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This paper deals with robust stabilization of nonlinear systems represented by uncertain and disturbed switched Takagi-Sugeno fuzzy systems. First, stabilization of uncertain switched fuzzy systems is considered without external disturbances. A stabilization criterion is proposed as sufficient Linear Matrix Inequality (LMI) conditions. These ones allow designing a switched parallel distributed compensation fuzzy control law based on a candidate switched Lyapunov function. Then, an extension to systems subject to external disturbances is provided based on a H-infinity criterion. To illustrate the effectiveness of the proposed stabilization criterion and controller design approaches, a designed numerical example is studied and some simulations are provided.

INTRODUCTION

With the growing complexity of some control engineering problems, control techniques drawn from linear theory have shown their limits. Among nonlinear theory, new control approaches have appeared in the last decades such as hybrid or fuzzy techniques. A hybrid dynamical system (HDS) consists of continuous (or discrete) time dynamics associated with discrete events following some logical or decision-making rules. For instance, power transmission and distribution, constrained robotic systems and intelligent vehicle highway systems may be considered as HDS. Among HDS, switched linear systems have attracted extensive research, see e.g. [START_REF] Chiou | Stability analysis for a class of switched large-scale time-delay systems via time-switched method[END_REF], [START_REF] Daafouz | Stability Analysis and Control Synthesis for Switched Systems: A Switched Lyapunov Function Approach[END_REF], [START_REF] Fang | Stabilization and Performance Analysis for a Class of Switched Systems[END_REF], [START_REF] Hetel | Stabilization of Arbitrary Switched Linear Systems With Unknown Time-Varying Delays[END_REF], [START_REF] Mansouri | Robust pole placement controller design in LMI region for uncertain and disturbed switched systems[END_REF], [START_REF] Liberzon | Basic problems in stability and design of switched systems[END_REF], [START_REF] Ni | Minimum Dwell Time for Stability and Stabilization of Switched Linear Systems, 7th World Congress on Intelligent Control and Automation[END_REF]). To obtain stability conditions, two techniques are usually employed. Some authors consider the dwell time concept [START_REF] Liberzon | Basic problems in stability and design of switched systems[END_REF], [START_REF] Chiou | Stability analysis for a class of switched large-scale time-delay systems via time-switched method[END_REF], [START_REF] Chiou | Stability analysis for a class of switched large-scale time-delay systems via time-switched method[END_REF]). In these works, authors proved that, when the linear subsystems are Hurwitz, the overall switched system is stable if the time between consecutive switching is sufficiently large. The second technique, generally based on Lyapunov theory, aims at designing a control law able to stabilize the overall linear switched system without considering a particular switching law [START_REF] Hetel | Stabilization of Arbitrary Switched Linear Systems With Unknown Time-Varying Delays[END_REF], [START_REF] Mansouri | Robust pole placement controller design in LMI region for uncertain and disturbed switched systems[END_REF]). Note that, all these studies consider HDS described as a collection of linear systems switching together. However, stability and stabilisation issue for nonlinear switched systems has been seldom treated in the literature [START_REF] Hespanha | Stability of switched systems with average of the dwell-time[END_REF], [START_REF] Palm | Fuzzy switched hybrid systems-Modeling and identification[END_REF]).

Independently to the works on HDS, other studies have focussed on fuzzy modelling and control approaches. Starting from basic fuzzy control techniques [START_REF] Mamdani | Application of fuzzy algorithms for control of a simple dynamic plant[END_REF]), the last three decades have shown Takagi-Sugeno (T-S) fuzzy modelling and control techniques arising [START_REF] Takagi | Fuzzy identification of systems and its application to modelling and control[END_REF], [START_REF] Tanaka | Fuzzy control systems design and analysis. A linear matrix inequality approach[END_REF]). Indeed, T-S fuzzy models have then attracted interest when dealing with nonlinear systems. These are constituted by a set of linear models interconnected by fuzzy membership functions. Thus, using a convenient convex polytopic transformation, a T-S model can match exactly an affine (bounded) nonlinear system in a compact set of the state space [START_REF] Tanaka | Fuzzy control systems design and analysis. A linear matrix inequality approach[END_REF]). Based on the polytopic structure of T-S models, the merit of T-S fuzzy control approaches is that they make possible the extension of some linear concept to the case of nonlinear systems [START_REF] Tanaka | Fuzzy control systems design and analysis. A linear matrix inequality approach[END_REF], [START_REF] Sala | Perspectives of fuzzy systems and control[END_REF], [START_REF] Bouarar | LMI Stability Conditions for Takagi-Sugeno Uncertain Descriptors[END_REF], (2010), [START_REF] Zerar | Linear fractional transformation based H-infinity output stabilization for Takagi-Sugeno fuzzy models[END_REF], [START_REF] Mansouri | Output feedback LMI tracking control conditions with H∞ criterion for uncertain and disturbed T-S models[END_REF], [START_REF] Lendek | Stability Bounds for Fuzzy Estimation and Control[END_REF]). Nevertheless, an inherent drawback remains since the number of fuzzy rules of a TS model increase exponentially with the number of nonlinearities constituting the matched nonlinear system [START_REF] Delmotte | Continous Takagi-Sugeno's models: reduction of the number of LMI conditions in various fuzzy control design techniques[END_REF]). This makes fuzzy controller design and implementation difficult as the complexity of the nonlinear system to be controlled increases.

To outline the problem of rules explosion in T-S modelling, some authors have proposed to combine the merit of switched systems with T-S ones to deal with nonlinear control problems (Othake et al. (2002), Othake et al. (2006[START_REF] Lam | Stability analysis of sampled-data fuzzy controller for nonlinear systems based on switching T-S fuzzy model[END_REF]). To do so, partitioning the state space of a nonlinear system allows defining a switched nonlinear system. Then, inside each partition, a T-S model can be obtained. So, as stated in [START_REF] Yang | Robust controller for a class of uncertain switched fuzzy systems[END_REF]), the resulting switched T-S system inherits some essential features of hybrid systems and maintains all the information and knowledge representation capacity of fuzzy systems. Few papers have studied stabilization issues of switched fuzzy systems based on quadratic approaches [START_REF] Palm | Fuzzy switched hybrid systems-Modeling and identification[END_REF][START_REF] Lam | Stability analysis of sampled-data fuzzy controller for nonlinear systems based on switching T-S fuzzy model[END_REF]), Yand et al. (2008), [START_REF] Ojleska | Switched Fuzzy Systems: Overview and Perspectives[END_REF], [START_REF] Yang | Robust controller for a class of uncertain switched fuzzy systems[END_REF]) or switching Lyapunov function (Othake et al. (2002), Othake et al. ( 2006)). Note that these studies only consider nominal systems and so, they are irrelevant when dealing with robustness of the designed controller. Therefore, a robust controller design has been proposed in [START_REF] Yang | Robust controller for a class of uncertain switched fuzzy systems[END_REF]) for uncertain switched T-S systems. Nevertheless, in the latter study, a classical quadratic Lyapunov approach has been employed leading to conservative results since it needs to check the existence of a common Lyapunov matrix for a set of linear matrix inequalities (LMI) constraints. Following the work on switched linear systems (Dafouz et al. (2002), [START_REF] Fang | Stabilization and Performance Analysis for a Class of Switched Systems[END_REF]), less conservative LMI conditions for T-S switched systems have been provided by employing switched Lyapunov function (Othake et al. (2006)). The aim of this paper is then to extend these works to the case of robust switched fuzzy Parallel Disturbed Compensation (PDC) controller design for the class of uncertain and disturbed switched T-S fuzzy systems.

The paper is organized as follows. In the first section, the class of uncertain and disturbed switched T-S fuzzy systems is depicted as well as the considered switched PDC control law and switched Lyapunov candidate function are presented. After some useful lemmas and notations, the second section presents the main result: a stabilization criterion is proposed as LMI conditions for uncertain switched T-S systems. Then, this result is extended to the class of uncertain switched fuzzy system subject to external disturbances using a H  criterion. Finally, a simulation example, followed by a conclusion, is provided to illustrate the efficiency of the proposed approaches.

PROBLEM STATEMENT

From a nonlinear system to its switched fuzzy representation:

Consider the following nonlinear system:

                              x t f x t f x t x t g x t g x t u t d x t t        (1)
where

  1 2 ( ) ( ) ( ) ( ) n n x t x t x t x t     ,         1 2 m m u t u t u t u t         and   p t    are
respectively the state, the input and the external disturbances vectors.

    n n f x t    ,     n m g x t   
are nonlinear matrices defining the nominal part of (1). Following the way proposed in (Othake et al. ( 2002)) for nominal systems, using the sector nonlinearity (SNL) approach [START_REF] Tanaka | Fuzzy control systems design and analysis. A linear matrix inequality approach[END_REF]) and a convenient state space partitioning, the uncertain and disturbed nonlinear system (1) can be rewritten as an uncertain and disturbed switched Takagi-Sugeno model described as follows:

                          1 1 q r Q q q i q i q i q i qi qi qi x t v x t h x t A A t x t B B t u t G t            (2)
where Q denotes the number of partitioned regions of the state space and q r is the number of rules in each region.

n n qi A    , n m qi B    and n p qi G   
are constant matrices with appropriate dimensions for all 1,..., i r  and 1,..., q Q  .

The matrices

  n n qi A t    ,   n m qi B t   
represent the uncertain norm-bounded (lebesgue measurable) matrices which can be rewritten such that: 

        qi aqi a aqi qi bqi b bqi A t H F t N B t H F t N          ( 
    1 1 q r qi i h x t    and     q v x t are the switched laws defined by:             1 2 1 2 1 region , , , 0 region , , , q q q n q q q q q n q if x t R s s s v x t if x t R s s s           (4) Consider the state vector         1 ... n x x x t t t  , the th q region   1 2
, , ,

q q q n q R s s s  follows:     1 0 , 1 , . . . , 0 0 k kq k if x t s k n if x t          (5) 
To illustrate this modelling approach, based on the switched laws (4), the state space partitions of a second order switched T-S system leads to four regions

  1 2 , q q q R s s depicted in Fig.1.
Note that, using the modelling methodology proposed by (Othake et al. ( 2002)), the switched T-S system (2) represents exactly the nonlinear system (1) on a compact set of the state space. That is to say that the robust controller design proposed in the sequel is valid on the whole state space if the nonlinearities of the uncertain system (1) are bounded (global SNL) or, in the contrary, on a restricted region (local SNL), see [START_REF] Ohtake | A construction method of switching Lyapunov function for nonlinear systems[END_REF]) for more details.

1 x 2 x   1 1,1 R   2 0,1 R   3 0, 0 R   Fig. 1.
Example of a second order state space partition.

To lead to the LMI conditions proposed in the next section, an extended state space system can be employed (Othake et al. ( 2006)). Following this way, let us consider a stable autonomous linear system such that:

    ˆx t Cx t   (6) 
where

        1 2 ˆˆˆˆn n x t x t x t x t         is a state vector and n n C    is a Hurwitz matrix. Let       x t x t x t      
be an extended state vector, (2) can be extended with (6) leading to:

                          1 1 q r Q q q i q i q i q i qi qi qi x t v x t h x t A A t x t B B t u t G t                   (7) with 0 0 qi qi A A C         , 0 0 0 qi qi A A           , 0 qi qi B B         , 0 qi qi B B           and 0 qi qi G G         . Note that, qi A   and qi B   can be rewritten as follow:         qi aqi a aqi qi bqi b bqi A t H F t N B t H F t N               with 0 aqi aqi H H        , 0 bqi bqi H H        , 0 aqi aqi N N         and 0 bqi bqi N N         .
Note that, as shown in [START_REF] Ohtake | Switching fuzzy controller design based on switching Lyapunov function for a class of nonlinear systems[END_REF]), to lead to LMI conditions, it is convenient to choose

n n C I    
where  is an arbitrary positive scalar and

n n n n I     is a unit matrix.
Moreover, the trajectories of (2) with the initial state

  0 0 x x 
are equal to the first n trajectories of ( 7) with the

initial state   0 1 0 0 T T T n x x        .
Remark: The proposed control approach is dedicated to nonlinear systems (1) (instead of switched nonlinear ones) by rewriting them as switched TS systems (2). Other studies were focused on switched nonlinear systems regarded as sets of TS systems switching together, see e.g. [START_REF] Guelton | H-infinity decentralized static output feedback controller design for large scale Takagi-Sugeno systems[END_REF], Jabri et al. ( 2011)).

Switched PDC controller and switched Lyapunov candidate:

Now, in order to stabilize the switched T-S systems (7), consider the following switched Parallel Distributed Compensation (PDC) control law Ohtake et al. ( 2006)):

            1 1 q r Q q q i q i q q i u t v x t h x t K E x t      (8) 
where

2 m n qi K R  
are the gain matrices and

2 2 n n q E R   are
non singular matrices defined such that:

        1 1 2 2 1 1 1 1 2 2 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 q q
q q r q r q rq rq q q q q q r q r q rq rq s s s s

s s s s E s s s s s s s s                                                                                    (9) with kq s , for 1,..., k n 
, defined above in (5).

Substituting ( 8) into (7), one obtains the following closedloop uncertain and disturbed system :

                          1 1 q r Q q q i q i q i q i qi qi qj q qi x t v x t h x t A A t B B t K E x t G t                   (10)
The goal is now to design the matrices qi K , for 1,..., i r  and 1,..., q Q  , ensuring the stability of the closed loop system (10). The following results will be obtained through the use of a candidate switched Lyapunov function given by:

                            1 11 1 2 1 1 2 2 12 22 2 1 2 , , , , , , , , , , , , T n T 
n T Q Q Q Q n Q x t Px t x t R s s s x t P x t x t R s s s V x t x t P x t x t R s s s                          (11)
where

2 2 n n q P   
, for 1,..., q Q  , are positive definite real matrices.

Note that, to guarantee the continuity of the candidate Lyapunov function (11) on region boundaries [START_REF] Liberzon | Basic problems in stability and design of switched systems[END_REF]), q P can be rewritten such that:

T q q q P E PE  ( 12 
)
where P is a definite positive matrix with q E defined above.

Let us assume that for each instant t , only one region can be activated, thus (11) can be rewritten as:

        1 Q T T q q q V x t x t E PE x t       (13) 
Therefore, if there exist 0 P  such that ( 13) is strictly decreasing, the closed loop system (10) is stable. The main result will be provided in the next section in terms of LMIs.

Notations and Lemmas:

The following notations will be used in the sequel to clarify the mathematical expression:

        1 1 q r Q vh q qi qi q i A v x t h x t A     ,     1 , Q v q q q E v x t E            1 1 q q r r h h i i i i i i X Y h x t X h x t Y                      .
Note that, assuming only one region is allowable at each instant. Thus one has:

            1 1 1 Q Q Q v v q q q q q q q q q q X Y v x t X v x t Y v x t X Y                    
As usual, a star (*) indicates a transpose quantity in a matrix. The time t will be omitted when there is no ambiguity. I denote identity matrices with appropriate dimensions.

Moreover, the following lemmas will be used in the sequel to derive relaxed LMI stability conditions.

Lemma 1 [START_REF] Tuan | Parametrized linear matrix inequality techniques in fuzzy control design[END_REF]). The inequality :

        1 1 0 q q r r i j i j i j h z t h z t      ( 14 
)
is verified if, for all 1,..., i r  and 1,..., j r  , j i  :

0 ii   (15) 
and

  1 1 0 1 2 ii ij ji q r        (16)
Lemma 2 (Zhou and Khargonedkar (1988)). Let us consider X and Y two matrices of appropriate dimensions, there exists a positive scalar 0

  such that : 1 T T T T X Y Y X X X Y Y       (17) 

ROBUST LMI BASED SWITCHED CONTROLLER DESIGN

In this section, one firstly proposes to study the stabilisation of the system (2) without considering external disturbances (i.e.   0 t   ). Using the above defined notations, the closed loop uncertain switched T-S system is given as follows:

          vh vh vh vh vh v x t A A B B K E x t            (18) 
Sufficient LMI conditions for the design of a switched controller (8) guaranteeing the stability of ( 18) are proposed in the following theorem.

Theorem 1. The uncertain switched fuzzy system (2) without external disturbances (   0 t   ) is GAS (globally asymptotically stabilized) using the PDC switched fuzzy control law (8) if there exist the matrices 0

T X X   , qi M , the scalars 0 qi   , 0 qi   satisfying the following LMIs for all 1,..., q Q  , , 1,..., q i j r  and i j  : 0 ii   (19) 
and

  1 1 0 1 2 ii ij ji q r       (20) with       1,1 1 * * 0 0 qij qij aqi q qi bqj qj qj N E X I N M I                   and   1,1 1 T T T T T T qij q qi q q qi q qi qj q q qj qi T T T T qi q qi qi q qj q qj qj q XE A E E A E X M B E E B M E H H E E H H E               
Then, the switched PDC controller gain matrices are obtained through the bijective change of variables

1 qi qi K M X   .
Proof. Consider the Lyapunov candidate (13), the closed loop system is asymptotically stable if

       0 T T T T v v v v x t E PE x t x t E PE x t         (21) 
Considering (18), inequality ( 21) is verified for all  

x t  if:             0 T T vh vh vh vh vh v v v T v v vh vh vh vh vh v A A B B K E E PE E PE A A B B K E                     (22) 
Multiplying left by T v E  and right by 1 v E  , ( 22) becomes:

        1 0 T T T T T T v vh vh v vh vh vh v v v h v h v v v h v h v h E A A E P K B B E P PE A A E PE B B K                     (23) 
which can be rewritten in its extended form considering (3) as:

        1 1 0 T T T T T T v vh v v vh v vh vh v v vh vh T T T T T v avh a avh v v avh a avh v T T T T T vh bvh b bvh v v bvh b bvh vh E A E P PE A E K B E P PE B K E N F t H E P PE H F t N E K N F t H E P PE H F t N K                         (24) 
Let us consider 1 X P   , left and right multiplying ( 24) by X , one obtains :

        1 1 0 T T T T T T v vh v v vh v vh vh v v vh vh T T T T T v avh a bvh v v avh b avh v T T T T T vh bvh b bvh v v bvh b bvh vh XE A E E A E X M B E E B M XE N F t H E E H F t N E X M N F t H E E H F t N M                         (25) Recall that     T a a F t F t I  and     T b b
F t F t I  , applying lemma 2 and the Schur complement, ( 25) is verified if:

      1,1 1 * * 0 0 0 vhh vhh avh q vh bvh vh vh N E X I N M I                      (26) 
with

  1,1 1 T T T T T T vhh v vh v v vh v vh vh v v vh vh T T T T vh v vh vh v vh v vh vh v XE A E E A E X M B E E B M E H H E E H H E                   
Finally, applying Lemma 1 on (26), the proof is completed. ■ Now, the purpose is to extend theorem 1 to the design of robust controllers (8) stabilizing uncertain switched T-S systems (2) subject to external disturbances (   0 t   ). To do so, the following H  criterion is employed to minimize the effect of the external disturbances on the state dynamics:

        2 0 0 tf tf T T x t Wx t dt t t dt         (27) 
where

2 2 n n W   
is a weighting positive definite real matrix and  is the disturbances attenuation level.

The result is summarized in the following theorem.

Theorem 2. The uncertain switched fuzzy system (2) subject to external disturbances is GAS using the PDC switched fuzzy control law (8) if there exist the matrices 0 following LMIs for all 1,..., q Q  , , 1,..., q i j r  and i j  :

Minimize  such that :

0 ii   (28) and   1 1 0 1 2 ii ij ji q r        (29) with     1 1 2 * * 0 0 0 0 0 0 0 qij q qij T T qi q q E X W G E PE I                    
and qij  defined in theorem 1.

Therefore, the robust switched PDC controller gain matrices are obtained using the bijective change of variables

1 qi qi K M X  
and the designed control law ensures a H  performance    .

Proof. Consider the Lyapunov candidate function ( 13) and the H  criterion given in ( 27). The close loop system ( 10) is stable and the H  performance  is guaranteed if:

               0 T T T T v v v v T T x t E PE x t x t E PE x t x t Rx t t t               ( 30 
)
Considering the same steps as for the proof of theorem 1, ( 30) is verified for all  

x t and   t

 if:   2 * 0 0 0 vhh T T vh v v W G E PE I               (31) 
with vhh  defined in (26) (proof of theorem 1) and 1 0 0

0 0 0 0 0 0 T v v XE RE X W             
.

Then, applying the Schur complement, ( 31) is verified if:

    1 1 2 * * 0 0 0 0 0 0 0 vhh vhh v T T vh v v E X W G E PE I                     (32)
Finally, applying lemma 2, one obtains the LMI stability conditions proposed in theorem 2. This ends the proof. ■

NUMERICAL EXAMPLE

Let us consider the following uncertain nonlinear system inspired from the nominal one given in Ohtake et al. ( 2006)): 

                                            1 2 1 2 2 1 2 0.
                      (33) with   1 , x d d   and   2 , x d d   , 0.5 d  ,   3 3 2 2 1 2 1 2 1 2 1 2 1 2 5 5 3 f x x x x x xx xx x x         and       1 2 0.7 g x x t x t    .
The state space partition is chosen as in Fig. 1 with four regions

  1 1,1 R ,   2 0,1 R ,   3 1, 0 R and   4 0, 0 R
. Thus, the considered switched law is defined by:

    1 2 1 1 i f0 d ,0 d 0 o t h e r w i s e x x v x t             1 2 2 1 i f d 0 ,0 d 0 o t h e r w i s e x x v x t              1 2 3 1 i f 0 d , d 0 0 o t h e r w i s e x x v x t          and     1 2 4 1 i f d 0 , d 0 0 o t h e r w i s e x x v x t           .
Using the sector nonlinearity approach [START_REF] Tanaka | Fuzzy control systems design and analysis. A linear matrix inequality approach[END_REF]) and the previous state partition, the nonlinear system (33) can be constructed as an uncertain switched TS disturbed system given by:

                          1 1 Q r q q i q i q i q i qi qi qi x t v x t h x t A A t x t B B t u t G t            (34) with 11 13 0 1 -0.246 -0.246 A A         , 12 14 0 1 -1.25 -1.25 A A         , 21 23 0 1 -1.952 -0.246 A A         , 22 24 0 1 0.75 -1.25 A A         , 31 33 0 1 -0.246 -1.952 A A         , 32 34 0 1 -1.25 0.75 A A         41 43 0 1 -1.952 -1.952 A A         , 42 44 0 1 0.75 0.75 A A         ,   11 12 41 42 0 -0.45 B B B B     ,   13 14 43 44 0 -0.7 B B B B     ,   21 23 31 32 0 -0.7 B B B B     ,   22 24 33 34 0 -0.95 B B B B     , 11 12 21 22 31 32 41 42 1 1 G G G G G G G G              
and the external disturbances defined by

    qi aqi aqi A t H F t N   and     qi bqi bqi B t H F t N   with, for 1,..., 4 q  and 1,.., 4 i  ,   0.2 0.15 T aqi bqi H H   and   0.25 0.1 aqi bqi N N   .
Recall that , 1,..., 4 q E q  , are defined in (9) and lead, for the considered partition, to:

1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 E              , 2 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 E              , 3 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 E              , 4 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 E             
.

The membership functions are given by

    qi qi qi h x t w   with:       1 2 1 2 11 13 1 2 1.25 1.25 , , 0, 0 1.004 1.004 1 otherwise f x x x x x x x                    1 2 1 2 12 14 1 2 0.246 0.246 , , 0,0 1.004 1.004 0 otherwise x x f x x x x x                     1 2 1 2 21 23 1 2 0.75 1.25 , , 0,0 2.702 1.004 1 otherwise f x x x x x x x                     1 2 1 2 22 24 1 2
1.952 0.246 , , 0, 0 2.702 1.004 0 otherwise

x x f x x x x x                      1 2 1 2 31 33 1 2
1.25 0.75 , , 0, 0 1.004 2.702 In order to be able to apply the above proposed theorems, the extended form of ( 34) is built by adding a stable linear system (6) with C I   . Hence, the augmented switched fuzzy system yields:

1 otherwise f x x x x x x x                    1 2 1 2 32 34 1 2 0.246 1.952 , , 0, 0 1.004 2.702 0 otherwise x x f x x x x x                     1 2 1 2 41 43 1 2 0.75 0.75 , , 0, 0 2.702 2.702 1 otherwise f x x x x x x x                     1 2 1 2 42 44 1 2 1.952 1.952 , , 0,0 2.702 2.702 0 otherwise x x f x x x x x               
                          1 1 Q r q q i q i q i q i qi qi q x t v x t h x t A A t x t B B t u t G t                   (35) 
with 11 13 0 1 0 0 -0.246 -0.246 0 0 0 0 1 0 0 0 0 1

A A                   , 12 14 0 1 0 0 -1.25 -1.25 0 0 0 0 1 0 0 0 0 1 A A                   , 21 23 0 1 0 0 -1.952 -0.246 0 0 0 0 1 0 0 0 0 1 A A                   , 22 24 0 1 0 0 0.75 -1.25 0 0 0 0 1 0 0 0 0 1 A A                   , 31 33 0 1 0 0 -0.246 -1.952 0 0 0 0 1 0 0 0 0 1 A A                   , 32 34 0 1 0 0 -1.25 0.75 0 0 0 0 1 0 0 0 0 1 A A                   , 41 43 0 1 0 0 -1.952 -1.952 0 0 0 0 1 0 0 0 0 1 A A                   , 42 44 0 1 0 0 0.75 0.75 0 0 0 0 1 0 0 0 0 1 A A                   , 11 12 41 42 0 0.45 0 0 B B B B                      , 13 14 43 44 0 0.7 0 0 B B B B                      , 21 23 31 32 0 0.7 0 0 B B B B                      , 22 24 33 34 0 0.95 0 0 B B B B                      and for 1, 2 q  and 1,.., 4 i  , 1 1 0 0 iq G               , 0.2 0.15 0 0 aqi bqi H H                 and   0.25 0.1 0 0 aqi bqi N N     .
In order to show the efficiency of theorem 1, let us consider the system (2) without external disturbances (i.e.   0 t   ).

The Matlab LMI toolbox is used to solve the LMI conditions leading to the synthesis of a switched fuzzy controller given by:

5 

CONCLUSION

In this paper, the stabilization of a class of nonlinear systems represented by uncertain and disturbed switched Takagi-Sugeno fuzzy systems has been studied. The interest of this approach is to benefit from the well-known information of T-S systems with association to the characteristic of the switched systems. Moreover, to cope with uncertainties and external disturbances, LMI conditions for robust switched fuzzy PDC controller design have been obtained based on switched quadratic Lyapunov function and a H  criterion. Finally, a numerical example has been provided to illustrate the efficiency of the proposed switched fuzzy PDC controller design methodology.
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Fig. 4 .

 4 Fig. 2. Phase plan of the closed-loop uncertain switched fuzzy system.

Fig. 6 .

 6 Fig. 5. State's dynamics of the closed-loop uncertain and disturbed system, ( 1 x ) dotted line, ( 2 x ) solid line.

Fig. 7 .

 7 Fig. 7. Control law evolution of the closed-loop uncertain switched fuzzy disturbed system.

Fig. 8 .

 8 Fig. 8. Lyapunov function evolution of the closed-loop uncertain switched fuzzy disturbed system.
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