TS model (5) to design a robust non-PDC SOFC (6) composed of membership functions ( ) ( ) i h z t which are strictly independent of ( ) z t . Therefore, the robust static output feedback controller design proposed in the sequel cope with unmeasurable premises variables. The benefit of uncertain TS modeling in the case of unmeasured variables will be illustrated through the example of a crane system provided in section 6.3.

The classical way to write a closed-loop dynamics consists on substituting (6) into (5) leading, with the above defined notations, to:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 1 5 5 1 1 1 5 5 h h h h h h h h h h h h h h h h x t A B L W I D L W C x t B L W I D L W G t F t ϕ ϕ - - - - - - ⎛ ⎞ = + - ⎜ ⎟ ⎝ ⎠ + - + (7) 
where ( )

h h h A A A t = +Δ , ( ) h h h B B B t = +Δ , ( ) h h h C C C t = +Δ and ( ) ( ) h h h D D D t y t = +Δ .
Hence, the closed-loop dynamics (7) involves numerous crossing terms between the gains ( )

1 5 h h L W - and the system's matrices h C , h C Δ , h B , h B Δ , h D and h D Δ .
This leads to a strong difficulty to obtain convenient LMI conditions for the design of SOFC (6). Indeed, previous studies on SOFC design have reduced the problem by making restrictive assumptions such as C common and column full rank matrices, 0 h D = and without uncertainties in the output equation (Huang and Nguang, 2006; Huang and Nguang, 2007; Chadli et al., 2002). In the sequel, we will see how this problem of crossing terms in the closed-loop dynamics may be overcame.

In (Guelton et al., 2008; Guelton et al., 2009), LMI based design for DOFC controllers has been proposed in aid of a descriptor approach. These ones are based on an interesting property called the descriptor redundancy (Tanaka et al., 2007; Bouarar et al., 2010; Chen, 2004). In the present study, taking advantage of a redundancy formulation for decoupling crossing terms occurring in (7), equations

(5) and ( 6) can be easily rewritten as:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 h h h h h h h h h h x t A A t x t B B t u t F t y t y t C C t x t D D t u t G t ϕ ϕ ⎧ = +Δ + +Δ + ⎪ ⎨ = - + + Δ + + Δ + ⎪ ⎩ (8) and ( ) ( ) ( ) ( ) 1 5 0 h h u t u t L W y t - = - + (9) 
Note that the redundancy consists on introducing virtual dynamics in the output equations of (8) and in the control law (9). Then, considering the extended state vector ( )

( ) ( ) ( ) T T T T x t x t y t u t ⎡ ⎤ = ⎣
⎦ , the closed-loop dynamics can be expressed by the following descriptor:

( ) ( ) ( ) ( ) ( ) hh h h Ex t A A t x t F t ϕ = +Δ + (10) with 0 0 0 0 0 0 0 0 I E ⎡ ⎤ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , ( ) 
1 5 0 0 h h hh h h h h A B A C I D L W I - ⎡ ⎤ ⎢ ⎥ = - ⎢ ⎥ ⎢ ⎥ - ⎣ ⎦ , ( ) ( ) () ( ) ( ) 0 0 0 0 0 h h h h h A t B t A t C t D t Δ Δ ⎡ ⎤ ⎢ ⎥ Δ = Δ Δ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ and 0 h h h F F G ⎡ ⎤ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ .
Therefore, ( 5) is stabilized via the control law ( 6) if ( 10) is stable. Thus, the goal is now to provide sufficient LMI stability conditions allowing to find the matrices h L and 5 h W ensuring the stability of ( 10)

. Unlike previous studies on static output feedbackfor continuous time TS models (Huang and Nguang, 2006; Huang and Nguang, 2007; Chadli et al., 2002) where the quadratic stability conditions are not strictly LMI, writing the closed-loop system (10) by the use of descriptor redundancy allows to avoid appearance of crossing terms between the state space matrices and the controller's ones. Therefore, the benefit of this descriptor formulation will be emphasized in the following section since it makes easier to obtain strict LMI based non-quadratic stability conditions without restrictions on the output equation of (5).

LMI based conditions for SOFC design

The main result is presented in this section. Let us first focus on the non-quadratic stabilization of uncertain TS systems (5) but without external disturbances ( ( ) (with ( ) 0 t ϕ = ) is asymptotically stable via the non-PDC SOFC (6) if there exist, for all combinations of 1, 2,..., i r =

0 t ϕ = ).
, 1 i j r ≤ ≠ ≤ and 1, 2,..., k r = , the matrices ( )

1 1 0 T j j W W = > , 5 j W , 7 j W , 8 j W , 9 j W , i L , ij R and the scalars 1a ij ε , 1c ij ε , 7b ij ε , 7d ij ε , 8b ij ε , 8d ij ε , 9b ij ε and 9d ij
ε such that the following LMI conditions are satisfied:

0 ii Γ < (11) 
( )

1 1 0 1 2 ii ij ji r Γ + Γ + Γ < - ( 12 
) 1 0 k i j W R + ≥ (13) 
where

T ij ij ij ij ij ij H ⎡ ⎤ ϒ + Ζ Γ = ⎢ ⎥ Ζ -Ρ ⎢ ⎥ ⎣ ⎦ , ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 
)

1 1 7 7 1 1 8 1 7 5 5 8 8 9 7 9 8 9 9 r T T T k i j j i i j j i k ij k T T T T T ij j i i j i j j j i j j i T T T T T j i j j i i j j j AW W A BW W B W R W B CW DW W W DW W D W B W W D L W W W φ = ⎡ ⎤ + + + - + * * ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ϒ = + + -- + + * ⎢ ⎥ ⎢ ⎥ - +- -- ⎢ ⎥ ⎣ ⎦ ∑ , ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 7 8 9 1 7 8 9 0 0 0 0 T T T T a a a b b b b b c c c d d d ij i i ij ij ij i i ij i i ij i i T d d d d ij ij ij i i H H H H H H H H H H H ε ε ε ε ε ε ε ε ⎡ ⎤ + + + + + ⎢ ⎥ ⎢ ⎥ = + ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , 1 7 1 8 7 8 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a i j b i j c i j b i j ij d i j d i j b i j d i j N W N W N W N W N W N W N W N W ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ Ζ = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ and 1 7 1 8 7 8 9 9 a b c b d d b d ij ij ij ij ij ij ij ij ij diag I I I I I I I I ε ε ε ε ε ε ε ε ⎡ ⎤ Ρ = ⎣ ⎦ .
Proof: Let us consider the non-quadratic candidate fuzzy Lyapunov function given by:

( ) ( ) ( ) ( ) ( ) 1 T h v x t x t E W x t - = (14) 
For ( 16) being a Lyapunov function one needs

( ) ( ) 0 v x t > , ( ) ( ) 0 v x t < .
Thus, classically for descriptor systems, see e.g. [START_REF] Taniguchi | Fuzzy descriptor systems and nonlinear model following control[END_REF][START_REF] Bouarar | LMI Stability Conditions for Takagi-Sugeno Uncertain Descriptors[END_REF], one needs:

( ) ( ) 1 T h h E W W E - - = (15) 
Therefore, let us consider

1 2 3 4 5 6 7 8 9 h h h h h h h h h h W W W W W W W W W W ⎡ ⎤ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦
. Multiplying (15), left by T h W and right by h W , one has

T h h W E EW = which leads to ( ) 1 1 0 T h h W W = > (ensuring ( ) ( ) 0 v x t > ), 2 0 h W = and 3 0 h W = .
Then, the closed-loop system (10) is stable if:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 1 0 T T T h h h v x t x t E W x t x t E W x t x t E W x t - - - = + + < i (16)
Considering ( 10), ( 16) is obviously satisfied if:

( ) ( )( ) ( ) ( ) ( ) ( ) 1 1 0 T T T hh h h h hh h h A A t W W A A t E W - - - + Δ + + Δ + < i (17)
Multiplying left by T h W and right by h W and since 0

T h h W E EW = > , (17) yields: ( ) ( ) ( ) ( ) ( ) 1 0 T T T h h h h h h h h h h h W A A t A A t W EW W W - + Δ + + Δ + < i (18)
It is well-known that ( )

1 h h h h W W W W - = - i
, see e.g. [START_REF] Bouarar | Stabilization of uncertain Takagi-Sugeno descriptors: a fyzzy Lyapunov approach[END_REF]. Thus ( 18) can be rewritten as:

( )

0 hhh hh h t EW Ψ +ΔΨ - < (19) 
with

T T hhh h hh hh h W A A W Ψ = + and ( ) ( ) ( ) T T hh h h h h t W A t A t W ΔΨ = Δ + Δ .
Extending hhh Ψ with matrices defined in (10), it yields:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 7 7 8 1 4 7 5 5 8 8 1 3,3 9 5 4 7 6 9 8 T T T h h h h h h h h T T T T T hhh h h h h h h h h h h h h h T T T T T h h h h h h h h h h h h h h A W W A B W W B W B C W W DW W W DW W D W B L W W W W W D L W - ⎡ ⎤ + + + * * ⎢ ⎥ ⎢ ⎥ Ψ = + - + -- + + * ⎢ ⎥ ⎢ ⎥ + - - + + - Ψ ⎢ ⎥ ⎣ ⎦ (20) where ( ) ( ) ( ) ( ) ( ) ( ) 1 1 3,3 5 6 6 5 9 9 T T T T hhh h h h h h h h h L W W W W L W W - - Ψ = + - -
Let us recall that, due to the nature of the candidate Lyapunov function ( 14), 4 5 9 , ,..., 

)

1 1 7 7 8 1 7 5 5 8 8 9 7 9 8 9 9 T T T h h h h h h h h T T T T T hh h h h h h h h h h h h h T T T T T h h h h h h h h h A W W A B W W B W B C W D W W W D W W D W B W W D L W W W ⎡ ⎤ + + + * * ⎢ ⎥ ⎢ ⎥ Ψ = + + -- + + * ⎢ ⎥ ⎢ ⎥ - + - -- ⎢ ⎥ ⎣ ⎦ (21) 
Now, extending ( )

hh t ΔΨ , it yields: ( ) ( ) ( ) () ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (1,1) (2,1) 8 8 9 9 0 hh T T T T d d d d d d hh hh h h h h h h h h T T T T T T T T b b b d d d h h h h h h h h t t t W N f t H H f t N W W N f t H W N f t H ⎡ ⎤ ΔΨ * * ⎢ ⎥ ⎢ ⎥ ΔΨ = ΔΨ + * ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ (22) with ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (1,1) 1 1 7 7 T T T T T T T a a a a a a b b b b b b hh h h h h h h h h h h h h h h h h t W N f t H H f t N W W N f t H H f t N W ΔΨ = + + + and ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (2,1) t W N f t H H f t N W H f t N W ΔΨ = + +
Expression ( 22) can be bounded using lemma 1 such that:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (1,1) (2,2) 1 1 9 9 9 9 9 9 0 0 0 hh hh hh hh T T T T b b b d d d h h h h h h h h h h h h t W N N W W N N W ε ε - - ⎡ ⎤ ΔΨ * * ⎢ ⎥ ΔΨ ≤ ΔΨ = ΔΨ * ⎢ ⎥ ⎢ ⎥ + ⎢ ⎥ ⎣ ⎦ (23) 
with:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (1,1) 1 7 8 9 1 7 1 1 1 1 1 7 7 7 T T T T a a a b b b b b c c c d d d hh hh h h hh hh hh h h hh h h hh h h T T T a a a b b b hh h h h h hh h h h h H H H H H H H H W N N W W N N W ε ε ε ε ε ε ε ε - - ΔΨ = + + + + + + + and ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 (2,2) 8 9 1 1 1 8 8 8 1 1 7 7 7 8 8 8 T T T T T d d d d c c c b b b hh hh hh h h hh h h h h hh h h h h T T T T d d d d d d hh h h h h hh h h h h H H W N NW W N NW W N N W W N N W ε ε ε ε ε ε - - - - ΔΨ = + + + + +
Note that (23) can be rewritten as:

( ) 

1 T hh hh hh hh hh H - ΔΨ = + Ζ Ρ Ζ (24) with ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 7 8 9 1 7 8 9 0 0 0 0 T T T T a a a b b b b b c c c d d d hh h h hh hh hh h h hh h h hh h h T d d d d hh hh hh h h H H H H H H H H H H H ε ε ε ε ε ε ε ε ⎡ ⎤ + + + + + ⎢ ⎥ ⎢ ⎥ = + ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ 1 7 1 8 7 8 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a h h b h h c h h b h h hh d h h d h h b h h d h h N W N W N W N W N W N W N W N W ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ Ζ = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦
ε ε ε ε ε ε ε ε ⎡ ⎤ Ρ = ⎣ ⎦ .
Therefore, from ( 21) and ( 24), ( 19) is verified if the following condition holds:

( )

1 0 T hh hh hh hh h hh h h H E W - Ψ + + Ζ Ρ Ζ - < (25) 
Applying the Schur complement on (25), one obtains:

0 T hh hh h h hh h hh hh H EW ⎡ ⎤ Ψ + - Ζ < ⎢ ⎥ Ζ -Ρ ⎢ ⎥ ⎣ ⎦ (26) 
Let us now focus on ( )

1 1 1 r h k k k W h z W = = ∑ included in the term h EW -
. From the convex property of the membership functions ( )

k h z one has ( ) 1 1 r k k h z = = ∑ , thus ( ) 1 0 r k k h z = = ∑
and so, for any fuzzy matrices ( ) ( )

1 1 r r i j i j i j h z h z R = = ∑∑ , one has ( ) ( ) ( ) 1 1 1 0 r r r i j k i j i j k h z h z h z R = = = = ∑∑∑
. Therefore, one can write:

( )( ) ( ) 1 1 1 1 1 r r h k k i j k k i j k k W h z W R W R φ = = = + ≥ + ∑ ∑ (27) with, for 1,..., k r = , 1 0 k i j W R + ≥ and
where k φ are the lower bounds of ( )

k h z .
Finally, from ( 26) and ( 27), after applying lemma 2, ( 26) is satisfied if the conditions proposed in theorem 1 hold. That ends the proof. ■

Remark 2: Equation ( 27) improve the proposed relaxation for non-quadratic TS based stability conditions proposed in (Mozelli et al., 2009b). Indeed, in the latter study a common slack decision variable R has been introduced instead of fuzzy distributed ones ij R , for 1,..., i r = and 1,..., j r = .

Moreover, it also improve the SOFC design conditions proposed in [START_REF] Bouarar | Static output feedback controller design for Takagi-Sugeno systems -A fuzzy Lyapunov LMI approach[END_REF] for TS systems without uncertainties where a particular case of the present relaxation is considered with 1 r ij R W = -. Note also that it can be argue that introducing fuzzy distributed slack variables may increase the number of decision variables and so the computational cost. Nevertheless, with the growing devices computational capabilities, this concern may be considered as less of a drawback and, if a solution cannot be found from theorem 1 due to computational crashes, it is still possible to check if a solution exists by setting ij R R = common.

H∞ controller design

This section aims at extending the previous results to the case of TS fuzzy systems with external disturbances. Hence, considering ( ) 0 t ϕ ≠ and using a H ∞ criterion, the objective is now to stabilize (5) such that the influence of the external disturbance ( ) t ϕ on the output behavior is minimized. Let us consider the following H ∞ criterion (Takagi and Wang, 2001):

( ) ( ) ( ) ( ) ( ) 2 0 0 T T y t y t t t dt λ ϕ ϕ ∞ - ≤ ∫ (28) Recall that ( ) ( ) ( ) ( ) T T T T x t x t y t u t ⎡ ⎤ = ⎣
⎦ , thus (28) can be rewritten as:

( ) ( ) ( ) ( ) ( ) 2 0 0 T T x t Qx t t t dt λ ϕ ϕ ∞ - ≤ ∫ ( 29 
)
with 0 0 0 0 0 0 0 0

Q I ⎡ ⎤ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ .
In that case, the stability of the closed-loop system (10) is guaranteed under the constraint (29) if the LMI conditions summarized in the following theorem hold.

Theorem 2: Consider, for all 1, 2,..., k r = , k φ the lower bounds of ( ) k h z . The TS fuzzy model ( 5) is asymptotically stabilized via the non-PDC SOFC (6) and guarantees the attenuation level λ η = if there exist, for all combinations of 1, 2,..., i r =

, 1 i j r ≤ ≠ ≤ and 1, 2,..., k r = , the matrices ( )

1 1 0 T j j W W = > , 5 j W , 7 j W , 8 j W , 9 j W , i L , ij R and the positive scalars 1a ij ε , 1c ij ε , 7b ij ε , 7d ij ε , 8b ij ε , 8d ij ε , 9b ij ε
and 9d ij ε such that the following LMI conditions are satisfied.

Minimize 0 η > such that:

0 ii Θ < (30) ( ) 1 1 0 1 2 ii ij ji r Θ + Θ + Θ < - (31) 1 0 k i j W R + ≥ (32) 
where

( ) ( ) ( ) ( ) 5 0 0 0 0 0 0 0 0 0 0 0 0 ij ij ij ij ij j T T i i H W I F G I η * ⎡ ⎤ ⎢ ⎥ ϒ + * * * ⎢ ⎥ ⎢ ⎥ Θ = ⎢ ⎥ Ζ -Ρ ⎢ ⎥ ⎢ ⎥ - ⎢ ⎥ - ⎢ ⎥ ⎣ ⎦
and with the matrices ij ϒ , ij H , ij Ζ and ij Ρ defined in theorem 1.

Proof:

The stability of the closed-loop system (10) is guaranteed, under the constraint (29), if:

( ) ( ) ( ) ( ) ( ) ( ) 2 0 T T v x t x t Qx t t t λ ϕ ϕ + - < (33) 
That is to say if:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) 1 1 1 1 1 2 0 T T T T hh h h h hh h h T T T T T h h h h x t A A t W W A A t EW Q x t t F W x t x t W F t t t ϕ ϕ λ ϕ ϕ - - - - - ⎛ ⎞ ⎜ ⎟ + Δ + + Δ + + ⎝ ⎠ + + - < i ( 34 
)
which is obviously satisfied if:

( ) ( ) ( ) ( ) ( ) ( ) 1 1 1 1 2 * 0 T T T hh h h h hh h h T h h A A t W W A A t EW Q F W I λ - - - - ⎡ ⎤ + Δ + + Δ + + ⎢ ⎥ < ⎢ ⎥ - ⎢ ⎥ ⎣ ⎦ i (35)
Multiplying left by 0 0

T h W I ⎡ ⎤ ⎢ ⎥ ⎣ ⎦
and right by 0

0 h W I ⎡ ⎤ ⎢ ⎥ ⎣ ⎦ , one obtains: ( ) ( ) ( ) ( ) ( ) 1 2 * 0 T T T T h h h h h h h h h h h h h T h W A A t A A t W EW W W W QW F I λ - ⎡ ⎤ + Δ + + Δ + + ⎢ ⎥ < ⎢ ⎥ - ⎢ ⎥ ⎣ ⎦ i ( 36 
)
Following the same way as for the proof of theorem 1, ( 36) is satisfied if (32) holds as well as:

( ) ( )

1 2 * 0 T T hh hh hh hh hh h h T h H WQ W F I λ - ⎡ ⎤ ϒ + + Ζ Ρ Ζ + ⎢ ⎥ < ⎢ ⎥ - ⎣ ⎦ (37) 
Note that ( )

5 5 0 0 0 0 0 0 0 0 T T h h h h W QW W W ⎡ ⎤ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦
, using the Schur complement and lemma 2, (30) and (31) yield.

That ends the proof. ■

Discussion on non-quadratic approaches limits:

The LMI conditions proposed in theorems 1 and 2 depend on the lower bounds of ( )

k h z for 1,..., k r = .
Even if it is often pointed out as a criticism to fuzzy Lyapunov approaches since these parameters may be difficult to choose, a way to obtain these bounds has been proposed in [START_REF] Tanaka | A multiple Lyapunov function approach to stabilization of fuzzy control systems[END_REF] in some special cases. Moreover, let us recall that this approach remains one of the least conservative in terms of LMI based design (Mozelli et al., 2009b). In [START_REF] Tanaka | A Descriptor System Approach to Fuzzy Control System Design via Fuzzy Lyapunov Functions[END_REF][START_REF] Guerra | A way to improve results for the stabilization of continuous-time fuzzy descriptor models[END_REF][START_REF] Guelton | Dynamic output feedback fuzzy Lyapunov stabilization of Takagi-Sugeno systems -a descriptor redundancy approach[END_REF], a fuzzy Lyapunov candidate function has been reduced leading to relaxed quadratic stability.

Indeed, some elements in the Lyapunov matrix can be set common in order to make the LMIs free of membership function's lower bounds. In the present study, this remains on setting 1 W common matrices in the previous theorems. However, following the latter way, the 'price' to pay for more practical applicability is obviously an increase of the conservatism. An elegant way has also been recently

proposed to overcome the knowledge of the membership function derivative bounds in [START_REF] Bernal | Generalized non-quadratic stability of continuous-time Takagi-Sugeno models[END_REF][START_REF] Guerra | Non-quadratic local stabilization for continuous-time Takagi-Sugeno models[END_REF]. However, in these studies, the design goal has been reduced to a local view point and lead to complex LMI formulation which are, at this time only available for standard stability analysis and stabilization. Another approach based on line integral Lyapunov functions, which is not investigated in this paper, has been proposed to avoid appearance of membership function derivatives in non-quadratic stability conditions [START_REF] Rhee | A new Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF][START_REF] Guelton | Comments on fuzzy control systems design via fuzzy Lyapunov functions IEEE Transactions on Systems Man[END_REF], Mozelli 2009a). Therefore, some further research efforts will have to be done to extend these approaches to SOFC design. However, Let us point out that the goal of the present study is not to reach the difficulties of non-quadratic approaches but to overcome and derive LMI based SOFC design for a general class of TS systems (5) without constraining assumptions on output equation and including the most commonly used and effective non-quadratic approach for conservatism reduction.

Numerical examples

In this section, in order to show the efficiency and the applicability of the proposed fuzzy approaches, three examples are considered. The aim of the first one is to compare the conservatism of the approach proposed in theorem 2 without uncertainties, the quadratic stability conditions discussed in the above section ( 1 W set as a common matrix in theorem 1 and 2) and the non-quadratic conditions proposed in our preliminary study [START_REF] Bouarar | Static output feedback controller design for Takagi-Sugeno systems -A fuzzy Lyapunov LMI approach[END_REF] through a numerical example. Then, a second example is devoted to show the effectiveness of the SOFC based design on a 4 th order and 4 rules numerical uncertain and disturbed TS system containing nonlinearities in the output equation. Finally, the benchmark of a crane system is considered in simulation as a third example to illustrate the validity of the proposed approach on an engineering application with unmeasurable premises variables reported as uncertainties.

Example 1:

Let us consider the following uncertain and disturbed TS fuzzy model:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 1 2 1 i i i i i i i i i i x t h z t Ax t Bu t F t y t h z t C x t D u t G t ϕ ϕ = = ⎧ = + + ⎪ ⎪ ⎨ ⎪ = + + ⎪ ⎩ ∑ ∑ (38) with 1 5 4 1 2 A -- ⎡ ⎤ = ⎢ ⎥ -- ⎣ ⎦ , 2 2 4 10 2 A -- ⎡ ⎤ = ⎢ ⎥ - ⎣ ⎦ , 1 0 10 B ⎡ ⎤ = ⎢ ⎥ ⎣ ⎦ , 2 0 3 B ⎡ ⎤ = ⎢ ⎥ ⎣ ⎦ , 1 2 10 5 1 C - ⎡ ⎤ = ⎢ ⎥ - ⎣ ⎦ , 2 3 20 7 2 C - ⎡ ⎤ = ⎢ ⎥ -- ⎣ ⎦ , 1 3 1 D ⎡ ⎤ = ⎢ ⎥ - ⎣ ⎦ , 2 2 0.5 D - ⎡ ⎤ = ⎢ ⎥ ⎣ ⎦ , 1 2 0 0.25 F F ⎡ ⎤ = = ⎢ ⎥ ⎣ ⎦ , 1 0.5 0.5 G - ⎡ ⎤ = ⎢ ⎥ ⎣ ⎦ , ( ) ( ) ( ) 1 2 T x t x t x t = ⎡ ⎤ ⎣ ⎦ , ( ) ( ) ( ) 1 2 T y t y t y t = ⎡ ⎤ ⎣ ⎦ , ( ) ( ) 1 z t y t = and ( ) ( ) ( ) ( ) ( ) ( ) 2 1 1 2 cos 1 h z t y t h z t = = - .
Using the Matlab LMI Toolbox, the attenuation level value corresponding to the quadratic approach ( 1 W set as common matrix and

1 ij R W = -in theorem 2) is 1.2758 λ =
. This solution can be improved since the non-quadratic LMI conditions are reputed of less conservatism. Nevertheless, in that case, the respectively lower bounds 1 φ and 2 φ of ( )

1
h z and ( ) 2 h z , which are difficult to choose in practice, are required. For the sake of generality, one proposes to study the influence of these bounds on the conservatism of the proposed LMI conditions regarding to the above discussed quadratic result and the non-quadratic conditions proposed in our preliminary study [START_REF] Bouarar | Static output feedback controller design for Takagi-Sugeno systems -A fuzzy Lyapunov LMI approach[END_REF]. Thus, the attenuation level has been computed from theorem 2 of the present study and theorem 2 in [START_REF] Bouarar | Static output feedback controller design for Takagi-Sugeno systems -A fuzzy Lyapunov LMI approach[END_REF] for . These results are summarized in Fig. 1. From the latter, one can conclude that, to stabilize (38) without uncertainties, the proposed non-quadratic approach (theorem 2) leads to the lower conservatism results since the H ∞ performances are improved.

Example 2:

Let us consider the following 4 th order-4 rules uncertain and disturbed TS system with nonlinear output equation:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 4 1 4 1 i i i i i i i i i i i i i i x t h z t A A t x t B B t u t F t y t h z t C C t x t D D t u t G t ϕ ϕ = = ⎧ = + Δ + + Δ + ⎪ ⎪ ⎨ ⎪ = + Δ + + Δ + ⎪ ⎩ ∑ ∑ (39) where ( ) ( ) ( ) ( ) ( ) 1 2 3 4 T x t x t x t x t x t = ⎡ ⎤ ⎣ ⎦ , ( ) ( ) ( ) ( ) ( ) 1 2 3 4 T y t y t y t y t y t = ⎡ ⎤ ⎣ ⎦ , ( ) ( ) 1 z t y t ≡ , ( ) ( ) ( ) ( ) 1 1 1 sin 2 y t h z t + = , ( ) ( ) ( ) ( ) 1 2 1 cos 2 y t h z t + = , ( ) ( ) ( ) ( ) 2 1 3 cos 1 2 y t h z t - = , ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (
)

4 1 2 3 1 h z t h z t h z t h z t = - + +
and the nominal system's matrices:

1 -10 0.5 -1 0 0.5 3 0 1

1 1 -4 -1 0.5 -1 0 -6 A ⎡ ⎤ ⎢ ⎥ - - ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , 2 -3 -1 -1 0 1 3 1.5 0.5 1.5 0 -3.5 0 -0.5 0.5 0 -8 A ⎡ ⎤ ⎢ ⎥ - - ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , 3 -5 0 1 0 0.2 4 0 0 1.5 0.5 -1 -1 0.55 -0.5 0 -4 A ⎡ ⎤ ⎢ ⎥ - ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , -15 0.5 1 0 0 5 2.5 0 0.5 0 -1.5 0 -1 0.4 0 -7 A ⎡ ⎤ ⎢ ⎥ - - ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , 1 2.5 1 2.8 0 B ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , 2 1.5 0.5 5.5 0 B ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ - ⎢ ⎥ ⎣ ⎦ , 3 0.5 0 1 0 B ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , 4 0.5 0.15 5.5 0.5 B - ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ - ⎢ ⎥ ⎣ ⎦ , 1 2 1 0 0 0 3 0 0 1 0.5 0 0 0 1 0 0 C - ⎡ ⎤ ⎢ ⎥ - ⎢ ⎥ = ⎢ ⎥ -- ⎢ ⎥ - ⎣ ⎦ , 2 3 2 0 0 1 2 0 0 5.5 0.5 0 0 0.5 1 0 0 C ⎡ ⎤ ⎢ ⎥ - - ⎢ ⎥ = ⎢ ⎥ - ⎢ ⎥ - ⎣ ⎦ , 3 2.5 1.5 0 0 0 1.5 0 0 2 1 0 0 0.5 2 0 0 C - ⎡ ⎤ ⎢ ⎥ - ⎢ ⎥ = ⎢ ⎥ - ⎢ ⎥ - ⎣ ⎦ , 4 1 0.8 0 0 0 0.5 0 0 5.5 0.6 0 0 2.5 2 0 0 C ⎡ ⎤ ⎢ ⎥ - ⎢ ⎥ = ⎢ ⎥ - ⎢ ⎥ ⎣ ⎦ , 1 0.3 0.1 0.1 0.1 D ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , 2 0.1 0.2 0 0 D ⎡ ⎤ ⎢ ⎥ - ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , 3 0.15 0.2 0.25 0 D ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , 4 0.35 0.4 0.15 0 D ⎡ ⎤ ⎢ ⎥ - ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , 1 0 0.25 0 0 F ⎡ ⎤ ⎢ ⎥ - ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , 2 0.25 0.25 0 0 F - ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , 3 0.2 0.5 0.2 0 F ⎡ ⎤ ⎢ ⎥ - ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , 4 0.5 0.2 0.6 0 F - ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , 1 0.3 0.3 0 0 G - ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , 2 0.35 0.2 0.1 0 G ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , 3 0.2 0.35 0 0.2 G - ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , 4 0.3 0 0.45 0.1 G ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦
, as well as the uncertain matrices ( ) ( )

a a i i a i A t H f t N Δ = , ( ) ( ) b b i i b i B t H f t N Δ = , ( ) ( ) 
c c i i c i C t H f t N Δ = and 
( ) ( ) respectively an external force vector on the cart and an external torque on the pendulum and the parameters given table 1.

d d i i d i D t H f t N Δ = with: 1 0 0.1 0.25 0.1 a H ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , 2 0 0.1 0.15 0.1 a H ⎡ ⎤ ⎢ ⎥ - ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , 3 0 0.15 0.05 0.1 a H ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , 4 0 0.2 0.25 0.3 a H ⎡ ⎤ ⎢ ⎥ - ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , 1 0 0.2 0 0 b H ⎡ ⎤ ⎢ ⎥ - ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , 2 0 0.1 0 0 b H ⎡ ⎤ ⎢ ⎥ - ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , 3 0 0.25 0 0 b H ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , 4 0 0.2 0 0.1 b H ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , 1 0.1 0.1 0 0.1 c H ⎡ ⎤ ⎢ ⎥ - ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , 2 0.1 0.1 0 0.1 c H - ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , 3 0 0.2 0 0 c H ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , 4 0.2 0.15 0 0 c H - ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , 1 0.5 0.5 0 0.2 d H ⎡ ⎤ ⎢ ⎥ - ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , 2 0.1 0.1 0.1 0.1 d H - ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , 3 0.5 0 0.25 0.1 d H - ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , 4 0.25 0.2 0.3 0 d H - ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , [ ] 1 0.1 0.1 -0.1 0.2 a N = , [ ] 2 -0.1 0.1 0.1 -0.2 a N = , [ ] 3 -0.1 -0.1 0.1 0 a N = , [ ] 1 0 -0.2 0.3 -0.4 a N = , 1 0.1 b N = , 2 0 
By considering the inertia matrix ( ) 

cos cos a c M c b θ θ θ ⎡ ⎤ = ⎢ ⎥ ⎣ ⎦ and its inverse ( ) 1 2 2 cos 1 cos cos b c M c a ab c θ θ θ θ - - ⎡ ⎤ = ⎢ ⎥ - - ⎣ ⎦ , ( 
0 0 1 0 0 0 0 1 0 0 s d s d A k b c g k b k c acg k c θ η θ η θ η θ η θ η θ η θ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ - - ⎢ ⎥ - ⎣ ⎦ , ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 3 2 2 2 1 2 0 0 0 0 0 0 0 0 , 0 00 0 00 a a a A H t N bc c θ δ θ η θ θ α δ θ η θ α δ θ η θ η θ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ Δ = = Δ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ - ⎣ ⎦ , ( ) ( ) a t δ θ Δ = , 0 1 0 0 T a N ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , ( ) ( ) ( ) ( ) ( ) 3 2 2 2 2 1 2 0 0 a H bc c θ η θ α η θ α η θ η θ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ - ⎣ ⎦ , ( ) ( ) ( ) 3 1 0 0 B b c θ η θ η θ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ - ⎣ ⎦ , ( ) ( ) ( ) ( ) 3 1 1 0 0 0 0 F b c c a θ η θ η θ η θ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ - ⎢ ⎥ - ⎣ ⎦ , 1 0 0 0 0 1 0 0 C ⎡ ⎤ = ⎢ ⎥ ⎣ ⎦
⎧ = + Δ + + ⎪ ⎨ ⎪ = ⎩ ∑ (46) with 2 1 2 2 2 2 2 2 2 2 2 2 2 2 0 0 1 0 0 0 0 1 0 0 s d s d k b k b c g A ab c ab c ab c k c k c acg ab c ab c ab c β β β β β β ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = - - ⎢ ⎥ - - - ⎢ ⎥ ⎢ ⎥ - ⎢ ⎥ - - - ⎣ ⎦ , 2 2 2 2 2 2 2 2 2 0 0 1 0 0 0 0 1 0 0 s d s d k b k b c g A ab c ab c ab c k c k c acg ab c ab c ab c ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = - - ⎢ ⎥ - - - ⎢ ⎥ ⎢ ⎥ - ⎢ ⎥ - - - ⎣ ⎦ , 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 1 0 0 0 0 1 0 0 s d s d k b k b c g A ab c ab c ab c k c k c acg ab c ab c ab c ρ β β β ρ β β β ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = - - ⎢ ⎥ - - - ⎢ ⎥ ⎢ ⎥ - ⎢ ⎥ - - - ⎣ ⎦ , 2 4 2 2 2 2 2 2 0 0 1 0 0 0 0 1 0 0 s d s d k b k b c g A ab c ab c ab c k c k c acg ab c ab c ab c ρ ρ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = - - ⎢ ⎥ - - - ⎢ ⎥ ⎢ ⎥ - ⎢ ⎥ - - - ⎣ ⎦ , 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 1 0 0 0 0 1 0 0 s d s d k b k b c g A ab c ab c ab c k c k c acg ab c ab c ab c β β β β β β β β β ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = - - ⎢ ⎥ - - - ⎢ ⎥ ⎢ ⎥ - ⎢ ⎥ - - - ⎣ ⎦ , 2 6 2 2 2 2 2 2 0 0 1 0 0 0 0 1 0 0 s d s d k b k b c g A ab c ab c ab c k c k c acg ab c ab c ab c β β β ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = - - ⎢ ⎥ - - - ⎢ ⎥ ⎢ ⎥ - ⎢ ⎥ - - - ⎣ ⎦ , 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 1 0 0 0 0 1 0 0 s d s d k b k b c g A ab c ab c ab c k c k c acg ab c ab c ab c βρ β β β β β ρ β β β ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = - - ⎢ ⎥ - - - ⎢ ⎥ ⎢ ⎥ - ⎢ ⎥ - - - ⎣ ⎦ , 2 8 2 2 2 2 2 2 0 0 1 0 0 0 0 1 0 0 s d s d k b k b c g A ab c ab c ab c k c k c acg ab c ab c ab c βρ β β ρ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = - - ⎢ ⎥ - - - ⎢ ⎥ ⎢ ⎥ - ⎢ ⎥ - - - ⎣ ⎦ , 3 2 2 2 2 0 0 b B B ab c c ab c β β ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = = ⎢ ⎥ - ⎢ ⎥ ⎢ ⎥ - ⎢ ⎥ - ⎣ ⎦ , 2 4 2 2 0 0 b B B ab c c ab c ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = = ⎢ ⎥ - ⎢ ⎥ ⎢ ⎥ - ⎢ ⎥ - ⎣ ⎦ , 5 7 2 2 2 2 0 0 b B B ab c c ab c β β β ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = = ⎢ ⎥ - ⎢ ⎥ ⎢ ⎥ - ⎢ ⎥ - ⎣ ⎦ , 6 8 2 2 0 0 b B B ab c c ab c β ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = = ⎢ ⎥ - ⎢ ⎥ ⎢ ⎥ - ⎢ ⎥ - ⎣ ⎦ , 1 3 2 2 2 2 2 2 2 2 0 0 0 0 b c F F ab c ab c c a ab c ab c β β β β ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = = - ⎢ ⎥ - - ⎢ ⎥ ⎢ ⎥ - ⎢ ⎥ - - ⎣ ⎦ , 2 4 2 2 2 2 0 0 0 0 b c F F ab c ab c c a ab c ab c ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = = - ⎢ ⎥ - - ⎢ ⎥ ⎢ ⎥ - ⎢ ⎥ - - ⎣ ⎦ , 5 7 2 2 2 2 2 2 2 2 0 0 0 0 b c F F ab c ab c c a ab c ab c β β β β β β ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = = - ⎢ ⎥ - - ⎢ ⎥ ⎢ ⎥ - ⎢ ⎥ - - ⎣ ⎦ , 6 8 2 2 2 2 0 0 0 0 b c F F ab c ab c c a ab c ab c β β ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = = - ⎢ ⎥ - - ⎢ ⎥ ⎢ ⎥ - ⎢ ⎥ - - ⎣ ⎦ , 2 1 2 2 2 2 2 2 0 0 a bc H ab c c ab c α β α β ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ - ⎢ ⎥ ⎢ ⎥ - ⎢ ⎥ - ⎣ ⎦ , 2 2 2 2 2 2 0 0 a bc H ab c c ab c α α ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ - ⎢ ⎥ ⎢ ⎥ - ⎢ ⎥ - ⎣ ⎦ , 2 3 2 2 2 2 2 2 0 0 a bc H ab c c ab c α ρ β α ρ β ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ - ⎢ ⎥ ⎢ ⎥ - ⎢ ⎥ - ⎣ ⎦ , 2 4 2 2 2 2 0 0 a bc H ab c c ab c α ρ α ρ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ - ⎢ ⎥ ⎢ ⎥ - ⎢ ⎥ - ⎣ ⎦ , 2 5 2 2 2 2 2 2 0 0 a bc H ab c c ab c α β α β β ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ - ⎢ ⎥ ⎢ ⎥ - ⎢ ⎥ - ⎣ ⎦ , 2 6 2 2 2 2 0 0 a bc H ab c c ab c α α β ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ - ⎢ ⎥ ⎢ ⎥ - ⎢ ⎥ - ⎣ ⎦ , 2 7 2 2 2 2 2 2 0 0 a bc H ab c c ab c α ρ β α βρ β ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ - ⎢ ⎥ ⎢ ⎥ - ⎢ ⎥ - ⎣ ⎦ , 2 7 2 2 2 2 0 0 a bc H ab c c ab c α ρ α βρ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ - ⎢ ⎥ ⎢ ⎥ - ⎢ ⎥ - ⎣ ⎦ .
For simulation purpose, the maximal angular velocity has been set as show respectively the system's state, the control signal and the disturbance evolutions for the initial conditions ( )

0 1 0 0 4 T x π ⎡ ⎤ = ⎢ ⎥ ⎣ ⎦ .
It can be conclude that the synthesized robust non-PDC SOFC is correctly controlling the crane system in spite of the presence of external disturbances.

Conclusion

In this paper, the problem of robust static output feedback stabilization for continuous time uncertain and disturbed Takagi-Sugeno models has been considered. A non-PDC static output feedback control law has been proposed and its design has been involved through a fuzzy Lyapunov approach. Thanks to the descriptor redundancy, crossing terms have been avoided in the closed-loop dynamic formulation and so LMI conditions have been obtained without any assumptions on the output equation of the considered TS model. Then, a H ∞ criterion has been employed to derive conditions which ensure a minimal attenuation level of external disturbances. It has been shown that the proposed SOFC based design lead to low conservatism results regarding to previous works. Moreover, it has been emphasis that, thank to the uncertain TS modeling, such approach is suitable for the design of a robust non-PDC static output feedback controller without the need of unmeasurable variables estimations. Finally, two academic examples has been considered to illustrate the efficiency the proposed fuzzy Lyapunov based SOFC design. Table 1. Model parameters of the crane system (example 3). 
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  decision matrices that are free of choice. A way to run to LMI conditions is to choose 4 non-singular and 1 0 h W > . Consequently, (20) becomes:

  to design a robust H ∞ controller that guarantee the attenuation of the external disturbances ( ) t ϕ affecting the system output and state vector. The following SOFC gain matrices, guaranteeing a minimized H ∞ attenuation level 0

  Fig 2, 3 and 4 show respectively the system's state and output responses, the control signal and the disturbance evolutions for the initial conditions (

  A convenient non-PDC SOFC (6) has been designed through theorem 2 and the Matlab LMI toolbox with the bounds of the membership functions sets as 10 i φ = -. The result is given by the following gain matrices for a minimal attenuation level 0). Simulations where performed with and without external disturbance to highlight the efficiency of the H ∞ attenuation. Fig6 and 7
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 234 Fig. 2: Time responses of the T-S system's states with external disturbances (example 2)
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 5 Fig.5. Crane system (example3).
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 67 Fig.6. Evolution of the states of the crane system (example 3).

  40) can be rewritten as:

	2 1 cos	2	(	2	sin	2	cos sin	1	2	cos	)
	2 1 cos	2	(	cos	sin		2 2	cos sin	cos	cos	1	cos	2	)
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SOFC is correctly stabilizing the system and attenuates the external disturbances effect with a minimized H ∞ attenuation level 0.8533 λ = .

Example 3:

Let us consider the crane system depicted in figure 5 with the parameters and variables given in table 1.

From the well-known Lagrange formalism, the motion equations of the crane system are given by:

Note that the robot's velocities ( ) r t and ( ) t θ aren't considered available for measurement. Therefore, from the dynamical model ( 41) and to cope with the goal of designing a robust non-PDC SOFC which doesn't require unmeasurable premise variables (see remark 1), the nonlinear terms

leading to define the 8 following membership functions as ( ) ( ) ( ) ( )