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This paper is concerned with non-quadratic stabilization of continuous-time Takagi-Sugeno (TS) models.

The well-known problem of handling time-derivatives of membership functions (MFs) as to obtain conditions in the form of linear matrix inequalities (LMIs) is overcome by reducing global goals to the estimation of a region of attraction. Instead of parallel distributed compensation (PDC), a non-PDC control law is proposed according to the non-quadratic nature of the Lyapunov function. Examples are provided to show the advantages over the quadratic and some non-quadratic approaches.

Introduction

Since they were proposed in [START_REF] Takagi | Fuzzy identification of systems and its application to modeling and control[END_REF] the control community has intensively studied Takagi-Sugeno (TS) models due to the fact that they can exactly represent a nonlinear model in a compact subset of the domain of the state variables. A TS model is a nonlinear blending of linear models via membership functions (MFs) which hold the convex-sum property [START_REF] Taniguchi | Model construction, rule reduction and robust compensation for generalized form of Takagi-Sugeno fuzzy systems[END_REF]. The stabilization problem is usually addressed via the so-called parallel distributed compensation (PDC) control law [START_REF] Wang | An approach to fuzzy control of nonlinear systems: Stability and Design Issues[END_REF], which is a nonlinear blending of linear-state feedbacks which uses the same MFs as the TS model.

The direct Lyapunov method altogether with quadratic Lyapunov functions has been usually employed to investigate the stability and stabilization of TS models. This method usually leads to conditions formulated in terms of linear matrix inequalities (LMIs) [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF], which can be efficiently solved by convex optimization techniques. Quadratic analysis and design has produced a remarkable number of results regarding robustness, performance, observer design, output feedback and time delay systems (see e.g. [START_REF] Tanaka | Fuzzy control systems design and analysis. A linear matrix inequality approach[END_REF][START_REF] Senthilkumar | Delay-dependent robust H∞ control for uncertain stochastic T-S fuzzy systems with time-varying state and input delays[END_REF][START_REF] Senthilkumar | Robust H∞ control for nonlinear uncertain stochastic T-S fuzzy systems with time-delays[END_REF][START_REF] Zerar | Linear Fractional Transformation Based H-infinity Output Stabilization for Takagi-Sugeno Fuzzy Models[END_REF][START_REF] Bouarar | LMI stability conditions for Takagi-Sugeno uncertain descriptors[END_REF] and references therein). Nonetheless, the quadratic approach presents serious limitations because its solutions are inherently pessimistic, i.e., there are stable or stabilizable models which do not have a quadratic solution (see [START_REF] Sala | Perspectives of fuzzy systems and control[END_REF] and references therein). Conservativeness comes from different sources: the type of TS model [START_REF] Guerra | A way to improve results for the stabilization of continuous-time fuzzy descriptor models[END_REF][START_REF] Bouarar | Robust fuzzy Lyapunov stabilization for uncertain and disturbed Takagi-Sugeno descriptors[END_REF], the way the membership functions are dropped-off to obtain LMI expressions [START_REF] Tuan | Parameterized linear matrix inequality techniques in fuzzy control system design[END_REF][START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF][START_REF] Sala | Relaxed stability and performance conditions for Takagi-Sugeno fuzzy systems with knowledge on membership-function overlap[END_REF], the integration of membership-function information [START_REF] Sala | Stability Analysis of Fuzzy Systems: membership-shape and polynomial approaches[END_REF][START_REF] Bernal | A membership-function-dependent approach for stability analysis and controller synthesis of Takagi-Sugeno models[END_REF], or the choice of Lyapunov function [START_REF] Johansson | Piecewise quadratic stability of fuzzy systems[END_REF][START_REF] Tanaka | A fuzzy Lyapunov approach to fuzzy control systems design[END_REF]. This work is concerned with a relaxation in the latter sense which demands a change of perspective from global to local conditions. Several Lyapunov functions have been proposed in the literature. Piecewise Lyapunov functions (PWLF) [START_REF] Johansson | Piecewise quadratic stability of fuzzy systems[END_REF][START_REF] Feng | H∞ controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov functions and bilinear matrix inequalities[END_REF] have been straightforwardly applied to those TS models that induce state-space partitions from the fact that not all their linear components are simultaneously activated; unfortunately, TS models constructed via the sector nonlinearity approach lack this property. Various kinds of non-quadratic Lyapunov functions (NQLF) have been also employed; they depend on the same MFs of the model, hereby taking into account structural information otherwise ignored by the quadratic approach. However, NQLF-based results have not triggered the same developments for continuous-time TS models [START_REF] Tanaka | A multiple Lyapunov function approach to stabilization of fuzzy control systems[END_REF] than for discrete-time ones [START_REF] Guerra | LMI-based relaxed non-quadratic stabilization conditions for nonlinear systems in Takagi-Sugeno's form[END_REF][START_REF] Guerra | Control Law Proposition for the Stabilization of Discrete Takagi-Sugeno Models[END_REF]. This asymmetry is explained by the difficulty of dealing with time-derivatives of the MFs that emerge while applying the direct Lyapunov method to obtain global conditions. Some palliative solutions have been proposed to the aforementioned problem. In [START_REF] Tanaka | A multiple Lyapunov function approach to stabilization of fuzzy control systems[END_REF][START_REF] Blanco | Stability and stabilization of nonlinear systems and Tanaka-Sugeno fuzzy models[END_REF] the authors bound the time-derivatives of the MFs assuming that they do not depend on the input, which turns out to be very restrictive. Moreover, the proposed control law makes use of the time-derivatives of the MFs through a classical PDC scheme, thus ignoring the non-quadratic nature of the involved Lyapunov function. In [START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF] a line-integral Lyapunov function is proposed to circumvent the MFs' time-derivative obstacle, though the line integral is asked to be path-independent thus significantly reducing its applicability [START_REF] Guelton | Comments on Fuzzy Control Systems Design via Fuzzy Lyapunov Functions[END_REF]. A change of perspective for non-quadratic stability analysis of TS models has been proposed in [START_REF] Guerra | A way to escape from the quadratic framework[END_REF]. This approach reduces global goals to less exigent conditions, thereby showing that an estimation of the region of attraction can be found (local stability); this solution parallelizes nonlinear analysis and design for models that do not admit a global solution [START_REF] Khalil | Nonlinear Systems[END_REF]. Said in another words, classical linear parameter varying (LPV) models do not capture the nonlinear behavior of models [START_REF] Chesi | Homogeneous Polynomial Forms for Robustness Analysis of Uncertain Systems[END_REF] whereas TS ones, also known as quasi-LPV models, can do it exactly [START_REF] Bernal | Generalized Nonquadratic Stability of Continuous-Time Takagi-Sugeno Models[END_REF]. In the LPV case it is therefore reasonable to deal with global stability (under the constraints due to the bounds on the variables) [START_REF] Chesi | Homogeneous Polynomial Forms for Robustness Analysis of Uncertain Systems[END_REF], whereas obviously global stability is very often unreachable for nonlinear systems and therefore for their TS representation. This paper extends the previous results so they can be applied for controller design. A non-PDC control law is employed to fully exploit the non-quadratic properties of the Lyapunov function.

The contents are organized as follows: Section II introduces TS models, sector nonlinearity approach, the NQLF this work is based on and the proposed non-PDC control law; a problem statement is made. Section III summarizes the work presented in [START_REF] Guerra | A way to escape from the quadratic framework[END_REF] and extends it for stabilization purposes, thus establishing new local conditions for controller design. Section IV presents some illustrative examples to stress the fact that the few existent solutions on the subject are clearly outperformed by the new approach. Finally, section V gathers some conclusions and perspectives.

Definitions and Notation

Consider a nonlinear model of the form: [START_REF] Tanaka | Fuzzy control systems design and analysis. A linear matrix inequality approach[END_REF], the following weighting functions can be constructed

              x t f z t x t g z t u t   (1) with   f  ,   g  nonlinear
        0 1 0 ,1 jj j j j jj nl nl w w w nl nl         ,   1, , jp   . ( 2 
)
From the previous weights, the following MFs are defined:

  1 12 1 2 2 1 p j p p j i i j i i i j h h w z            , (3) with 
  1, , 2 p i   ,   0,1 j i 
. These MFs satisfy the convex sum property

  1 1 r i i h    ,   0 i h  in C .
Where convenient, convex sums will be denoted as

    1 r z i i i h z t     
and their inverse as

    1 1 1 r z i i i h z t           .
Based on the previous definitions, an exact representation of (1) in C is given by the following TS model: Instead of PDC [START_REF] Wang | An approach to fuzzy control of nonlinear systems: Stability and Design Issues[END_REF], the following generalization of the non-quadratic control law in [START_REF] Guerra | LMI-based relaxed non-quadratic stabilization conditions for nonlinear systems in Takagi-Sugeno's form[END_REF] is proposed: 

                1 r i i i z z i x t h z t A x t B u t A x t B u t        , (4) 
              1 1 0 1 1 1 1 T k p r r r k k i j i j i l l z z i j k l k zt w u t h h F A x G h P x t F z P x t z x t                               (5) 
                    1 1 r i i i z z z z i x t h z t A x t B u t A B F z P x t           . (6) 
Triple convex sums

            1 1 1 rrr zzz i j l ijl i j l h z t h z t h z t       
arise along matrix manipulations and their negative-definiteness is usually examined after dropping the MFs to obtain LMI conditions in terms of ijl  . The way the MFs are dropped from the triple sum above is called a sum-relaxation; several of them are available in the literature for double [START_REF] Tuan | Parameterized linear matrix inequality techniques in fuzzy control system design[END_REF] and multiple sums [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF]. In this work, a relaxation derived from Proposition 2 of the latter work has been adopted because it combines computational efficiency and does not need slack variables:

Relaxation Lemma [14]: Let ijl  be matrices of proper dimensions. Then

            1 1 1 0 rrr i j l ijl i j l h z t h z t h z t      (7) 
holds if for a given

3 q    1 2 3 0, ijl q ijl b b b           a ba a  I A , (8) 
with

    1 , , : 1 , 1, , q q q b a a a r b q        a    I ,   1 : , 1, , 1 q q b b a a b q         a  II
, and   a A being the set of permutations (with possibly repeated elements) of multi-index a in q I . Quadratic Lyapunov function 

    T V x t
                1 1 1 r TT i i z i V x t x t h z t P x t x t P x t         (9) with 0 T zz PP  (therefore 1 0 z P   ).
Its time-derivative along the trajectories of TS model ( 6) is given by

                      1 1 1 1 1 T T z z z z z z z z z z z V x t x t P A B F z P A B F z P P P x t               . ( 10 
)
Via elementary properties and taking into account that 1 z z z z

P P P P    , it is verified that                                     1 1 1 1 1 1 00 0 0 T z z z z z z z z z z z T z z z z z z z z z z z T z z z z z z z z z V x t P A B F z P A B F z P P P A P B F z A P B F z P P P A P B F z A P B F z P                                      (11) 
Global conditions in the form of LMIs are normally derived from expressions similar to the previous one in the quadratic case. Unfortunately, obtaining non-conservative LMIs from [START_REF] Guerra | A way to improve results for the stabilization of continuous-time fuzzy descriptor models[END_REF] for global stabilization is no longer possible since the terms The previous works intended to derive global asymptotic conditions. In contrast, in [START_REF] Guerra | A way to escape from the quadratic framework[END_REF] the previous questions were answered for stability analysis via a local approach. It was shown that reducing global goals responds better to stability problems, since the stability domain of a TS model can be estimated via local asymptotic conditions. This kind of estimation is customary for numerous nonlinear models whose global stability cannot be reached [START_REF] Khalil | Nonlinear Systems[END_REF] and will be extended to the closed-loop TS model in the following section.

1 r z i i i P h P      and       0 1 T k p k k zz k k zt w z A x G z x t      

Main results

Theorem 1 (Local stabilizability): If there exist matrices of the proper size 0

T ii PP  , i F , and k i G ,   1, , ir   ,   1, , kp   such that           0 T z z z z z z z z A P B F z A P B F z      
 , then there exists a domain D , 0 D  , such that TS model ( 4) is locally asymptotically stabilizable under control law [START_REF] Tanaka | Fuzzy control systems design and analysis. A linear matrix inequality approach[END_REF].

Proof: The NQLF candidate (9) satisfies   00 V  and   0 Vx in n  . Its time-derivative (10) holds   00 V   . Provided that           0 T z z z z z z z z A P B F z A P B F z       
it is implied that there exists a

sufficiently small 0   such that           0 T z z z z z z z z A P B F z A P B F z I          
which can be used to define

  :, z D x x B P      . The origin belongs to domain D since         1 1 1 1 TT TT r r r ii z i i i z z z z i i i i hh zz P h P xP A B F z P x t P z x z x                                       depends on the state vector   xt in such a way that   0 xt  is a trivial solution of z P    . Since   0 Vx and   0 Vx  in   0 D  , the equilibrium point 0 x 
is locally asymptotically stable, thus concluding the proof. □

In [START_REF] Guerra | A way to escape from the quadratic framework[END_REF] it has been shown that z P  can be written as

            1 2 1 2 00 , , , , 1 1 1 kk pp r z k j k g z k g z k g j k g j k k j k kk ww P P P z h P P z zz               (12) with       11 1 , 1 / 2 2 1 1 m od 2 p k p k p k g j k j j              and     21 , , 2 pk g j k g j k   .
Substituting [START_REF] Bouarar | Robust fuzzy Lyapunov stabilization for uncertain and disturbed Takagi-Sugeno descriptors[END_REF] in [START_REF] Guerra | A way to improve results for the stabilization of continuous-time fuzzy descriptor models[END_REF] and recalling that ) altogether with the fact that

          T k k z z zt z A x t B u t xt     and       0 1 T k p k k zz k k zt w z A x G z x t              , gives                                     12 12 0 ,, 1 0 ,, 1 k p T z z z z z z z z k g z k g z k k k T k p k T T T T T z z z z z z z z z z z z g z k g z k k k w A P B F z A P B F z P P z z zt w A P P A B F F B B z z B A x t B u t P P z x t                                                              12 12 0 ,, 1 00 ,, 11 
T k p k T T T z z z z z z z z z g z k g z k k k TT kk pp T kk kk z z z z z z g z k g z k kk kk zt w A P B F P A F B B u t P P z x t z t z t ww A x t P P A x B G B G z x t z x t                                                     12 12 0 ,, 1 0 ,, 1 
T k p k T T T z z z z z z z z z g z k g z k k k T k p T k k k T z z z z z g z k g z k k k zt w A P B F P A F B B u t P P z x t zt w A x t P P B G G B z x t                                         12 12 0 ,, 1 1 1 0 ,, 1 1 1 0 k p nm T T T z z z z z z z z e z g z k g z k ve k v e v k p nn T k k T z s z z z z g z k g z k vs k v s v w A P B F P A F B u B P P x w A x P P B G G B x                        ( 
        11 00 TT zz x t P x t x P x   for 0 t  , means that     1 V x t  ; then, condition 2 u   is implied by                     2 1 1 1 1 22 2 11 0 0 1 T T T T z z z z z z u x t P F z F z P x t x t P x t x P x             ,
from which the following stems using the Schur complement and replacing   z  by its value

                                    1 1 1 2 2 2 2 0 2 1 1 0 1 0 0 00 0 0 0 0 T T z z z z z T z z z T T T zz zz zm zm T T T k k p k zz z z k k k zm z x t P F z F z P P x t F z F z P z P F z PF z FI F z I zt PF G w Ax z x t FI G                                                               (14) 
Inequality ( 14) is therefore implied by

    0 2 1 1 1 0 0 0 T T k k p nn zz z zs vs k k v s v zm z PF G w Ax x FI G                (15) 
which as expression [START_REF] Tuan | Parameterized linear matrix inequality techniques in fuzzy control system design[END_REF] 

X x Y u Z X Y Z xx                           (16) 
or

    2 1 2 2 1 00 0, 0, 11 0 22 TT kk s e ksv kv vv Q Q S S ww X x Y u Z X Q YQ Y S Z S Z xx                               . ( 17 
)
By means of property ( 16) the following result is obtained:

Theorem 2: If there exist matrices of proper size

2 T jj P P c I , j F , k j G ,   1, , jr   ,   1, , kp   such that LMIs   1 2 3 0, ijl q ijl b b b            a ba a  I A ,     1, , 2 pn m n     (18) 
hold for a given 

3 q  with , ijl ijl ij block diag           ,                         12 12 ,, 1 1 1 ,, 1 1 1 1 
P P B G G B                                  2 1 1 1 0 1, 0 kvs T T k p nn d jj j ij kvs i vs k k v s jm j PF G A FI G                        kv e n d   , kvs d  defined from       1 111 1 1 2 2 pn n m pn n m pn n m d d d                 , and   1 , g j k ,   2 , g j k
defined as in [START_REF] Bouarar | Robust fuzzy Lyapunov stabilization for uncertain and disturbed Takagi-Sugeno descriptors[END_REF], then   

                        12 12 ,, 1 1 1 , 
P P B G G B                                   2 1 1 1 0 10 0 kvs T T k p nn d zz z zz kvs z vs k k v s zm z PF G A FI G                      .
Given that all the possible sign combinations of the terms involving 

                  12 12 0 ,, 1 1 1 0 ,, 1 1 1 0 k p nm T T T z z z z z z z z e z g z k g z k ve k v e v k p nn T k k T z s z z z z zzz g z k g z k vs k v s v w A P B F P A F B u B P P x w A x P P B G G B x                          (19)     0 2 1 1 1 0 0 0 T T k k p nn zz z z s zz vs k k v s v zm z PF G w Ax x FI G                     . ( 20 
)
The time-derivative [START_REF] Sala | Perspectives of fuzzy systems and control[END_REF] 

0 kvs ij T  ,   , , 1, , i j l r   ,   1, , kp   ,   , 1, , s v n   ,   1, , em   , such that LMIs   1 2 3 0, ijl q ijl b b b           a ba a  I A , (21) 
hold for a given 

3 q  with , ijl ijl ij block diag        ,                             21 21 2 1 1 1 22 1 1 1 ,1 ,1 111 11 11 ,, 11 1 * 
F P A F B Q S PP AQ B G G B PP A B G G B                                                                              
                                                                , 0 0 0 0 0 2 pnm ijl S                                                          2 2 1 1 1 1 111 11 1 11 11 1 * * * 2 0 2 0 0 0 0 0 2 0 0 0 0 0 2 0 T p nn jj kvs kvs ij k v s jm T j i ij j ij T p j p i ij p j T p j pnn i ij nn p j PF T FI G AT G G AT G G AT G                                                                                  ,   1 , gk  ,   2 , gk 
defined as in [START_REF] Bouarar | Robust fuzzy Lyapunov stabilization for uncertain and disturbed Takagi-Sugeno descriptors[END_REF], then   

                  12 12 0 ,, 1 1 1 0 ,, 1 1 1 k p nm T T T z z z z z z z z e z g z k g z k ve k v e v k p nn T k k T z s z z z z g z k g z k vs k v s v w A P B F P A F B u B P P x w A x P P B G G B x                                        21 21 0 ,, 1 1 1 0 ,, 1 1 1 T T T z z z z z z z z k p nm ez g z k g z k ve k v e v k p nn T k k T z s z z z z g z k g z k vs k v s v A P B F P A F B w u B P P x w A x P P B G G B x                                                       2 1 2 1 21 21 1 2 22 , , , , 1 1 1 1 2 2 ,, 1 1 1 , 
P B G G                                     0 T z B    
Successively applying the Schur complement to the previous expression leads to 

                            21 21 2 1 1 1 22 1 1 1 ,1 ,1 111 11 11 ,, 11 1 * 
* * * * * 2 1 2 2 0 0 0 0 0 T T T z z z z z z z z p nn ksv ksv zzz k s v p nm kve kv zzz k v e g z g z T z zzz T z z z z g z p g z p T z p p T zzz z z z z A P B F P A F B Q S PP AQ B G G B PP A B G G B                                                                                21 21 21 21 11 ,, 111 ,1 ,1 11 11 ,, 11 , 
                                                                0 0 0 0 0 2 pnm zzz S                                       
A similar procedure shows that applying Schur complement to the last inequality in

            0 2 1 1 1 0 2 1 1 1 2 2 2 0 0 0 0 0 1 2 0 T T k k p nn zz z zs vs k k v s v zm z T T k k p nn zz z zs vs k k v s v zm z T T k kvs kvs zz z kvs zz z zz vs k zm z PF G w Ax x FI G PF G w Ax x FI G PF G T A T FI G                                                       1 1 1 1 0 0 0 T k p nn z k k v s z G G                gives                   2 2 1 1 1 1 111 11 1 11 11 1 * * * 2 0 2 0 0 0 0 0 2 0 0 0 0 0 2 0 T p nn kvs zz kvs zz k v s zm T z z zz z zz T p p z z zz p z T p pnn z z zz nn p z PF T FI G AT G G AT G G AT G                                                                               , which allows defining   , zzz zzz zz block diag      .
Applying Relaxation Lemma [START_REF] Zerar | Linear Fractional Transformation Based H-infinity Output Stabilization for Takagi-Sugeno Fuzzy Models[END_REF] to . It means that these bounds cannot be known in advance since they depend on the time-derivative of the state, which cannot be assured to be a priori stable. Therefore, all these previous methods fail to give a solution to this problem whereas the parameters 

 to     n k u n k u       .

Examples

Example 1: Consider the following TS model [START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF]     Conditions in [START_REF] Tanaka | A multiple Lyapunov function approach to stabilization of fuzzy control systems[END_REF] are unfeasible for this model in any point of the considered grid. The proposed approach is therefore compared with that in [START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF], for which the following pole placement LMIs for a D-region must be included:

2 1 1 i i i i x h x A x B u     (22) 
  0 i iij i rP G rP        ,                 sin cos 0 cos sin TT iij iij iij iij TT iij iij iij iij G G G G G G G G         ,   0 T iij iij i G G P      , (23) 
with . As  increases, more feasible points ("+" marks) are found via conditions in Theorem 1 and ( 23); these points are then compared with those of the quadratic approach ("o" marks) and those of the line integral approach in [START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF] ("x" marks). Note that with 500   , the new approach includes any feasible point of the other approaches considered.

    1 1 1 10 ksv p nn d k iij i i i i j ksv i vs k v s G A P B F A G                ,   , 1, , i j r   ,   2 
Example 2: Consider the following TS model [START_REF] Tanaka | A multiple Lyapunov function approach to stabilization of fuzzy control systems[END_REF]:

    2 1 1 i i i i x h x A x B u     , (24) 
with     The approach in [START_REF] Tanaka | A multiple Lyapunov function approach to stabilization of fuzzy control systems[END_REF] has several drawbacks, none of which is shared by the proposed one: it only applies for TS models whose membership functions have strictly state-dependent time-derivatives (like ( 24)); its conditions are not LMIs unless some parameters are given; its proposed control law includes timederivatives of the membership functions which are not always available. For the sake of comparison between Theorems 2 and 3, they have been applied for stabilization of TS model [START_REF] Ding | Further studies on LMI-based relaxed stabilization conditions for nonlinear systems in Takagi-Sugeno's form[END_REF] for different values of  are summarized in Table 1. Figure 4 illustrates the states evolution of TS model ( 24) under a control law (5) whose gains have been obtained via ; correspondingly, Figure 5 shows the control law evolution corresponding to this case.

Conclusions and Perspectives

A novel approach for local non-quadratic stabilization of continuous-time TS models has been presented.

Thanks to the information provided by the MFs and a proper manipulation of their time-derivatives, a new non-PDC control law has been proposed which locally stabilizes a continuous-time TS model through straightforward LMI conditions. It has been shown that reducing global goals to the estimation of a region of attraction constitutes a good way-out from the quadratic framework, since it provides new basis to overcome old issues on stabilization of continuous-time TS models while incorporating former results as particular cases. Two examples have been provided that clearly show that the proposed approach outperforms the palliative solutions of the previous non-quadratic studies.
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 2   representing the number of linear models and   , controllable pairs of proper dimensions directly obtained from the new representation.

  loop TS model is thence written as



  timederivatives of the MFs, which do not convey to readily available bounds. This situation raises some questions: Should the quadratic case fail, what can be done?  Can expression (11) be handled to avoid conditions of the sort

  ) to be verified as an LMI constraint, thence guaranteeing

  expressions.Two choices are offered to deal with these bounds, based respectively on the following properties:



  are taken into account in the previous expressions by means of parameter  , and provided that

Remark 1 :

 1 Theorems 2 and 3 provide LMI conditions for local non-quadratic controller design of continuous-time TS models. The control law thus designed is guaranteed to stabilize the TS model in the outermost Lyapunov level of region R , whose bounds depend on those of the compact set C , the designed bound  of the input, and the inherited bounds of the partial derivatives 0 k v wx  . Let us recall that, in many previous studies, see e.g. [13,19,21-25,27], controller design conditions have been obtained by making very restrictive assumptions of the sort

.Remark 2 :Remark 3 :Remark 4 :

 234 used in the above proposed theorems, are always known. Indeed, it is wellknown that the quasi-LPV (or TS) description is only validated in a compact set of the state space, therefore s x is known and the functions 0 The parameter  (which can be obtained from the actuators technical characteristics) ensure that, with the obtained solution to LMIs, the control signal will always be bounded while the initial conditions belong inside the domain of attraction D . Therefore, the proposed study provides an answer to previous non-quadratic approaches where unknown parameters had to be assumed for the LMI computation. At last, it is important to point out that most of the previous studies dealing with TS systems tend to explore global stability regardless of their local nature. By contrast, local analysis and controller design for nonlinear systems are widely used; in this sense the proposed approach better fits the nonlinear spirit by reducing global objectives to local stability conditions for TS models. Conditions in Theorems 2 and 3 reduce to those of the quadratic global controller design if to grow arbitrarily large (global controller). As for Theorem 3, it makes zero all the non-diagonal terms of ijl can always be found to fulfill conditions (21) despite the values of kvs  and kv  . Even if conditions in Theorems 2 or 3 fail to be fulfilled for a given set of constants ,0 ksv kv  (i.e., for a given region), the largest region of attraction can still be found via linear programming by testing conditions in these theorems for successively larger values of a common factor 0   multiplying both sets of constants, assuming that conditions in Theorem 1 hold. Notice that compared with the quadratic case, theorem 2 increases the number of of each LMI from nn 
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