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Abstract: This paper deals with Takagi-Sugeno (T-S) systems stabilization based on dynamic 

output feedback compensators (DOFC). In fact, only few results consider DOFC for T-S 

systems and most of them propose quadratic Lyapunov stability function to provide stability 

conditions, which may lead to conservatism. In this work, to overcome this drawback and 

enhance the closed-loop transient response, we provide for T-S uncertain closed-loop systems 

non quadratic stability conditions. Based on a fuzzy Lyapunov candidate function and the 

descriptor redundancy property, these stability conditions are written in terms of linear matrix 

inequalities (LMI). Afterward, the DOFC is designed with H


 criterion in order to minimize 

the influence of the external disturbances. Finally, a few academic examples illustrate the 

efficiency of the proposed approach. 

Keywords: Fuzzy Control, Takagi-Sugeno Systems, Dynamic Output Feedback, Non 

Quadratic Stabilization, Fuzzy Lyapunov Function, Descriptor Redundancy. 



 

 

 

INTRODUCTION 

In the past few decades, with the growing complexity of dynamic systems, nonlinear control 

theory has attracted a great interest. Among nonlinear control theory, the Takagi-Sugeno (T-

S) fuzzy model-based approach has nowadays become popular since it constitutes universal 

approximators of nonlinear systems. Indeed, Takagi and Sugeno have proposed a class of 

fuzzy models to describe nonlinear systems as a collection of linear time invariant models 

blended together with nonlinear functions [32]. Based on this modeling approach, stability 

conditions have been derived from the direct Lyapunov methodology [33]. Then T-S control 

laws have been proposed to stabilize such nonlinear systems. The most commonly used are 

based on the so-called Parallel Distributed Compensation (PDC) scheme and remain to 

associate inferred state feedback to each local subsystem [42].  

The stability of T-S models and the design of T-S control laws are, in most of the case, 

investigated via the direct Lyapunov approach leading to a set of linear matrix inequalities 

(LMI), in the better case, or bilinear matrix inequalities (BMI) [5]. These matrix inequalities 

can be solved, when a solution exists, by classical convex optimization algorithms [10]. Most 

of the proposed approaches consider a quadratic Lyapunov function where common matrices 

to each subsystem have to be found (see e.g. [30][36] and references therein). The interest of 

these approaches is that the obtained solutions are not depending on the nonlinearities 

(membership functions) allowing to extend the involved linear control theory to nonlinear 

control design. Nevertheless, the obtained conditions lead to conservatism. Thus, numerous 

works have been proposed to relax (reduce the conservatism) such conditions. Some of them 

propose the use of matrix transformations on the sum structure of the closed-loop T-S system 



 

 

 

[41]. Some others introduce new decision variables in order to provide much more degrees of 

freedom to the LMI problem [19][21]. One other way is to reconsider stability conditions on 

the basis of other candidate Lyapunov functions. Thus, stability and stabilization have been 

considered via piecewise quadratic Lyapunov functions (PWLF) [18], non quadratic or fuzzy 

Lyapunov functions (FLF) [8][13][29][37]. More recently, it has been shown that using a 

descriptor redundancy approach leads to less computational cost of LMI solutions [11][38]. 

Moreover, descriptor redundancy may also be interesting since using a descriptor formulation 

may lead to less conservatism [9][12]. 

Complementary to the works related to the relaxation of LMI conditions and with the growing 

interest on engineering applications of T-S models based stabilization, some studies have been 

done regarding to robust and/or output stabilization of T-S fuzzy models. Indeed, a lot of 

works involving various specifications are now available for state feedback: Robustness with 

bounded uncertainties [7][27][34], time delay models with or without uncertainties [6][43], 

performance specification using a 
2

H  or a H


 criterion [21][26], using the circle criterion [3] 

or the Popov criterion [4], adaptive control [39], decentralized control [40], etc. 

Output stabilization can be considered through three approaches. The first one is based on the 

introduction of a state observer [22][23][24][35][44]. This approach is interesting when the 

state is not entirely available from measurements and a separation principle is only available 

when the premises variables are measurable. However, stability conditions have been 

proposed in the case of non measurable premises variables [14][25][45]. The second approach 

for output stabilization is called “static output feedback”. This one is interesting to reduce real 

time computational cost when implementing practical applications since it doesn‟t need any 



 

 

 

ODE solving [31]. Thus, static output feedback controller design for fuzzy T-S models has 

been recently proposed [16][17] but the results are provided in terms of BMI. Finally, the 

third way to address the problem of output feedback stabilization is to use a “dynamic output 

feedback compensator” (DOFC) [31]. To improve the closed-loop dynamics control law‟s 

performances, robust control based on DOFC controllers has been extensively studied in 

various kinds of linear systems (Linear Time Invariant (LTI), Linear Parameter Varying 

(LPV), Linear Time Varying (LTV)…), see e.g. [1][48]. Indeed, due to its dynamical 

behavior, this kind of controller is a good way to improve the closed-loop transient response. 

These techniques are often based on the Linear Fractional Transformation (LFT) paradigm 

[28]. Nevertheless, few tractable results have been proposed in the case of T-S fuzzy control. 

In fact, using the Redheffer product to write the closed-loop dynamic of a DOFC T-S fuzzy 

control plant leads to high conservatism since the obtained LMI or BMI stability conditions 

involve numerous crossing terms between system‟s and controller‟s matrices and lead to a 

strong membership interconnection structure [2][20][46]. Moreover, one can point out that, in 

the previous literature, LMI DOFC based design approaches are only suitable for a restrictive 

class of nonlinear systems. The latter consider models where the output equation is supposed 

to be linear (with a common output matrix) and without direct transfer between inputs and 

outputs. Note that the presence of crossing terms ruins tentative to derive non-quadratic 

Lyapunov LMI stability condition when using the Redheffer product. These lack of results 

regarding to DOFC design, understood as the deficiency of LMI formulation in the general 

case, lead to the aim of this paper. 

Recently, a preliminary study has introduced new conditions for the stabilization of T-S fuzzy 

systems via a DOFC using the descriptor redundancy [11]. In the present paper, a 



 

 

 

generalization of this preliminary work is proposed with new LMI conditions for a robust 

DOFC design for uncertain and disturbed T-S fuzzy models. It will be shown that, using a 

descriptor representation of the closed-loop systems allows avoiding numerous crossing terms 

in the LMI formulation since the Redheffer product is no longer required. Thus, unlike to the 

previous works on T-S DOFC based stabilization, it is now possible to provide less 

conservative LMI conditions by the use of a FLF for a large class of T-S systems with 

parametric uncertainties, subject to external disturbances, including both a non linear 

behaviour within the output equation and a direct transfer between inputs and outputs.  

The paper is organized as follows. The next section provides useful notations and lemmas. 

Rewriting the closed loop dynamics in the descriptor form, the problem statement of the 

proposed output feedback controller design is formulated in section 3. Afterward, in section 4, 

the design of DOFC controllers for uncertain T-S systems without external disturbance is 

provided through a non quadratic FLF approach. Then, these conditions are extended with a 

well-known H


 criterion in order to design a DOFC controller minimizing the influence of 

the external disturbances on the state.  Finally, in the last section, designed examples are 

given to illustrate the efficiency of the proposed approaches. 

 

1. USEFUL NOTATIONS AND LEMMAS 

Let us consider the scalar functions  i
h z , the matrices 

i
Y  and 

ij
T  for  1, ,i r   and 

 1, ,j l   with appropriate dimensions, we will denote  
1

r

h i i

i

Y h z Y


  , 



 

 

 

   
1 1

l r

hv k i ik

k i

T v z h z T

 

   . Moreover, in some cases, a subscript h  will be used to indicate 

submatrices that are depending on the same summation structure, for instance 

  
1

r

h i i ih h

i

M X Y h z t X Y



   . Note that h  and h  will be identically used as subscript or 

superscript in order to lighten the notations. Also for more simplicity, we will use the 

subscript h  to indicate a matrix depending on inverse summation structures as 

 
1

hh h h
Q L M



 . Finally, as usual, in a matrix,    indicates a symmetrical transpose 

quantity.  

In the sequel, when there is no ambiguity, the time t  in a time varying variable will be 

omitted for space convenience. 

 

Lemma 1 [47]: 

For real matrices X , Y  with appropriate dimensions and a positive scalar  , the following 

inequalities hold: 

 

1T T T T
X Y Y X X X Y Y 


    (1) 

 

Lemma 2 [41]: 

Consider the proposition “For all combinations of  , 1, 2, ...,i j r  we have 0
ij

  ”. 

This proposition is equivalent to: “For all combinations of , 1, 2, ...,i j r , we have 0
ii

   and 

for 1 i j r   , we have  
1 1

0
1 2

ii ij ji
r

     


”. 



 

 

 

2. PROBLEM STATEMENT  

Let us consider the class of uncertain and disturbed T-S fuzzy systems described by: 

 

                

                

1

1

r

i i i i i i

i

r

i i i i i i

i

x t h z t A A t x t B B t u t F t

y t h z t C C t x t D D t u t G t










         




        
 







 (2) 

 

where r  represents the number of fuzzy rules.  
n

x t   ,  
m

u t   ,  
q

y t    and 

 
d n

t


   represent respectively the state, the input, the output and the external 

disturbances vectors.   i
h z t  are positive membership functions satisfying the convex sum 

proprieties   0 1
i

h z t   and   
1

1

r

i

i

h z t



 . n n

i
A


  , n m

i
B


  , q n

i
C


  , q m

i
D


  , 

d n

i
F


  , d q

i
G


   are real matrices.  

n n

i
A t


   ,  

n m

i
B t


   ,  

q n

i
C t


    and 

 
q m

i
D t


    are Lesbegue measurable uncertainties defined as [47]:    

i i

i a a a
A t H f t   , 

   
i i

i b b b
B t H f t   ,    

i i

i c c c
C t H f t   ,    

i i

i d d d
D t H f t   . In that case, for the 

subscript , ,s a b c  or d  one has i

s
H , i

s
  constant matrices with appropriate dimensions and 

 s
f t  uncertain matrices bounded such as:    

T

s s
f t f t I . 

 

Let us consider the following non PDC DOFC: 

 



 

 

 

                 

                 

1 1

* * * *

6 11

1 1 1 1

1 1

* * *

6 11

1 1 1 1

r r r r

i i

i i i i i i

i i i i

r r r r

i i

i i i i i i

i i i i

x t h z t A h z t W x t h z t B h z t W y t

u t h z t C h z t W x t h z t D h z t W y t

 

   

 

   

        
         

        


       
        
       

   

   



 

 (3) 

where  
* n

x t    is the controller state vector. * n n

i
A


  , * n q

i
B


  , * m n

i
C


   and * m q

i
D


   

are real matrices to be synthesized as well as 
6

i n n
W


   and 

11

i q q
W


   where    6

1

r

i

i

i

h z t W



  

and    11

1

r

i

i

i

h z t W


  are nonlinear Lyapunov dependent non singular matrices (see remark 3, 

section 4).  

 

In [38], LMI based design for state feedback controller using the descriptor redundancy has 

been proposed to reduce computational cost. To take advantage of a descriptor redundancy 

formulation, (2) and (3) can be easily rewritten with the above defined notations respectively 

as: 

 

             

               0

h h h h h

h h h h h

x t A A t x t B B t u t F t

y t y t C C t x t D D t u t G t





       


        




 (4) 

and 

         

           

1 1
* * * *

6 11

1 1
* * *

6 11
0

h h

h h

h h

h h

x t A W x t B W y t

u t u t C W x t D W y t

 

 

  


    





  (5) 

 



 

 

 

Note that, here, the descriptor redundancy consist on introducing virtual dynamics in the 

outputs equations of both (4) and (5). Then, a descriptor formulation can be obtained 

considering the extended state vector          *
T

T T T T
x t x t x t y t u t     and the closed 

loop dynamics can be expressed as: 

 

       hh h h
Ex t A A x t F t         (6) 

 

with 

0 0 0

0 0 0

0 0 0 0

0 0 0 0

I

I
E

 

 

 
 

 
 

 , 
   

   

1 1
* *

6 11

1 1
* *

6 11

0 0

0 0

0

0

h h

h h

h h

hh

h h

h h

h h

A B

A W B W
A

C I D

C W D W I

 

 

 

 

 
  


 

 
 

 ,  

   

   

0 0

0 0 0 0

0 0

0 0 0 0

h h

h

h h

A t B t

A
C t D t

  

 

  
  
 
 

  and 
0

0

h

h

h

F

F
G

 

 

 
 

 
 

 . 

 

Therefore, (2) is stabilized via the control law (3) if (6) is stable. Thus, the goal is now to 

provide LMI stability conditions allowing to find the matrices *

h
A , *

h
B , *

h
C , *

h
D , 

6

h
W  and 

11

h
W  

ensuring the stability of (6).  

 

Remark 1: Unlike previous studies using the Redeffher products [2] [20][46], rewriting the 

closed-loop system (6) by the use of descriptor redundancy allows to avoid appearance of 

crossing terms between the state space matrices and the controller‟s ones. Therefore, the 



 

 

 

benefit of this descriptor formulation will be emphasized in the following section since it 

makes easier the LMI formulation of non quadratic stability conditions.  

 

3. FUZZY LYAPUNOV LMI BASED DESIGN FOR DOFC WITHOUT 

EXTERNAL DISTURBANCES 

First, let us focus on the non quadratic stabilization of uncertain T-S systems (2) but without 

external disturbances (   0t  ). The main result is summarized in the following theorem. 

 

Theorem 1: The T-S fuzzy model (2) (with   0t  ) is globally asymptotically stable via the 

non PDC dynamic output feedback compensator (3) if there exist, for , 1, ...,i j r , the 

matrices 
1 1

0
i iT

W W  , 
6 6

0
i iT

W W  , 
11

i
W , 

13

i
W , 

14

i
W , 

15

i
W , 

16

i
W , *

i
A , *

i
B , *

i
C  and *

i
D , the 

scalars 
1

ij

a
 , 

6

ij

a
 , 

13

ij

b
 ,

14

ij

b
 ,

15

ij

b
 , 

16

ij

b
 , 

1

ij

c
 , 

6

ij

c
 , 

13

ij

d
 ,

14

ij

d
 , 

15

ij

d
  and 

16

ij

d
  such that the following 

LMI conditions are satisfied: 

 

 for 1, 2, ...,i r , 0
ii

   (7) 

 for 1, 2, ...,i r  and 1 i j r   ,  
1 1

0
1 2

ii ij ji
r

     


 (8) 

 for 1, 2, ..., 1i r  , 
1 1

0
i r

W W   and 
6 6

0
i r

W W    (9) 

 



 

 

 

where 

     

     

 

(1,1)

( 2 ,1) ( 2 ,2 )

(3 ,1) * ( 3 ,3 )

6 14

* * *

13 16 14 16 15 16 16

* * *

* * *

*

ij

ij ij

j j T

ij i i i ijij

j j T T j j T T j j j T

i i i i i

ij ij

C W D W B

C W W B C W D W D W W W

P

 
 

  

     
 

       

 
 



, 

 

   

1

(1,1)

1 1 13 13 1 1

1

1 6 13 14 15 16 1 13

r

j j T j jT T k r

ij i i i i k

k

ij ij i i T ij ij ij ij i i T ij i i T ij i i T

a a a a b b b b b b c c c d d d

A W W A B W W B W W

H H H H H H H H



       





      

       


,  

 
1

( 2 ,1) *

6 14 6 6

1

r

j T j T T k r

ij i i i k

k

A W A W B W W





      , 

 
1

( 2 ,2 ) * *

6 6 6 14

1

r

T k r ij i i T ij i i T

ij i i k c c c d d d

k

A A W W H H H H  





       , 
(3 ,1)

1 13 15

j j jT T

ij i i i
C W D W W B    , 

 ( 3 ,3 )

15 15 11 11 15 16

j j T T j j T ij ij i i T

ij i i d d d d
D W W D W W H H        ,  

1

13

6

14

15

15

1

13

6

14

16

16

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

i j

a

i j

b

i j

a

i j

b

i j

d

i j

b

ij i j

c

i j

d

i j

c

i j

d

i j

b

i j

d

W

W

W

W

W

W

W

W

W

W

W

W

 
 
 

 
 

 

 
 

 
 

 


 

 

 


 

 
 

 

  

 ,  

1 13 6 14 15 15 1 13 6 14 16 16

ij ij ij ij ij ij ij ij ij ij ij ij

ij a b a b d b c d c d b d
diag I I I I I I I I I I I I              

 
 , 

and where the scalars 
k

  are defined as the lower bound of   
k

h z t  for all 1, 2, ...,k r . 



 

 

 

Proof: 

Let us consider the non quadratic candidate Lyapunov function given by: 

 

       
1

*
,

T

h
v x x x t E W x t



     (10) 

 

The closed-loop system (6) is stable if: 

 

       
11 1

*
, 0

T T T

h h h
v x x x E W x x E W x x E W x

 

   
              (11) 

 

Classically for descriptor systems, from (11) one needs: 

 

   
1

0
T

h h
E W W E

 

      (12) 

 

Let us consider 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

h h h h

h h h h

h h h h h

h h h h

W W W W

W W W W
W

W W W W

W W W W

 

 

 
 

 
  

 . Multiplying (12), left by T

h
W  and right by 

h
W , 

one has 0
T

h h
W E EW      which leads to 

1 1
0

h h T
W W  , 

6 6
0

h h T
W W  , 

2 5

h hT
W W , 

3 4 7 8
0

h h h h
W W W W    . Considering (6), (11) is obviously satisfied if: 

 

         
11

0
T

T T

hh h h h hh h h
A A W W A A E W

 

      
        (13) 



 

 

 

 

Multiplying left by T

h
W  and right by 

h
W  and since 0

T

h h
W E EW     , (13) yields: 

 

     
1

0
T T T

h hh h hh h h h h h
W A A A A W EW W W



      
          (14) 

 

It is well-known that  
1

h h h h
W W W W



 
     , see e.g. [11]. Thus (14) can be rewritten as: 

 

0
hhh hh h

EW    
   (15) 

 

with T T

hhh h hh hh h
W A A W      and T T

hh h h h h
W A A W        

 

Extending 
hh h

 , it yields 

 

     

   

 

(1,1)

( 2 ,1) ( 2 ,2 )

(3 ,1) (3 ,2 ) (3 ,3 )

( 4 ,1) ( 4 ,2 ) ( 4 ,3 ) ( 4 ,4 )

* * *

* *

*

hh

hhh hhh

hhh

hh hh hh

hhh hhh hh hhh

 
 
   
   
 
     

 (16)

 

 

with (1,1)

1 1 13 13

h h T h hT T

hh h h h h
A W W A B W W B     ,   

   
1 1

( 2 ,1) * *

6 2 2 11 9 14

h hT h T h h hT T

hhh h h h h
A W W W A B W W W B

 

     , 



 

 

 

   
1

( 2 ,2 ) * * * *

11 10 10 11

T
T h h hT h T

hhh h h h h
A A B W W W W B

 

     , (3,1)

1 9 13 15

h h h hT T

hh h h h
C W W D W W B     ,  

(3,2 ) *

2 10 14

h h h T

hh h h h
C W W D W B     , (3,3 )

15 15 11 11

h hT T h hT

hh h h
D W W D W W     , 

   
1 1

( 4 ,1) * *

6 2 11 9 13 16

h hT h h h hT T

hhh h h h
C W W D W W W W B

 

     , 

   
1

( 4 ,2 ) * * *

14 11 10 12 11

T
h h h hT h T

hhh h h h
C W D W W W W B

 

     , ( 4 ,3 ) *

16 15 12

h T T h h T

hh h h
D W D W W      and 

   
1

( 4 ,4 ) * *

11 12 12 11 16 16

T
h h hT h T h hT

hhh h h
D W W W W D W W

 

     . 

 

Let us recall that, due to the nature of the candidate Lyapunov function (10), 
9 10 16

, , ...,
h h h

W W W  

are slack decision matrices which are free of choice. At a first glance on (16), in order to run 

to LMI conditions, a solution should be to choose, for instance 
9 10 11 12

h h h h
W W W W   . 

Nevertheless, in that case, the problem remains more restrictive regarding to the considered 

class of T-S fuzzy systems since 
9

h q n
W


  , 

10

h q n
W


  , 

11

h q q
W


   and 

12

h q m
W


  . Indeed, 

with the latter solution, one has to consider T-S fuzzy systems where the input, output and the 

state vector have to be casted into the same dimension. Therefore, for the sake of generality, 

one chooses 
6 2

h h
W W , 

9
0

h
W  , 

10
0

h
W   and 

12
0

h
W   which appears as a convenient solution. 

Thus, (16) becomes: 

 

     

   

 

(1,1)

* * *

6 14

* (3,3 )

1 13 15 6 14

* * *

13 16 14 16 15 16 16

* * *

* *

*

hh

h T h T T T

h h h h h

hh h h h T T h h T

h h h h h h hh

h h T T h h T T h h h T

h h h h h

A W A W B A A

C W D W W B C W D W B

C W W B C W D W D W W W

 
 

    
     
 

        

 (17) 

 



 

 

 

Extending 
hh

  with    
h h

h a a a
A t H f t   ,    

h h

h b b b
B t H f t   ,    

h h

h c c c
C t H f t    

and    
h h

h d d d
D t H f t   , it yields: 

 

     

   

 

(1,1)

( 2 ,1)

(3 ,1) (3 ,3 )

6 14

16 16

* * *

0 * *

*

0 0

hh

hh

hh h h h h h h

hh c c c d d d hh

h T h T T h T h T h T T h T

b b b d d d

H f W H f W

W f H W f H

 
 

 
 

     
 

   

 (18) 

 

with (1,1)

1 13 1 13

h h h h h h h h T T h T hT h T T h T

hh a a a b b b a a a b b b
H f W H f W W f H W f H         , 

( 2 ,1)

6 14

h h T T h T h T h T T h T

hh a a a b b b
W f H W f H     , 

(3 ,1)

1 13 15

h h h h h h hT h T T h T

hh c c c d d d b b b
H f W H f W W f H       ,  

and (3 ,3 )

15 15

h h h hT h T T h T

hh d d d d d d
H f W W f H     . 

Applying lemma 1 on (18), one has 

(1,1)

( 2 ,2 )

(3 ,3 )

( 4 ,4 )

0 0 0

0 0 0

0 0 0

0 0 0

hh

hh

hh hh

hh

hh

 
 

    
 
 

  

 where 

   

   

(1,1)

1 6 13 14 15 16

1 1

1 13 1 1 1 13 13 13
,

hh hh h h T hh hh hh hh h h T

hh a a a a b b b b b b

hh h h T hh h h T hh h h T h h hh hT h T h h

c c c d d d a a a b b b b

H H H H

H H H H W W W W

     

   
 

      

       

 

   
1 1

( 2 ,2 )

6 14 6 6 6 14 14 14

hh h h T hh h h T hh h h T h h hh h T h T h h

hh c c c d d d a a a b b b
H H H H W W W W   

 

         , 

     

       

1 1
(3,3 )

15 16 15 15 15 15 15 15

1 1 1 1

1 1 1 13 13 13 6 6 6 14 14 14
,

hh hh h h T hh h T h T h h hh h T h T h h

hh d d d d d d d b b b

hh h h T h h hh h T h T h h hh h h T h h hh h T h T h h

c c c d d d c c c d d d

H H W W W W

W W W W W W W W

   

   

 

   

        

           

and 
( 4 ,4 ) 1 1

16 16 16 16 16 16

hh h T h T h h hh h T h T h h

hh b b b d d d
W W W W 

 
        



 

 

 

Note that, 
hh

  can be rewritten as: 

 

 
1

T

hh hh hh hh hh
H



          (19) 

 

with 
 

(1,1)

6 14

15 16

0 0 0

0 0 0

0 0 0

0 0 0 0

hh

hh h h T hh h h T

c c c d d d

hh hh hh h h T

d d d d

H

H H H H
H

H H

 

 

 

 
 

  
 

 
 



 ,  

   (1,1)

1 6 13 14 15 16 1 13

hh hh h h T hh hh hh hh h h T hh h h T hh h h T

hh a a a a b b b b b b c c c d d d
H H H H H H H H H               , 

1 13 6 14 15 15 1 13 6 14 16 16

hh hh hh hh hh hh hh hh hh hh hh hh

hh a b a b d b c d c d b d
diag I I I I I I I I I I I I              

 
  and 

1

13

6

14

15

15

1

13

6

14

16

16

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

h h

a

h h

b

i h

a

i h

b

i h

d

i h

b

hh h h

c

h h

d

i h

c

i h

d

i h

b

i h

d

W

W

W

W

W

W

W

W

W

W

W

W

 
 
 

 
 

 

 
 

 
 

 


 

 

 


 

 
 

 

  

  

 

Let us now focus on the term 
h

EW
   in (15). From the convex property of the membership 



 

 

 

functions   
k

h z t  one has   
1

1

r

k

k

h z t


 , so      
1

1

r

r k

k

h z t h z t





   . Therefore, the 

following property improves the conservatism of the proposed solutions since it reduces the 

number of membership function derivates to be taking into account: 

 

          
1 1

1 1

r r

h k k r r k k r

k k

EW h z t EW h z t EW h z t EW EW

 

 

    
              (20) 

 

Let us consider for 1, ..., 1k r  , 
k

  the lower bounds of   
k

h z t . One can write 

 
1

1

r

h k k r

k

EW EW EW





 
       with 0

k r
EW EW      for 1, ..., 1k r  . Thus, considering (17) and 

(19), (15) holds if: 

 

   
1

1

1

0

r

T

hh hh hh hh hh k k r

k

H EW EW






                (21) 

 

Applying the Schur complement, (21) yields: 

 

   
1

1

*
0

r

hh hh k k r

khh

hh hh

H EW EW





 
    

  
 

   

    

 

 (22) 

 

Thus, after rewriting (22) in their extended form and applying lemma 2, the conditions (7), (8) 

and (9) yield. That ends the proof. ■ 



 

 

 

Remark 2: For 1, ...,i r ,   i
h z t  is required to be at least 1

C . This point is satisfied for 

fuzzy models constructed via a sector nonlinearity approach [36] if the system (2) is at least 

1
C  or, for instance when membership functions are chosen with a smoothed Gaussian shape.  

 

Remark 3: From (3), 
6

h
W  and 

11

h
W  are needed to be non singular. If, for 1, ...,i r , 

6

i
W  are 

solutions of theorem 1, then we have 
6 6

0
i iT

W W   imposed by (12). Thus 
6

h
W  is a non 

singular matrix. Moreover, if (10) is a Lyapunov functional, i.e. (7), (8) and (9) are verified, 

h
W  is a non singular matrix satisfying (11) and 1

h
W

  exists. Recall that 

1 6

6 6

11

13 14 15 16

0 0

0 0

0 0 0

h h

h h

h h

h h h h

W W

W W
W

W

W W W W

 

 

 
 

 
  

 . Therefore, 
11

h
W  is a non singular matrix and so  

1

11

h
W



 exists.  

 

Remark 4: Introducing the bounds of the time derivative membership functions in (21) with 

the formulation (20) instead of 
1

r

k k

k

EW


    allows providing LMI conditions (7), (8) and (9) 

which obviously include the quadratic case. Thus the proposed fuzzy Lyapunov approach is 

obviously reducing the conservatism of quadratic approach. 

 

Remark 5: To the best of authors‟ knowledge, expects our preliminary study [11], theorem 1 

is the first result regarding to non quadratic DOFC stabilization for T-S fuzzy models. 

Moreover, there were no tractable LMI conditions in the previous literature which consider 

matrices 
i

C  that have not to be common or identity as well as 
i

D  that have not to be zero in 



 

 

 

equation (2). Only few results exists using the Redheffer product in order to write the closed-

loop system dynamics [2][20][46]. Nevertheless, these results are resorting to model 

transformation, bounding techniques for some cross terms and products between decision 

variables which are sources of conservatism and ruins tentative to derive non-quadratic LMI 

conditions. The non quadratic DOFC design methodology depicted in theorem 1 has been 

obtained thanks to the rewriting of the closed-loop system (6). This has been done using the 

descriptor redundancy which avoids appearance of crossing terms between the state space 

matrices and the controller‟s ones. 

 

4. H BASED DOFC SYNTHESIS 

The conditions proposed in Theorem 1 are for   0t  . This section extend the previous 

results by the use of an H


 criterion. The goal is to stabilize (2) such that the influence of the 

external disturbance  t  on the output behavior is minimized. Let us consider the following 

H


 criterion [36][48]: 

 

        2

0
0

T T
y t y t t t dt  



   (23) 

 

Recall that          
*

T
T T T T

x t x t x t y t u t   
 , thus (23) can be rewritten as: 

 

        2

0
0

T T
x t Qx t t t dt  



 
   (24) 



 

 

 

 

with 

0 0 0 0

0 0 0 0

0 0 0

0 0 0 0

Q
I

 

 

 
 

 
 

 . 

 

In that case, the stability of the closed loop-system (6) is guaranteed under the constraint (24) 

if the LMI conditions summarized in the following theorem hold. 

 

Theorem 2: The T-S fuzzy model (2) is globally asymptotically stable via the non PDC 

dynamic output feedback compensator (3) and guarantee the attenuation level    if 

there exist, the matrices 
1 1

0
i iT

W W  , 
6 6

0
i iT

W W  , 
11

i
W , 

13

i
W , 

14

i
W , 

15

i
W , 

16

i
W , *

i
A , *

i
B , 

*

i
C  and *

i
D , for 1, ...,i r , the scalars  , 

1a
 , 

6 a
 ,

13b
 , 

15 b
 , 

16 b
 , 

14 b
 , 

1c
 , 

6 c
 , 

13 d
 , 

14 d
 , 

15 d
  and 

16 d
  such that the following LMI conditions are satisfied: 

 

Minimize 0   such that: 

 

 for 1, 2, ...,i r , 0
ii

   (25) 

 

 for 1, 2, ...,i r  and 1 i j r   ,  
1 1

0
1 2

ii ij ji
r

     


 (26) 

 

 for 1, 2, ..., 1i r  , 
1 1

0
i r

W W   and 
6 6

0
i r

W W    (27) 

 



 

 

 

where 

 

   

11

0 *

0 0

* *

0 0

0 0

0 0 0 0 0

0 0 0 0

ij

ij

h

T T

i i

W I

F G I

 

 

 

 
 

   

 

 
 

  

 and with the matrices 
ij

  defined in theorem 1. 

 

Proof: 

The stability of the closed loop-system (6) is guarantee, under the constraint (24), if: 

 

 * 2
, 0

T T
v x x x Qx         (28) 

 

That is to say if: 

 

    1 1 1 2
0

T T T T T T T T T

hh h h h hh h h h h h h
x A A W W A A EW Q x F W x x W F    

    
          

             

 (29) 

 

which is obviously satisfied if: 

 

     
1 1

1 2

*
0

T T T

hh h h h hh h h

T

h h

A A W W A A EW Q

F W I

  



       
  
  

       


 (30) 

 



 

 

 

Multiplying left by 
0

0

T

h
W

I

 

 
 

 and right by 
0

0

h
W

I

 

 
 

, one has: 

 

     
1

2

*
0

T T T T

h hh h hh h h h h h h h

T

h

W A A A A W EW W W W QW

F I

       
  
  

     


 (31) 

 

Following the same way as for the proof of theorem 1, with for 1, ..., 1k r  , 0
k r

EW EW      

leads to (27), (31) is satisfied if: 

 

   
1

1

1

2

*
0

r

T T

hh hh hh hh hh h h k k r

k

T

h

H W Q W EW EW

F I











 
         


 

  

      



 (32)  

 

Note that 
11 11

0 0 0 0

0 0 0 0

0 0 0

0 0 0 0

T

h h h T h
W Q W

W W

 

 

 
 

 
 

 , using the Schur complement and lemma 2, (25) 

and (26) yield. That ends the proof. ■ 

 

Remark 5: The LMI conditions proposed in theorems 1 and 2 are depending on the lower 

bounds of   
k

h z t  for 1, ..., 1k r  . Even if it is often pointed out as a criticism to fuzzy 

Lyapunov approach since these parameters may be difficult to choose, a way to obtain these 

bound has been proposed in [37]. Moreover, let us recall that this approach remains one of the 

least conservative in terms of LMI based design. In [15], a fuzzy Lyapunov candidate 



 

 

 

function has been reduced leading to relaxed quadratic stability conditions in the case of 

descriptor systems. Indeed, some elements in the Lyapunov matrix can be set common in 

order to make the LMI free of membership function‟s lower bounds. In the present study, this 

remains on setting 
1

W  and 
6

W  common matrices in the previous theorems and corollaries. 

Note finally that, obviously, the „price‟ to pay for more practical applicability is an increase of 

the conservatism. 

 

5. SIMULATION RESULTS 

Example 1: 

In order to illustrate the gain in terms of conservatism regarding the existing results, one 

compares the feasibility fields obtained from theorem 1 (without uncertainties) with the one 

obtained from the conditions proposed in [20] (see theorem 2). Note that, as far as we know, 

there are no new results since [20], excepted our preliminary result [11], dealing with 

dynamic output feedback stabilization for the general class of T-S systems described by (2), 

i.e. considering 
i

C  non common and 0
i

D  . Let us consider the following T-S system 

inspired from [37]: 

 

        

        

2

1

2

1

i i i

i

i i i

i

x t h z t A x t B u t

y t h z t C x t D u t






   




    







 (33) 

 



 

 

 

with 
1

5 10

1 2
A

 
  

  

, 
2

2 10

20 2
A

 
  

 

, 
1

0

10
B

 
  
 

, 
2

0

3
B



 
  
 

, 
1

1 0.5

0 1
C

 
  
 

, 

2

0.8 0

1 2
C

 
  

 

, 
1

1

1
D

 
  

 

 and 
2

0.5

1
D

 
  
 

. 

 

The LMI computation has been done using the Matlab LMI Toolbox [10] and the feasibility 

has been checked for 5 20    and 20 0    with 
1
  computed for each pair  ,   as 

described in [37]. For instance    , 1,1    leads to 
1

8.08   . As expected, figure 1 shows 

that the conditions proposed in corollary 1 are less conservative than those proposed in [20].  

 

Example 2: 

In this example, the design of a DOFC is considered for an uncertain and disturbed T-S fuzzy 

model given by: 

 

                

                

2

1

2

1

i i i i i i

i

i i i i i i

i

x t h z t A A t x t B B t u t F t

y t h z t C C t x t D D t u t G t










         




        
 







 (34) 

 

with 
1

5 4

1 2
A

  
  

  

, 
2

2 4

20 2
A

  
  

 

, 
1

0

10
B

 
  
 

, 
2

0

3
B

 
  
 

, 
1

2 10

5 1
C

 
  

 

, 
2

3 20

7 2
C

 
  

  

, 

1

3

1
D

 
  

 

 and 
2

1

0.5
D

 
  
 

, 
1 2

0

0.25
F F

 
   

 

, 
1

0.5

0.5
G

 
  
 

, 
2

0.35

0.5
G

 
  
 

, 

   
1 1

1 a a a
A t H f t   ,    

2 2

2 a a a
A t H f t   ,    

1 1

1 b b b
B t H f t   ,    

2 2

2 b b b
B t H f t   , 



 

 

 

   
1 1

1 c c c
C t H f t   ,    

2 2

2 c c c
C t H f t   ,    

1 1

1 d d d
D t H f t    and 

   
2 2

2 d d d
D t H f t    with 1

0

1
a

H
 

  
 

, 2
0

1
a

H
 

  
 

, 1
0

2
b

H
 

  
 

, 2
0

1
b

H
 

  
 

, 1
1

1
c

H
 

  
 

, 

2
1

1
c

H
 

  
 

, 1
0.5

0.5
d

H
 

  
 

, 2
1

1
d

H
 

  
 

,  
1

1 1
a

N  ,  
2

1 1
a

N   , 1
1

b
N  , 2

0.75
b

N   , 

 
1

1 1
c

N  ,  
2

1 1
c

N    , 1
1

d
N   , 2

0.5
d

N  . 

 

Note that, the lower bound of the membership function derivative can be found for the 

nominal part of the considered fuzzy system using the approaches proposed in [37], i.e. 

1
3.68   . Obviously, the considered model includes some bounded uncertainties and 

disturbances which are unknown. Thus, even if their effects are attenuated regarding to the 

state, it is not possible to conclude on the time derivative of the membership function. At 

least, what can be done for instance is choosing an assumed “greater” value than the one 

obtained from the nominal part. In the present example we choose 
1

7.36    twice the value 

of the nominal part is. Let us just point out that there is no solution to this problem and it 

could be a starting point for future prospects. The solution of Theorem 2 is obtained using the 

Matlab LMI Toolbox [10]. This provides the DOFC gain matrices given by: 

 

*

1

-0.0141 0.0079

-0.0050 -0.0053
A

 
  
 

, *

2

-0.0036 -0.0019

0.0098 -0.0181
A

 
  
 

, *

1

0.0506 0.0483

-0.0575 -0.0565
B

 
  
 

, 

*

2

-0.0090 0.0106

0.0435 0.0283
B

 
  
 

,  
* 3

1
10 -0.6948 0.2470C


 ,  

* 3

2
10 0.3 -6.4C


 , 



 

 

 

 
* 3

1
10 -1.2 -1.5    D


 ,  

* 3

2
10 -56.6 12.4D


 , 1 3

6

0.3462 0.1732
10

0.1732 0.1273
W

  
  

 

, 

2 3

6

0.4859 -0.0179
10

-0.0179 0.0028
W

  
  

 

, 1 2

11 11

1 0

0 1
W W

 
   

 

, ensuring the H


 performance given by 

the attenuation level 0.75  . 

 

The closed-loop dynamics has been simulated with the initial values  1
0 1x  ,  2

0 1x  , 

 
*

1
0 0x  ,  

*

2
0 0x  . Two cases are considered, the first one is without uncertainties and 

external disturbances (see the bold solid line in figure 2-5). The second one considers the 

uncertain function          cos 0.01
a b c d

f t f t f t f t t     and    sin 0.001t t   (thin 

line). Figures 2 to 5 show respectively the behavior of the state signals [  
1

x t ,  
2

x t ], the 

output signals [  
1

y t ,  
2

y t ], the controller‟s state signal [  *

1
x t ,  *

2
x t ] and the control signal 

 u t  for these two cases. Let us point out that, during the simulation, the hypothesis made on 

the lower bound of the derivative function is verified since   1 1 1
7.36h x t    . Note that, 

this study deals with the system‟s state stabilization, i.e. the chosen Lyapunov function is only 

depending on the system‟s state. In that case, one can see from figures 2 to 5, that only the 

system‟s state signals show robustness regarding to uncertainties. Theoretically, this should be 

overcame using a Lyapunov function depending on both the state and the output but, in the 

case of the general class of T-S fuzzy models (2), this means that the Lyapunov should also 

depends on the input signal and so on, leading to less tractable LMI formulation. One other 

solution should be rewriting the considered nonlinear model using a convenient 



 

 

 

diffeomorphism allowing moving all uncertainties in the state equation, that is to say free of 

uncertainties in the output equations.  

 

6. CONCLUSION 

In this paper, the problem of output feedback stabilization of uncertain and disturbed Takagi-

Sugeno models has been considered. A non PDC dynamic output feedback compensator has 

been proposed. The controller was then designed based on a fuzzy Lyapunov approach. 

Thanks to the descriptor redundancy, strict LMI conditions have been easily obtained. This 

approach leads to less conservative result and is valuable for uncertain and disturbed T-S 

fuzzy models through an H criterion. Finally, two academic examples were proposed to 

show the conservativeness as well as to illustrate the efficiency of the proposed approach.  
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Fig 1: Feasibility fields from theorem 2 an LMI conditions provided in [20]. 
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Fig 2: System‟s state signals 
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Fig 3: Output signals 
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Fig 4: Controller‟s state signals 
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Fig 5: Control signals 


