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This note considers the work untitled "Fuzzy Control Systems Design via Fuzzy Lyapunov Functions" published by J. Li

I. INTRODUCTION

This note considers the work entitled "Fuzzy Control Systems Design via Fuzzy Lyapunov Functions" published by J. Li, S. Zhou and S. Xu in IEEE Trans. on SMC part B [START_REF] Li | Fuzzy Control Systems design via Fuzzy Lyapunov Functions[END_REF]. In this paper, the authors propose an extension to the work of Rhee and Won [START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF]. In the latter, non quadratic stability conditions have been investigated using a line-integral non quadratic Lyapunov Function. This function allows avoiding the membership function derivative in the obtained LMI stability conditions which is the major drawback of classical non quadratic approach. Furthermore, Rhee and Won [START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF] have proposed an extension to stabilization leading to BMI conditions. In [START_REF] Li | Fuzzy Control Systems design via Fuzzy Lyapunov Functions[END_REF], based on a slightly modified line-integral Lyapunov function candidate inspired by [START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF], the authors intended to provide non quadratic stabilization conditions in the LMI form. Nevertheless, these results have been obtained without taking into account some necessary conditions to ensure the line-integral function to be a Lyapunov function candidate. In this note, it is proved that the proposed stability and stabilization conditions in [START_REF] Li | Fuzzy Control Systems design via Fuzzy Lyapunov Functions[END_REF] are wrong. Moreover, it is shown that, to be a non quadratic Lyapunov function candidate, the chosen line-integral function has to fulfill very complex conditions which reduce the interest and applicability of such approach. Finally, an illustrative example is provided that clearly shows that LMI conditions in [START_REF] Li | Fuzzy Control Systems design via Fuzzy Lyapunov Functions[END_REF] fail to ensure global asymptotical stable behavior.

II. STATEMENT OF THE PROBLEM

In [START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF], a line-integral fuzzy Lyapunov function candidate has been considered such that:

( ) ( ) ( ) 0, 2 . x V x f d ψ ψ Γ = ∫ (1) 
where ( ) To be a Lyapunov function candidate, ( )

V x has to satisfy the following conditions [START_REF] Khalil | Nonlinear systems[END_REF]:

1) ( ) V x is a continuously differentiable function, 2) ( ) V x is positive definite, 3) ( ) V x is radially unbounded.
As stated in [START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF], it is obvious that condition 1) is verified. However, if ( )

V x is dependent on the path ( ) 0, x Γ ,
conditions 2) and 3) would not be satisfied. Hence, it is mandatory to verify the line integral (1) to be pathindependent [START_REF] Zill | Advanced Engineering Mathematics[END_REF].

Let ( ) ( ) ( ) 1 ,..., T n f x f x f x = ⎡ ⎤ ⎣
⎦ , then the necessary and sufficient condition for ( )

V x to be path-independent [START_REF] Zill | Advanced Engineering Mathematics[END_REF] (denoted as lemma 1 in [START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF]) is given by:

( ) ( ) , , 1,..., j i j i f x f x for i j n x x ∂ ∂ = = ∂ ∂ . (2) 
In [START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF], a solution satisfying (2) and leading to LMIs (for stability analysis) or BMIs (for stabilization), has been proposed as follows:

( ) ( ) 

1 r i i i f x P h x D x = ⎛ ⎞ = + ⎜ ⎟ ⎝ ⎠ ∑ (3) 
⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ … … … , 11 22 0 0 0 0 0 0 i nn d d D d ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ , 0 T T i i P D P D + =
+ > under some special arrangements; see [START_REF] Rhee | A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design[END_REF] for more details. Note that, due to condition (2), using a line-integral Lyapunov function candidate necessarily leads to a constrained formulation of the vector ( )

f x .
In fact, this is the key point of our concern with the work published in [START_REF] Li | Fuzzy Control Systems design via Fuzzy Lyapunov Functions[END_REF], since in it the force vector ( ) ( )

1 f x P x x - = (4) 
with ( ) ( )

1 r i i i P x h x P = = ∑
is used to define the line integral [START_REF] Li | Fuzzy Control Systems design via Fuzzy Lyapunov Functions[END_REF].

Then, the authors claim [START_REF] Li | Fuzzy Control Systems design via Fuzzy Lyapunov Functions[END_REF]:

"it can be proved that ( ) 1) with ( 4)] satisfies the above conditions 1), 2) and 3). Thus ( )

V x [i.e. (
V x can be a Lyapunov candidate."
Unfortunately, this is not always true and the result is not obvious since they didn't take into account the necessary condition (2) for the line-integral to be path-independent.

Therefore, theorems in [START_REF] Li | Fuzzy Control Systems design via Fuzzy Lyapunov Functions[END_REF] ( ) ( ) ( )

1 1 P x U x P x - = (5) 
with

( ) ( ) { } , 1, , ij i j n U x u x ∈ ⎡ ⎤ = ⎣ ⎦ …
being the transpose of the cofactors matrix.

We can write each component of ( 4) such that for 1,..., i n = :

( ) ( ) ( )

1 1 n i i k k k f x u x x P x = = ⋅ ∑ (6) 
Thus, it will lead to very complicated relations (if any) to ensure (2). Indeed, from (6), the following equalities should stand for every

n x ∈ : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 0 n jk ik k i j j i k j i n ik k k i j u x u x x u x u x P x x x P x P x u x x x x = = ⎛ ⎞ ⎛ ⎞ ∂ ∂ ⎜ ⎟ - ⋅ + - ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ∂ ∂ ⎝ ⎠ ⎝ ⎠ ⎛ ⎞ ∂ ∂ + - ⋅ = ⎜ ⎟ ⎜ ⎟ ∂ ∂ ⎝ ⎠ ∑ ∑ (7) 
Let us exhibit this fact on the simplest case. Consider [ ]

2 1 2 T x x x = ∈ and 
( ) ( ) ( )

1 1 1 1 2 1 2 P x h x P h x P = + . Since 2 1 1 h h = -, one can write ( ) ( ) 
1 1 P x R h x Q = + with 11 12 2 12 22 r r R P r r ⎡ ⎤ = = ⎢ ⎥ ⎣ ⎦ and 11 12 1 2 12 22 q q Q P P q q ⎡ ⎤ = -= ⎢ ⎥ ⎣ ⎦ . It yields: ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 2 2 112 21 1 2 111 22 1 1 f x r h x q x r h x q x P x = + - + (8) and ( ) ( ) ( ) ( ) ( ) ( ) 
( )

2 12 1 1 12 1 11 1 1 11 2 1 1 f x r h x q x r h x q x P x = - + + + (9) 
Let us denote Q q q q = and 11 22 11 22 12 12 2 S r q q r r q = + -, it is easy to show that:

( ) ( ) ( ) 2 1 1 1 1 P x h x Q R h x S = + + . Then, from (2) it follows: ( ) ( ) ( ) ( ) ( ) ( ) ( ) 
( )

1 1 1 12 1 21 1 12 1 1 12 1 1 1 1 1 11 1 1 11 2 2 0 h P x q x q x x r h x q x h h x Q S x r h x q x ∂ - ∂ ⎛ ⎞ + ∂ ⎜ ⎟ + + = ⎜ ⎟ ∂ - + ⎝ ⎠ (10) or equivalently: ( ) ( )( ) ( ) ( ) ( 
)

2 1 1 1 2 1 1 1 2 1 1 1 1 1 2 1 1 1 2 0 2 h x Q R q x q x h x h x Q S r x r x ⎛ ⎞ - - ∂ ⎜ ⎟ = ⎜ ⎟ ∂ + + - ⎝ ⎠ (11) 
which is satisfied for every 1 x ∈ and 2 x ∈ if:

( ) ( ) ( ) ( ) ( ) 2 1 1 1 12 1 1 12 1 1 2 0 h h x Q R q h x Q S r x x ∂ - + + = ∂ (12) and ( ) ( ) ( ) ( ) ( ) 2 1 1 1 11 1 1 11 2 1 2 0 h h x Q R q h x Q S r x x ∂ - + + = ∂ (13) Note that 11 0 r > because of 0 T R R = > ; therefore 0 Q = is mandatory implying 12 11 22 q q q = ±
. Then, the conditions to be satisfied are:

12 12 0 R q Sr - + = (14) 
and

11 11 0 R q Sr - + = . ( 15 
)
Several solutions are possible:

1) Recalling that 11 0 r > , a first possibility is 0 S = and consequently 11 12 0 q q = = as 0 R > . Given that 11 22 11 22 12 12 2 0 S r q q r r q = + -= , 0 S = implies 22 0 q = and in conclusion 0 Q = , which resumes to the classical quadratic case. Consequently, this case doesn't help the author's objective of deriving non quadratic stability conditions without knowledge on the time-derivative membership function.

2) Another possibility stands for 0 S ≠ leading to 11 0 q ≠ and 12 0 q ≠ . Note that 12 11 22 q q q = ± also implies 22 0 q ≠ . Thus, one can extract 

q r r q R q r r q ⎡ ⎤ ± ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ± ⎢ ⎥ ⎣ ⎦ , 11 11 22 11 22 22 q q q Q q q q ⎡ ⎤ ± = ⎢ ⎥ ± ⎢ ⎥ ⎣ ⎦ , ( ) ( ) 1 1 
P x R h x Q = + is a possible solution for path independence if conditions 0 R > and 0 R Q + > are satisfied.
Note that this simple two-rule second-order example leads to complex and constrained conditions for path independence. Consequently, generalizing this result may lead to very complicated and probably unfruitful stability conditions which reduce the interest of such approaches.

III. ILLUSTRATIVE UNSTABLE EXAMPLE

Let us consider the following TS model: ( )( )

4 1 i i i i x h x A x Bu = = + ∑ , ( 16 
)
where 1 1 10

0 1 A - ⎡ ⎤ = ⎢ ⎥ ⎣ ⎦ , 2 0.8 11 0 1.3 A - ⎡ ⎤ = ⎢ ⎥ ⎣ ⎦ , 3 0.9 1 0 1.2 A - ⎡ ⎤ = ⎢ ⎥ ⎣ ⎦ , 4 2 0 10 0 A ⎡ ⎤ = ⎢ ⎥ ⎣ ⎦ , 1 2 1 1 B B ⎡ ⎤ = = ⎢ ⎥ ⎣ ⎦ , 3 1 2 B - ⎡ ⎤ = ⎢ ⎥ ⎣ ⎦ and 4 1 30 B - ⎡ ⎤ = ⎢ ⎥ ⎣ ⎦ .
According to the authors, T-S model ( 16) under control law ( ) ( ) ( ) 16) is expected to be globally asymptotically stable under control law (17).

1 4 4 1 1 i i j j i j u t h x N h x P x - = = ⎛ ⎞ = ⎜ ⎟ ⎝ ⎠ ∑ ∑ ( 
Results in [START_REF] Li | Fuzzy Control Systems design via Fuzzy Lyapunov Functions[END_REF] do not define any particular set of membership functions ( ) i h x for which Theorem 4 can be applied, since they are irrelevant for its conditions. Consider then ( ) ( ) Fig. 1 shows the evolution of the states for TS model ( 16) under control law (17), from initial conditions ( ) ( )

1 2
, 5 ,5

x x = - , ( ) ( ) 1 2 
, 5 , 5

x x =and ( ) ( )

, 0.5, 0.5 x x = -.

Although conditions in Theorem 4 of [START_REF] Li | Fuzzy Control Systems design via Fuzzy Lyapunov Functions[END_REF] have been fulfilled, the so-called controlled model remains unstable, since the trajectories converge towards a limit cycle. This shows that the proposed conditions failed to ensure any stable behavior. 

2 Fig. 1 :

 21 Fig. 1: Evolution of the states of TS model (16) under control law (17).