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Comments on “Fuzzy Control Systems 
Design via Fuzzy Lyapunov 

Functions” 
 
K. Guelton, Member, IEEE, T.M. Guerra, M. Bernal,   T. 

Bouarar and N. Manamanni, Member, IEEE 

  
Abstract—This note considers the work untitled “Fuzzy 

Control Systems Design via Fuzzy Lyapunov Functions” 
published by J. Li, S. Zhou and S. Xu in IEEE Trans. on SMC 
part B [1]. In the latter, the authors try to extend the work of 
Rhee and Won [2]. Nevertheless, the results proposed in [1] have 
been obtained without taking into account some necessary 
conditions to ensure the line integral function to be a Lyapunov 
candidate, and consequently the proposed stability and 
stabilization conditions are wrong. 
 

Index Terms— Fuzzy Lyapunov function, Linear matrix 
inequality (LMI), Takagi-Sugeno (T-S), fuzzy control system, line 
integral Lyapunov candidate. 
 

I. INTRODUCTION 
This note considers the work entitled “Fuzzy Control Systems 
Design via Fuzzy Lyapunov Functions” published by J. Li, S. 
Zhou and S. Xu in IEEE Trans. on SMC part B [1]. In this 
paper, the authors propose an extension to the work of Rhee 
and Won [2]. In the latter, non quadratic stability conditions 
have been investigated using a line-integral non quadratic 
Lyapunov Function. This function allows avoiding the 
membership function derivative in the obtained LMI stability 
conditions which is the major drawback of classical non 
quadratic approach. Furthermore, Rhee and Won [2] have 
proposed an extension to stabilization leading to BMI 
conditions. In [1], based on a slightly modified line-integral 
Lyapunov function candidate inspired by [2], the authors 
intended to provide non quadratic stabilization conditions in 
the LMI form. Nevertheless, these results have been obtained 
without taking into account some necessary conditions to 
ensure the line-integral function to be a Lyapunov function 
candidate. In this note, it is proved that the proposed stability 
and stabilization conditions in [1] are wrong. Moreover, it is 
shown that, to be a non quadratic Lyapunov function 
candidate, the chosen line-integral function has to fulfill very 
complex conditions which reduce the interest and applicability 
of such approach. Finally, an illustrative example is provided 
that clearly shows that LMI conditions in [1] fail to ensure 
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global asymptotical stable behavior. 

II. STATEMENT OF THE PROBLEM 
In [2], a line-integral fuzzy Lyapunov function candidate has 
been considered such that: 
 

( ) ( )
( )0,

2 .
x

V x f dψ ψ
Γ

= ∫  (1) 

 

where ( )0, xΓ  is the path from the origin to the current state 

x , nψ ∈\  is a dummy vector for the integral, ndψ ∈\  is an 

infinitesimal displacement vector, ( ) nf x ∈\  is a vector 
function of the state x  which can be physically regarded as a 
force vector. Consequently, (1) represents the work in the 
force vector field as an energy function. 
 

To be a Lyapunov function candidate, ( )V x  has to satisfy the 
following conditions [3]: 
 

1) ( )V x  is a continuously differentiable function, 

2) ( )V x  is positive definite, 

3) ( )V x  is radially unbounded. 
 
As stated in [2], it is obvious that condition 1) is verified. 
However, if ( )V x  is dependent on the path ( )0, xΓ , 
conditions 2) and 3) would not be satisfied. Hence, it is 
mandatory to verify the line integral (1) to be path-
independent [4]. 
 

Let ( ) ( ) ( )1 ,...,
T

nf x f x f x= ⎡ ⎤⎣ ⎦ , then the necessary and 

sufficient condition for ( )V x  to be path-independent [4] 
(denoted as lemma 1 in [2]) is given by: 
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In [2], a solution satisfying (2) and leading to LMIs (for 
stability analysis) or BMIs (for stabilization), has been 
proposed as follows: 
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0T T
i iP D P D+ = + >  under some special arrangements; see 

[2] for more details. 
Note that, due to condition (2), using a line-integral Lyapunov 



 

function candidate necessarily leads to a constrained 
formulation of the vector ( )f x . In fact, this is the key point 
of our concern with the work published in [1], since in it the 
force vector 
 

( ) ( )1f x P x x−=  (4) 
 

with ( ) ( )
1

r

i i
i

P x h x P
=

= ∑  is used to define the line integral (1).  

 
Then, the authors claim [1]:  
 

“it can be proved that ( )V x  [i.e. (1) with (4)] satisfies the 

above conditions 1), 2) and 3). Thus ( )V x  can be a 
Lyapunov candidate.” 

 
Unfortunately, this is not always true and the result is not 
obvious since they didn’t take into account the necessary 
condition (2) for the line-integral to be path-independent. 
Therefore, theorems in [1] are wrong since { } 1

0 r
i i

P
=

>  are not 
properly conditioned by (3). 
 

Naturally, a questions arises: what assumption on ( )P x  
should be done to satisfy (2) with (4)? Let us rewrite: 
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( )

( )1 1P x U x
P x

− =  (5) 

 

with ( ) ( )
{ }, 1, ,ij i j n

U x u x
∈

⎡ ⎤= ⎣ ⎦ …
 being the transpose of the 

cofactors matrix.  
 
We can write each component of (4) such that for 1,...,i n= : 
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Thus, it will lead to very complicated relations (if any) to 
ensure (2). Indeed, from (6), the following equalities should 
stand for every nx ∈\ : 
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Let us exhibit this fact on the simplest case. Consider 

[ ] 2
1 2

Tx x x= ∈\  and ( ) ( ) ( )1 1 1 1 2 1 2P x h x P h x P= + . Since 

2 11h h= − , one can write ( ) ( )1 1P x R h x Q= +  with 
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Let us denote 2

11 22 12R r r r= − , 2
11 22 12Q q q q= −  and 

11 22 11 22 12 122S r q q r r q= + − , it is easy to show that: 

( ) ( ) ( )2
1 1 1 1P x h x Q R h x S= + + . Then, from (2) it follows: 
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or equivalently: 
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which is satisfied for every 1x ∈\  and 2x ∈\  if: 
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Note that 11 0r >  because of 0TR R= > ; therefore 0Q =  is 

mandatory implying 12 11 22q q q= ± . Then, the conditions to 
be satisfied are:  
 

12 12 0R q Sr− + =  (14) 
 
and 
 

11 11 0R q Sr− + = . (15) 
 
Several solutions are possible: 
 
1) Recalling that 11 0r > , a first possibility is 0S =  and 

consequently 11 12 0q q= =  as 0R > . Given that 

11 22 11 22 12 122 0S r q q r r q= + − = , 0S =  implies 22 0q =  and in 
conclusion 0Q = , which resumes to the classical quadratic 
case. Consequently, this case doesn’t help the author’s 
objective of deriving non quadratic stability conditions 



 

without knowledge on the time-derivative membership 
function. 
 

2) Another possibility stands for 0S ≠  leading to 11 0q ≠  and 

12 0q ≠ . Note that 12 11 22q q q= ±  also implies 22 0q ≠ . 
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( ) ( )1 1P x R h x Q= +  is a possible solution for path 
independence if conditions 0R >  and 0R Q+ >  are 
satisfied. 

 
Note that this simple two-rule second-order example leads to 
complex and constrained conditions for path independence. 
Consequently, generalizing this result may lead to very 
complicated and probably unfruitful stability conditions which 
reduce the interest of such approaches. 

III. ILLUSTRATIVE UNSTABLE EXAMPLE 
Let us consider the following TS model: 
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According to the authors, T-S model (16) under control law  
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is asymptotically stable, with iP , iN , 1, , 4i = … , satisfying 
LMIs in Theorem 4 of [1]. Therefore, since matrices 

1
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[ ]1 59.0848 9.7748N = − , [ ]2 64.9897 11.6187N = − , 

[ ]3 6.1237 8.1063N = − , [ ]4 0.1188 0.3410N =  
satisfy LMIs in Theorem 4 of [1], TS model (16) is expected 
to be globally asymptotically stable under control law (17). 
 
Results in [1] do not define any particular set of membership 
functions ( )ih x  for which Theorem 4 can be applied, since 
they are irrelevant for its conditions. Consider then 
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1 1 11 cosw x x= −  and ( )

( )
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to define membership functions 1 1 2h w w= , ( )2 1 21h w w= − , 

( )3 1 21h w w= − , and ( )( )4 1 21 1h w w= − − .  
 
Fig. 1 shows the evolution of the states for TS model (16) 
under control law (17), from initial conditions 
( ) ( )1 2, 5,5x x = − , ( ) ( )1 2, 5, 5x x = −  and ( ) ( )1 2, 0.5,0.5x x = − . 
Although conditions in Theorem 4 of [1] have been fulfilled, 
the so-called controlled model remains unstable, since the 
trajectories converge towards a limit cycle. This shows that 
the proposed conditions failed to ensure any stable behavior. 
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Fig. 1: Evolution of the states of TS model (16) under control 
law (17). 
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