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Abstract: 

This work concerns the tracking problem of uncertain Takagi Sugeno (T-S) continuous 

fuzzy model with external disturbances. The objective is to get a model reference based 

output feedback tracking control law. The control scheme is based on a PDC structure, a 

fuzzy observer and a H


 performance to attenuate the external disturbances. The 

stability of the whole closed-loop model is investigated using the well-known quadratic 

Lyapunov function. The key point of the proposed approaches is to achieve conditions 

under a LMI (Linear Matrix Inequalities) formulation in the case of an uncertain and 

disturbed T-S fuzzy model. This formulation facilitates obtaining solutions through 

interior point optimization methods for some nonlinear output tracking control 

problems. Finally, a simulation is provide on the well-known inverted pendulum testbed 

to show the efficiency of the proposed approach.  

Keywords: Tracking control, Output feedback, Fuzzy Takagi-Sugeno models, linear 

matrix inequality (LMI), quadratic stability, H-infinity criterion.



I. Introduction 

 

Design of robust tracking control for uncertain non linear systems has attracted great 

attention in the past few years. Among nonlinear control theory, the Takagi-Sugeno 

(T-S) fuzzy model-based approach has nowadays become popular since it showed its 

efficiency to control complex nonlinear systems and has been used for many 

applications, see e.g. [7] [9]. Indeed, Takagi and Sugeno have proposed a fuzzy model 

to describe nonlinear models [26] as a collection of linear time invariant models blended 

together with nonlinear functions. A control law, called “Parallel Distributed 

Compensation” (PDC), can be synthesized as a collection of feedback gains that are 

connected using the same nonlinear functions [36]. 

 

Stability and stabilization analyses, for several kind of T-S fuzzy model, have been 

strongly investigated through Lyapunov direct method see [17] [24] [25] [27] and 

references therein. The key point of the proposed approaches is to achieve conditions 

under LMI’s (Linear Matrix Inequalities) formulation. This formulation allows 

obtaining solutions through interior point optimization methods [3]. A lot of works, 

involving various specifications, are now available for state space feedback: robustness 

with bounded uncertainties [6] [15] [23] [24] [28], time delay models with or without 

uncertainties [4] [37], using pole placement constraints for each linear models [14], 

including performance specifications 
2

H , H


 [19] [20] [23] [29], and more recently 

using the circle criterion and its graphical interpretation in the frequency domain [2]. 

Complementary to these works and with the growing interest on engineering 

applications of T-S models based stabilization, some studies have been done regarding 



to output stabilization. These can be considered through two approaches. The first one 

uses a fuzzy observer and is interesting when the premise variables are measured [11] 

[21] [38]. The second one involves dynamic state feedback [1] [10] [15] [16] [23] [27]. 

 

Despite numerous works available, none of them seem able to define a LMI formulation 

for the problem of robust trajectory tracking for T-S uncertain and/or disturbed models, 

with H


 performance and in output feedback. Usually, the obtained conditions are only 

expressed in terms of bilinear matrix inequality (BMI) [22] [33]. Moreover, despite 

abundant literature on stability conditions of T-S fuzzy models, few authors have dealt 

with the tracking problem recently. Among this literature, some works are concerned 

with state feedback and H


 performances [27] [30] [33]. Let us quote that these works 

correspond to straightforward extensions of previous results. Nevertheless, when 

dealing with T-S models with external disturbances [34] the results are not more LMI. 

For the general case of output tracking, the existing approaches are based on variable 

structure control techniques [39] or on a switching controller using a reference model 

[18]. The only results available with PDC structure are given under a BMI form and two 

steps algorithm based on two LMI problems is generally used [22] [34]. Moreover, [32] 

has developed a similar result with parametric uncertainties, i.e, BMI conditions solved 

in two steps. Nevertheless, the developed conditions proposed in [32] are obtained in 

spite of the confusion of the state reconstruction error and the tracking error leading to 

unsuitable conditions for tracking control based on an output feedback [5]. Let us quote 

that the solution (when it exists) using BMI algorithm is strongly depending on the 

initial conditions and therefore no guarantee of convergence is ensured. This can lead to 

conservative solutions and then to less practical applicability of the proposed 



approaches. This lack of results, understood as the deficiency of LMI formulation, may 

lead to the aim of this paper.  

 

This paper is concerned with uncertain T-S continuous fuzzy model with external 

disturbances. The goal is to obtain a model reference based robust output feedback 

tracking control law. This one includes a PDC structure with a fuzzy observer and 

external disturbances attenuation based on an H


 criterion. The stability of the whole 

closed-loop model is investigated using the well-known quadratic Lyapunov function. 

The main contribution of the paper is the proposition of a LMI formulation to derive the 

proposed robust output feedback control law. 

 

The paper is presented as follows: Section II presents the T-S fuzzy models with 

uncertainties. The observer and the fuzzy control design using a reference model is 

developed in section III. The stability conditions, for the whole closed loop system, 

derived in LMI formulation are developed in section IV. Simulation results, showing 

the tracking performance of the well-known testbed of the inverted pendulum, with a 

fuzzy observer are given in section V to show the applicability of the proposed 

approach. 

 

II. T-S fuzzy models 

 

Takagi–Sugeno fuzzy models allow describing nonlinear dynamical models by a set of 

Linear Time Invariant (LTI) models interconnected by nonlinear functions. Each rule 



associates a LTI model as a concluding part to a weight function obtained from the 

premises [26]. In this paper, we focused on the class of uncertain and disturbed T-S 

fuzzy models [27]. The bounded uncertainties and external disturbances are added, in a 

classical way, to each nominal LTI models [28]. Thus, the ith  rule can be expressed as: 

 

If              1
z x t  is 

1i
F  and … and   p

z x t  is 
ip

F   

Then     
     

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
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where 
ij

F  are the fuzzy set and r  is the number of If–Then rules,  
n

x t    is the state 

vector,  
m

u t    is the input vector, n n

i
A


  , n m

i
B


  ,  

n
t    is a bounded 

external disturbance and        1 p
z t z x t z x t 

 
  is the premises vector being 

state dependent. The Lebesgue measurable uncertainties are defined as 

( ) ( )
i i ai

A t H a t E   , ( ) ( )
i i bi

B t H b t E   , where matrices 
i

H , 
ai

E  and 
bi

E  are constant 

and the uncertainties  a t ,  b t  satisfy the classical bounded conditions [40]: 

   
T

a t a t I   ,    
T

b t b t I   .  

Given a pair of     ,x t u t , the fuzzy system is inferred as follows. 
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Where    ( ) ( )
p

i ij j
j 1

w z t F z t


   with  ( )
i

w z t 0  and  ( )
r

i
i 1

w z t 0


 , 1, ...,i r .   ij i
F z t  

is the degree of membership of  i
z t  in 

ij
F , and: 

 
 

 

( )
( )

( )

i

i r

i
i 1

w z t
h z t

w z t






, for  1, ...,i r  (3) 

Therefore the  ( )
i

h z t , 1, ...,i r  hold a convex sum property: 

 
1

( ) 1

r

i

i

h z t


 ,  ( )
i

h z t 0 , 1, ...,i r  (4) 

 

At last, recall that there exists a systematic way to obtain (2) from a nonlinear model 

called the sector nonlinearity approach [27]. This one allows the T-S model matching 

exactly the nonlinear one on a compact set of the state space. 

 

Two types of uncertainties may occur in the modeling of uncertain nonlinear systems. 

The first one, called “structural uncertainty” is referred to parametric uncertainties that 

are due to formalized unknown nonlinearities. The second type, known as “unstructured 

uncertainty” is often due to non-formalized modeling errors and external disturbances. 

Let us quote that, taking into account these uncertainties in the control design can be 

understood as more practical applicability. Indeed, with the growing complexity of 

nonlinear systems, it is often necessary to make approximations in the dynamical 

modeling process. Therefore, the main objective is now to provide stability conditions, 

in terms of LMI, that ensure the tracking performance for uncertain T-S models. 

 



III. CONTROLLER SYNTHESIS 

In order to derive an output control law an additional observer is added. This one is 

based on the nominal model without uncertainties (2) and has the usual form [21] [38]: 

   

 

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ( ) ( )

ˆ ˆ( ) ( ) ( )

r

i i i i
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

, for 1, ...,i r  (5) 

Where  ˆ
n

x t    is the estimated state and 
i

L  is the observer gain for the ith  LTI 

model. At last, note also that we are in the special case where the premises are supposed 

measurable, i.e.  z t  instead of  ẑ t  in the general case. The former allows in various 

cases a separation principle [38]. The latter case remains in a more complicated design 

[11]. 

 

To specify the desired trajectory, consider the following reference model [34]: 

( ) ( ) ( )
r r r

x t A x t r t   (6) 

 

where  r
x t  is the reference state, 

r
A  is a specified asymptotically stable matrix, and 

 r t  is a bounded reference input. The attenuation of external disturbances is 

guaranteed considering the H


 performance related to the tracking error ( ) ( )
r

x t x t  as 

follows [8] [13] [34]: 

      
  

  

( ) ( )  ( ) ( )      ( ) ( ) ( ) ( )  
tf tfT 2 T T

r r
0 0

x t x t Q x t x t dt r t r t t t dt        (7) 

 



where 
f

t  denotes the final time, Q  is a positive definite weighting matrix, and   is a 

specified attenuation level. At last, the control law is based on the classical structure of 

a PDC law [36] sharing the same nonlinear functions as the T-S model: 

   ˆ( )    ( ) ( ) ( )

r

i i r

i 1

u t h z t K x t x t



    (8) 

 

where 
i

K  are gain matrices with appropriate dimension. Let us consider the estimation 

error ˆ( ) ( ) ( )
o

e t x t x t  , the tracking error ( ) ( ) ( )
p r

e t x t x t   and 
 
the state reference 

( )
r

x t . The state vector for the global closed loop is  
T

o p r
x t e e x 

 
 . Then, 

combining the control law (8), the system (2) and the observer (5), one obtains, after 

some easy manipulations, the following closed-loop model: 

           
1 1

r r

i j ij

i j

x t h z t h z t A x t S t
 

        (9) 
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I 0

S I I

0 I

 
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 , 
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( )

t
t

r t




 
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 
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Note that with the state vector  x t , (7) can be written with  Q diag 0 Q 0  and the 

disturbances ( ) ( ) ( ) ( ) ( ) ( )
T T T

r t r t t t t t       : 

  

  
( )  ( )  ( ) ( )  

tf tf
T 2 T

0 0
x t Q x t dt t t dt   

     (10) 

 

The objective is now to compute the gains 
i

K  and 
i

L  from 
ij

A  described in (9) to ensure 

the asymptotic stability of the closed-loop model (9) guaranteeing the H


 tracking 



performance (10) for all ( )t . A straightforward result is summarized in the following 

theorem. 

 

Theorem 1: 

For 0t   and       0
i j

h z t h z t  , with 
ij

A , S  defined in (9), if there exist a matrix 

T
P P 0   , and a positive constant   such that the following matrix inequalities are 

satisfied,  , , ,i j 1 r  : 

ii

ii ij ji

0

2
0 i j

r 1

 


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

 (11) 

with: 
T

ij ij

ij T 2

A P PA Q PS

S P I

  
   

 

     

 
. Then the asymptotic stability of the closed loop 

fuzzy system (9) is ensured and the H


 tracking control performance (10) is guaranteed 

with an attenuation level  . 

 

Proof: 

Consider the following candidate Lyapunov function. 

( , ) ( ) ( )
T

V x t x t Px t     with T
P P 0    (12) 

The stability of the closed loop model (9) is satisfied under the H


 performance (10) 

with the attenuation level   if [7]: 

( , ) ( ) ( ) ( ) ( )
T 2 T

V x t x t Qx t t t 0          (13) 
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r r
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or equivalently: 

( ) ( )
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T
Tr r

ij ij
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x t x tA P PA Q PS
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t tS P I  
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  
 (15) 

 

which, considering the work of [35], is satisfied if conditions (11) hold. 

 

The goal is now to obtain a tractable LMI problem that allows searching the gain 

matrices (both for the control 
i

K  and the observer 
i

L ) and to prove the closed loop 

stability (finding 0P  ) ensuring the prescribed attenuation level ( ). 

 

III. LMI FORMULATION OF THE STABILITY CONDITIONS 

The goal is now to propose LMI conditions for T-S models tracking control. The 

following lemmas are needed to put the further provided conditions into LMI. 

 

Lemma 1 [40]: 

For real matrices X , Y  and 0
T

S S   with appropriate dimensions and a positive 

constant  , the following inequalities hold: 

T T T 1 T
X Y Y X X X Y Y 


    (16) 

and 1T T T T
X Y Y X X S X Y SY


    (17) 

 

Lemma 2: 



For real matrices A , B , W , Y , Z  and a regular matrix Q  with appropriate dimensions 

one has: 

1

0 0

T T T T T

T

Y B Q B W Y W B A

W Z AQ A W AB Z


    
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 (18) 

 

Proof of lemma 2: 

For real matrices A , B , W , Y , Z  and a regular matrix Q  with appropriate 

dimensions, the inequality: 0

T T T
Y W B A

W AB Z

 
 
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 can be rewritten as: 

0
0

0

T T T
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   

 

 

From the inequality (17), it exists a matrix 0Q   such that: 

   
1
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0 0 0 0

0 0

T T

T T
B B

B A Q A Q B
A A


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      

 (19) 

that leads to (18) and ends the proof. 

■ 

Lemma 3 [11]: 

Let a matrix 0  , a matrix X  with appropriate dimension such that T
X X 0  , and a 

scalar  , the following inequality holds: 

2 1
( )

T T
X X X X 


       (20) 

 

Proof of lemma 3: 

  is a negative definite matrix, then if T
X X 0  , hence: 



    such that: ( ) ( )
1 T 1

X X 0 
 

       

 i.e. ( )
T T 2 1

X X X X 0 


       

 

As usual,    will indicate a transpose quantity in a symmetric matrix. The main result 

is given in the following theorem. 

 

Theorem 2: 

For all 0t   and      i j
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7
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   

 
 

  

 
1

1

2

1

7

1

3

1

6

3 3 4

1

8

2

3

1,1 (*) (*) (*) (*) (*) (*) 0 (*)

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 (*) (*)

0 0 0 0 0 0 0

0 0 0 0 0 0

ij

bi j

bi j

ij a i

ai

T T T T

i r r r ai ai

ai

N Q

E Y I

E Y I

E N I

E N I

A A A P P A E E

E

I P I



























  

 


 

 




  




   





  



















 
1 1 1 1

5 6 7 8
1,1 ( )

T T T T T

ij i i j i j i i i
A N B Y N A Y B H H   

   
          

then the asymptotic stability of the closed loop fuzzy system (9) is ensured and the H


 

tracking control performance (10) is guaranteed with an attenuation level  . Moreover, 

if a solution exists, the gains 
i

K  and 
i

L  are obtained using: 1

i i
K Y N


  and 1

i 1 i
L P Z


 . 

 

Proof: 

For a convenient design, let us assume that  1 2 2
P diag P P P . (15) can be rewritten 

as:: 

     
r r

i j ij ij

i 1 j 1

h z h z 0

 

        (22) 

with 



1 1

2 2 2

2 3 3

2

1 2

2

2 3

( ) ( ) (*) 0 (*) 0

( ) ( ) (*) (*) (*)

0 ( ) 0 (*)

0 0

0 0

T

i i j i i j

T

i i i j i i j

T T T

ij i r r r

P A L C A L C P

P B P A B K A B K P Q

A A P A P P A

P P I

P P I





   
 

     

    
 

 

   



 

and 

1 1

2 1 1 2 2

1 2

(*) (*) 0 0

( ) ( ) (*) 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

T T

i j j i

T T T T

i j j i i i i j i i j

T T

ij i i

P B K K B P

P B K K B P A P P A B K A B K P Q

A P A P

    
 
              

    
 

 

 
 



 

Then using the uncertainties structure defined in (2) and the well-known property given 

in lemma 2,    
r r

i j ij

i 1 j 1

h z h z

 

    can be bounded as follows: 

       
r r r r

i j ij i j 1ij 2 ij 3 i

i 1 j 1 i 1 j 1

h z h z h z h z diag d d d 0 0

   

  
      (23) 

with 

( ) ( )

( ) ( ) ( )

( )

T T 1 1 1 1 T

1ij 1 5 j bi bi j 1 2 3 4 1 i i 1

T T 1 1 1 1 T T

2 ij 2 7 j bi bi j 5 6 7 8 2 i i 2 3 6 ai ai

T

3 i 4 8 ai ai

d K E E K P H H P

d K E E K P H H P E E

d E E

     

       

 

   

   

     

       

 

 

 

Then, the inequality (22) holds if: 

 

 2

2 3 3 3

1 1 2

1 2

2

2 3

1,1 (*) 0 (*) 0

2, 2 (*) (*) (*)

00 ( ) 0 (*)

0 0

0 0

ij

i j ijr r

T T T

i j i r r r i

i j

P B K

h h A A P A P P A d

P P I

P P I





 

  

 
 
 

    
 

 

   

   (24) 

  1 1 1
1,1 ( ) ( )

T

ij i i j i i j ij
P A L C A L C P d      ,  



  2 2 2
2, 2 ( ) ( )

T

ij i i j i i j ij
P A B K A B K P Q d        

In order to rearrange the matrices involved in (24) a congruence with the full-rank 

matrix 

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

I

I

I

I

I

 

 

 

 

 

 

 
 

 is made. Thus (24) is equivalent to: 

 

 

2

1

2 2

1 1

2 3 3 3

2

2 3

1,1 (*) (*) 0 0

(*) 0 0

02, 2 (*) (*)

0 0 ( ) (*)

0 0

ij

r r

i j i j ij

i j T T T

i r r r

P I

h h P B K P

A A P A P P A d

P P I





 

  

 


 

   
 

   

   

   (25) 

 

Then, we proceed a bijective change of variables followed by a pre-post multiply of the 

inequality (25) by  diag N N N I I  with 1

2
N P


 , 

i i
Y K N  and 

i 1 i
Z P L , one 

obtains: 

 

   

 

1 5

1

2 2

1 1

3 3 3

2

3

0 0 ( ) 0
*

0 0 0 0

0* *

0 0 *

0 0

T T

j bi bi j

ij

r r

i j i j ij

i j T T T

i r r r

N N Y E E Y

N N

h h B Y X

A A A P P A d

I P I

 



 

     
      

      

   
 

   

 
   

 

 

 (26) 

with 

1 1 1 1

1 1 1 2 3 4 1 1 1

1 2

1

( )
T T T T

i i j i j i i i

ij

P A Z C A P C Z P H H P P

P I

   



   
       

   
 

 (27) 

2 2 7

1 1 1 1

5 6 7 8 3 6

( )

( ) ( )

T T T T T

ij i i j i j i j bi bi j

T T

i i ai ai

NA B Y A N Y B NQN Y E E Y

H H NE E N

 

     
   

       

     

 (28) 



 

Looking to expressions (26), (27) and (28) shows that the major point to allow an LMI 

formulation is the product 
1

0 0

0 0
ij

N N

N N

   
   

   

. Now, applying lemma 3 to the first 

diagonal block of (26), it yields: 

 

1 5

1

2 1 1 5

1

2 11 5

1

0 0 ( ) 0

0 0 0 0

0 ( ) 0
2

0 0 0

2 ( ) 0

0 2

T T

j bi bi j

ij

T T

j bi bi j

ij

T T

j bi bi j

ij

N N Y E E Y

N N

N Y E E Y

N

N Y E E Y

N

 

 
 

  








    
      

     

  
       

   

   
   

 

 (29) 

 

Then, applying the Schur complement, (29) becomes: 

 

1 5

2

1

2 ( ) 0 (*) 0

0 2 0 (*)
0

0 3, 3 (*)

0

T T

j bi bi j

ij

N Y E E Y

N

I

I P I

  





 

   
 

  
 
 

  

 (30) 

with  
1 1 1 1

1 1 1 2 3 4 1 1
3, 3 ( )

T T T T

ij i i j i j i i i
P A Z C A P C Z P H H P   

   
          

 

Substituting (30) in (26), we obtain the following inequality: 

 

 

 

 

1

2

1

2

2

3

1,1 0 0 (*) 0 0

0 2 0 (*) 0 0

0 3, 3 0 0 0

00 0 0 0

0 0 5, 5 (*) (*)

0 0 0 0 ( ) 6, 6 (*)

0 0 0 0

ij

ij

i j ij

T T

i r ij

I

N I

I P

I P I

B Y N

A A

I P I



 



 



 

 


 

 
 

 

  
 

  

   

 (31) 



With    

   

   

   

   

1 5

1 1 1 1

1 1 1 2 3 4 1 1

2 7

1 1 1 1

5 6 7 8 3 6

3 3 4 8

1,1 2

3, 3

5, 5

6, 6

T T

ij j bi bi j

T T T T

ij i i j i j i i i

T T T T T

ij i i j i j i j bi bi j

T T

i i ai ai

T

ij r r

N Y E E Y

P A Z C A P C Z P H H P

N A B Y A N Y B N Q N Y E E Y

H H N E E N

A P P A E

  

   

 

     

 

   

   

    

        

       

     

    
T

ai ai
E

 

 

Applying the Schur’s complement on the diagonal blocks  1,1
ij

 ,  3, 3
ij

 , and 

 6, 6
ij

 , the conditions of theorem 2 hold.  

 

Remark:  

The proposed approach provides quasi LMI conditions where only the 4 scalars  , 
1

 , 

2
  and 

3
  are required to obtain exact LMI conditions. Note that, in the previous 

literature, several BMI solutions are available [22] [33] that can be solved by iterative 

algorithms using two general eigenvalue problems (GEVP). Thus, these ones are 

strongly dependent on the initialization and on the different variables set in each 

problem (number of epochs, feasibility radius, …) for the GEVP formulation. Providing 

LMI conditions allows preventing this problem. 

 

IV. EXAMPLE AND SIMULATION 

System modeling: 

To illustrate the proposed approach, consider the angular position tracking control of an 

inverted pendulum on a cart (figure 1). The system’s dynamical equations are expressed 

as: 



 

1 2

2

1 2 1 1 1

2 21 4

13 3

( ) sin( ) sin( ) cos( ) cos( )

sin ( )

x x

m M g x m lx x x x u
x

l m M m x




  


  





 (32) 

 

where  1
x t  and  2

x t  are respectively the angular position and velocity of the 

pendulum,  u t  is the force applied to the cart, 0.1m kg  and 1M kg  are 

respectively the masses of the pendulum and the cart, 2 1l m  is the length of the 

pendulum and 2
9, 8g ms


 . 

 

Note that 2

1
sin ( ( ))m x t  is small regarding to 1 4

3 3
m M . Then, it will be assumed to be 

neglected. Therefore, the system (32) becomes: 

 

   

1 2

2

1 1 2 1 1

2

3 3

( ) sin( ) cos( ) sin( ) cos( )

4 4l l

x x

m M g x x u m lx x x
x

M m M m




  
 

  




 (33) 

 

Using the well-known sector nonlinearity approach [27], the goal is now to derive a T-S 

model from (33). Indeed, the above model is constituted by three nonlinearities to be 

splitted:    1 1 1
( ) sin ( )x t x t  ,      2 1 1

cosx t x t   and     
2

3 2 2
x t x t  . 

 

Let us consider that the velocity signal  2
x t  is not available from measurements. Then, 

the nonlinear function 
2

2
( )x t  is removed from the certain part of the T-S model. We 

assume that this nonlinear function is bounded as     3 2 3
0,x t  . Then, we write it 

as an uncertainty and (33) can be written as: 

 



1 2

2 1
( , ) ( , )

x x

x d x u d x u




  




 (34) 

 

with 
   

 

1 1 2 1

1

3

( )
( , )

4l

m M g x x u
d x u

M m

  



, 

   

 
 

1 1 2 1

1 2 3 2

3

( , , )
4l

m l x x
d x x u f x

M m

 



 


 

and  
 3 2

2

3

x
f x




 . 

 

The T-S membership functions are obtained following the same procedure as presented 

in [12]. Let  1 0 0
,x    , then the nonlinear functions can be written as follows: 

          
 

 
01 2

1 1 1 1 1 1 1 1

0

sin
x t x t x t x t x t


  


  , 

          
1 2

2 1 2 1 2 1 0
cosx t x t x t     , 

 

Where, for 1, 2i   and 1, 2j   we have 0 1
j

i
   and 

  
      

    

0 1 1 01

1 1

1 0 0

sin sin

sin

x t x t
x t

x t

 


 





,  

     
    

    

0 1 0 12 1

1 1 1 1

1 0 0

sin
1

sin

x t x t
x t x t

x t

 
 

 


  


,   

    

 

1 01

2 1

0

cos cos

1 cos

x t
x t










, 

     
  

 

12 1

2 1 2 1

0

1 cos
1

1 cos

x t
x t x t 




  


. 

 

A way to reduce the computational complexity of the LMI conditions is to minimize the 

number of rules used to model the system [31]. With the previous non linear splitting, 



the obtained fuzzy model should have 4 rules. Nevertheless, it is still possible to reduce 

this fuzzy model noticing that 1

1
  and 1

2
 , respectively 2

1
  and 2

2
 , are very closed 

[12]. Thus, for 1, 2i   we assume that 1 2

i i i
     and a 2 rules fuzzy model 

representing the nonlinear uncertain model (34) can be proposed as: 

           

   

2

1

i i i i

i

x t t A A x t x t B u t

y t C x t





      



 


 (35) 

 

With      1 2

T

x t x t x t    ,  

 

1

3

0 1

0
4l

A M m g

M m

 

 
 
 

  

,  

 

 2 0

03

0 1

sin
0

4l

A M m g

M m





 

 
 
 

  

, 

 
1

3

0

1

4l

B

M m

 

 

 

  

,  

 

2 0

3

0

cos

4l

B

M m



 

 

 
  

,  1 0C  , 

  
 

  1

3 2

3

0 0

0
4l

A x t m l
f x t

M m


 

 
  

 
  

 and 

  
 

  2 0 0

3 2

03

0 0

sin( ) cos( )
0

4l

A x t m l
f x t

M m

 




 

 
  

 
  

. 

 



Considering the uncertainties structure used to obtain theorem 1 and 2, we can write 

   1 1 1 1a
A t H F t E   and 

2 2 2 2
( ) ( )

a
A t H F t E   with 

 
1

3

0

4l

H m l

M m

 

 
 
 

  

,  1 3
0

a
E  , 

 
2 0 0

03

0

sin( ) cos( )

4l

H m l

M m

 



 

 
 
 

  

,  2 3
0

a
E  . 

 

Simulation results: 

 

The simulation was performed with a maximum angular velocity set at 2
0.1 /rad s , then 

3
0.01  . Note that when 

1
/ 2x   , the system presents a singularity and so it is 

locally uncontrollable. To overcome this problem, the modeling space has been reduced 

to    1 0 0
,x t     with 

0
22 45  . 

 

After trials, the presented simulations are performed with the following tuning: 

- The reference model was arbitrary chosen with 
0 1

6 5
r

A
 

  
  

 Hurwitz to set a 

desired dynamics to follow. 

- The dynamics of the closed loop system was fixed by choosing 6
2.7 0

10
0 2

Q
  

  
 

. 

- The value 100  , 
1

100  , 
2

100  , 
3

0.01   was arbitrary chosen (note that 

these value will be balanced by  the computed value of 
4

 , 
5

 , 
6

 , 
7

 , 
8

 ). 

- The solution 
1

P , N , 
i

Y  and 
i

Z   are computed (if feasible) by solving the set of LMI 

conditions (21) given in theorem 2 with classical LMI toolbox. 



- Finally, the gains 
i

K  and 
i

L  are obtained from the bijective change of variables 

1

i i
K Y N


  and 1

i 1 i
L P Z


 . 

 

Therefore, for the proposed example of the inverted pendulum on a cart, the solution of 

theorem 2 is obtained using the Matlab LMI toolbox and is given by the gains 

 1
294.3233 126.2873K      ,  2

294.3233 126.2873K      ,  1
30.0 332.8878

T

L      , 

 2
30.0 330.1325

T

L      , the scalars 
4

2.7013  , -9

5
2.7978  .10  , -9

6
2.7978  .10  , 

-9

7
2.7978  .10  , -9

8
2.7978  .10   and the matrices 4

1

94 -2
10

-2 10
P

  
  

 

, 

7
0.1921 -0.4056

10 .
-0 .4056 1.2086

N
 

  
 

, 4

3

14 8
10

8 7
P

  
  

 

. 

 

Figures 2a and 2c show the tracking trajectory position and velocity with respectively 

initial system states    0 0.2 0
T

x   and observed state    ˆ 0 0 0.2
T

x   for 

 ( ) 0 2 46 sin( )
T

r t . t . Note that the system is subject to the external disturbances 

 ( ) 0.03 sin( ) 0
T

t t   that are set in simulation with amplitude about 10%  of the 

tracking trajectory to test the efficiency of its attenuation. Figures 2b and 2d illustrate 

the controller and observer efficiency in the transient state. The input signal and the 

position tracking quadratic error are represented figure 3.  

 

To show the effectiveness of the disturbance attenuation by the H


 criterion, a high 

external disturbance is applied to the inverted pendulum  ( ) 0.15 sin( ) 0
T

t t   that is 

about 50%  of the tracking trajectory. The obtained results are depicted figures 4. Figure 



4a and 4b show the tracking trajectory position and velocity with the same initial states 

as the previous simulation. Note that despite the huge disturbance amplitude, the system 

does not have an unstable behavior. Even if the system position seems to follow the 

reference position, in this simulation the tracking velocity performances are lost 

showing the limits of such control law synthesis. In this case, the input signal and the 

position tracking quadratic error are presented figure 5. 

 

V. CONCLUSION 

 

In this paper, a fuzzy tracking control has been designed for an uncertain nonlinear 

dynamic system with external disturbances using a T-S fuzzy model and a state 

observer design. A control scheme based on an augmented structure with a guaranteed 

H


 performance and model reference tracking is proposed. The main result of the 

paper is the quasi-LMI formulation that can be applied for tracking control design of 

uncertain and disturbed T-S fuzzy model. This can be considered as improvement of 

previous theoretical study on T-S fuzzy model based output tracking control design and 

constitute a starting point to further applicative study on complex industrial plants. At 

last, a design example has illustrated the efficiency of the proposed approach on the 

well-known testbed of an inverted pendulum. 
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Fig. 1. Inverted pendulum on a car. 

 

Fig. 2. Tracking performances: (a) Position, (b) Zoom in the transient state of the 

position, (c) Velocity, (d) Zoom in the transient state of the velocity. 

 

Fig. 3: (a) Position estimation error (b) Velocity estimation error (c) Control signal, (d) 

Quadratic error tracking. 

 

Fig. 4. Tracking performances with high disturbances: (a) Position, (b) Zoom in the 

transient state of the position, (c) Velocity, (d) Zoom in the transient state of the 

velocity 

 

Fig. 5: Simulation with high disturbances: (a) Position Estimation error (b) Velocity 

estimation error (c) Control signal, (d) Quadratic error tracking. 
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Fig. 1. Inverted pendulum on a car 

 

 

Fig. 2. Tracking performances: (a) Position, (b) Zoom in the transient state of the 

position, (c) Velocity, (d) Zoom in the transient state of the velocity 

 



 

 

Fig. 3: (a) Position estimation error, (b) Velocity estimation error   

(c) Control signal, (d) Quadratic error tracking. 

 



 

 

Fig. 4. Tracking performances with high disturbances: (a) Position, (b) Zoom in the 

transient state of the position, (c) Velocity, (d) Zoom in the transient state of the 

velocity 

 



 

Fig. 5: Simulation with high disturbances: (a) Position estimation error (b) Velocity 

estimation error (c) Control signal, (d) Quadratic error tracking. 


