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Abstract: 

This paper concerns the state feedback control for continuous time, disturbed and 

uncertain linear switched systems with arbitrary switching rules. The main result of this 

work consists in getting an LMI (Linear matrix inequalities) condition guaranteeing a 

robust poles placement according to some desired specifications. Then, external 

disturbances attenuation with a fixed rate according to H criterion is ensured. This is 

obtained thanks to the existence of a common quadratic Lyapunov function for all sub-

systems. Finally, an academic example illustrates the efficiency of the developed 

approach. 
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I. Introduction 

 

Hybrid dynamic systems are defined as a set of continuous and discrete sub-systems 

interacting together. Thus, they associate continuous and discrete dynamic, as well as 

continuous and discrete control [2], [14], [15]. The hybrid dynamic systems (HDS) have 

many varied applications, one finds them in the control of mechanical systems, 

motorized industry, aeronautics, power electric converters, robotics... 

 

The main difficulty in the definition of HDS is that the hybrid term is not restrictive; the 

interpretation of this term can be extended to any dynamic system. A standard and 

reasonable definition of a HDS would be to consider the structure only to indicate the 

objective to be reached and the fixed terminology. So, in this paper, one will restricts to 

a particular class of HDS, namely the switched systems, which constitute a set of 

continuous subsystems and a switching rule that orchestrates the commutation between 

them [5],[7],[10],[18]. 

 

The various studies dedicated to switched systems consider mainly the stability 

problem. Indeed, three basic problems involved in the stability of the switched system 

were raised by Liberzon [7] and then developed in the literature [13],[15]. One of these 

problems is to find the conditions that guarantee the system’s asymptotic stability under 

any switching rule. i.e. arbitrary switching sequence. A necessary condition for 

asymptotic stability under arbitrary switching sequence is that each sub-system must be 

asymptotically stable. Authors showed in [15] that this condition is not sufficient, since, 

it is possible to lead to instability for some classes of switching signals. Thus, to solve 

this problem, it has been shown in [8] that the existence of a common Lyapunov 

function is a necessary and sufficient condition. This approach is also reported in 

several works, see [10-12],[16],[17],[1]. 

 

This paper deals primarily with the last problem described above. It concerns the class 

of continuous-time uncertain, switched linear systems without jump at the switching 

instant. It is also assumed that the number of switching is finite in a finite time (non 

zenon). In [9], quasi LMI condition ensuring the design of a control law for disturbed 



linear switched system is proposed. In this paper, the robustness of the approach has 

been improved by considering an uncertain system. In fact, in this case it is not obvious 

to get strict LMI condition for the asymptotic stability. Thus, the goal of this paper is to 

provide strict LMI condition for the synthesizes of a switched state feedback control law 

that guarantees asymptotic stability of the closed loop-system for any arbitrary 

switching rule and ensures three different performances at the same time. First, the 

asymptotic stability with some guaranteed specifications, namely; the transient response 

and the damping factor [6] by the poles location of each closed-loop linear subsystems. 

The second performance is to attenuate the disturbance according to H criterion. And 

finally, the main contribution of this paper is to obtain state feedback gains thank to the 

LMI formulation by considering an uncertain structure of the switched system. A 

numerical example will illustrate the proposed approach. 

 

II. Uncertain switched systems 

 

Let us consider the following uncertain switched system: 

 

                   

                   

1 2

1 2

t t t

t t t

x t A t x t B t t B t u t

y t C t x t D t t D t u t

  

  





  



  


 (1) 

 

with 
         
t t t

A t A A t
  

   , 
         

1 1 1t t t
B t B B t

  
   , 

         
2 2 2t t t

B t B B t
  

   , 
         
t t t

C t C C t
  

   , 
         

1 1 1t t t
D t D D t

  
   , 

         
2 2 2t t t

D t D D t
  

    and where  t  is the switching rule defined as follows: 

 

Let  I = 1,2,...,N  an index’s compact set of the sub-systems,  t  is defined by the 

mapping:   :t I

 , i.e. the linear mode  1 2 1 2

, , , , ,
l

A B B C D D , is active if  t l   

with l I . 

 



 
n

x t    is the state vector,  
m

u t    is the control input vector,  
r

t    is an 

exogenous input, 
 

n n

t
A



  , 

 1

n r

t
B




  , 

 2

n m

t
B




  , 

 1

p r

t
D




  , 

 2

p m

t
D




   

and 
 

p n

t
C




   are the subsystem matrices. 

    ,
t

A t


  
   

1 t
B t


 , 

   
2 t

B t


 , 

   
1 t

D t


 , 
   

2 t
D t


  and 

   
t

C t


  contain all the modelling uncertainties, which can 

be represented by: 

 

           t a t a t a t
A t H t N
   

   , 
           11 1 1bt b t t b t

B t H t N
   

   , 

             22 2 2bt b t t t b t
B t H t N

    
   , 

           11 1 1dt d t t d t
D t H t N

   
   , 

           22 2 2dt d t t d t
D t H t N

   
    and 

           ct c t t c t
C t H t N

   
   . 

 

where 
a

H


, 
1b

H


, 
2 b

H


, 
1d

H


, 
2 d

H


, 
c

H


, 
a

N


, 
1b

N


, 
2 b

N


, 
1d

N


, 
2 d

N


 and 
c

N


 are 

constant matrices and, 
   a t

t


 , 
   1b t

t


 , 
   2 b t

t


 , 
   1d t

t


 , 
   2 d t

t


  and 

   c t
t


  are the normalized uncertainty matrices, verifying the following conditions: 

 

       
T

a at t
t t I

 
   , 

       1 1

T

b bt t
t t I

 
   , 

       2 2

T

b bt t
t t I

 
   , 

   1 1

T

d i d i
t t I   , 

       2 2

T

d dt t
t t I

 
    and 

       
T

c ct t
t t I

 
   . 

 

In this study, we assume that the state vector is available to perform a state-feedback 

and that the discrete control law  t  is not a priori known but is available in real time. 

Now, we consider the following state feedback control law: 

 

     
t

u t K x t


  (2) 

 

From (1) and (2) the closed loop switched system can be written as follow: 

 

         

         

1

1

x t A t x t B t t

y t C t x t D t t

 

 





  


 




 (3) 

 



where : 

 

     

     

2

2

A t A t B t K

C t C t D t K

   

   

 

 




 (4) 

 

The objective is then to determine the state feedback gains K


 ensuring the stability of 

the closed-loop switched system (3) 

 

III. Robust pole placement and H performances 

In a first step, one determines the state feedback gains with poles placement of each 

closed loop uncertain linear subsystem, such that the eigenvalues of  A t

  are located 

inside a disk-pole with centre at   , 0r d
 

   with the radius r


 and the distance d


 

from the imaginary axis as set in figure 1. 

 

Using the parameter d


, it is possible to determine an upper bound for the settling time 

of the transient response given by 3


  or 5


  for each sub-system , with 1 d
 

  . 

The value r


 gives the upper bound on the natural frequency of oscillation for the 

transient response. Notice also that a lower bound on the dumping factor 


 , which 

determines the overshoot, can be computed as follows [9]: 

 

2 2
( )r d r

r d

  



 


 




 (5) 

 

Using the well known common quadratic Lyapunov function: 

 

( ) ,
T

V x x Px  0
T

P P   (6) 

 



a necessary and sufficient condition such that all the eigenvalues of  A t

  of the system 

(3) lie inside the circular region  ,d r
 

  as depicted in figure 1, is given by the 

existence of a positive definite symmetric matrix 1
W P


  such that the following 

inequality holds [3]: 

 

           
1

0
T T

T
A t d I W W A t d I A t d I W A t d I

r
       



           (7) 

1, 2, ..., N   

 

In the other hand, in a second step, one needs to attenuate the disturbances  t  with a 

minimum rate  , according to the H criterion: 

 

   
2 2

y t t   (8) 

 

A sufficient condition ensuring the H criterion (8) is given by the following matrix 

inequality [4]: 

 

       

   

   

1

2

1

* *

* 0

T

T

A t W W A t

B t I

C t W D t I

 



 


 
 

  

 
 

 



, 1, 2, ..., N   (9) 

 

Finally, to achieve both the performances at the same time; i.e. disturbance’s attenuation 

according to the H criterion and pole placements (inside the disk-pole  ,d r
 

 ) 

leading to a condition that verifies both (7) and (9), we use the following lemma [9]: 

 

Lemma 1: If there exists a symmetric positive definite matrix W such that: 

 

         

 

   

   

1

2

1

2 * * *

0 0
0

0 *

0

T

T

T

A t W W A t d W

W A t d W r W

B t I

C t W D t I

  

  



 


  
 

   
 
 

  

 





, 1, 2, ..., N   (10) 



 

Then, the stability of the closed-loop switched system (3) is ensured under arbitrary 

switching rule with guaranteed disturbance attenuation level  , defined in (8), and the 

pole location of each linear subsystem inside the disk-pole  ,d r
 

  depicted in 

figure 1. 

 

Proof: 

Let us consider the following inequality: 

 

   

     
   

   

   

1

2

1

2

* * 01

*

T

T

A t W W A t d W

A t d I W A t d I T
r

B t I

C t W D t I

  

   





 


   
  

  
  

  
 
 

 

 
 

 

 





, 1, 2, ..., N   (11) 

 

A necessary condition such that the inequality (11) holds is that the first diagonal block 

of (11) must be negative definite, i.e.: 

 

         
1

2 0
T

T
A t W W A t d W A t d I W A t d I

r
      



          (12) 

 

That is equivalent to: 

 

         
1

2 0
T

T
A t W W A t d W A t d I W A t d I

r
      



           

 

leading to the inequality (9) of the H. Then, by applying the Shur complement in the 

block (1,1) of the inequality (11), the inequality (10) is obtained. This end the proof. 

 ■ 

 

Note that, the inequality (11) given by lemma 1 is not a LMI condition since, in our 

case, it contains varying time uncertainties which can be considered unknown with 



known upper bounds. Thus, in the following section, the goal is to get a LMI constraint 

by considering the uncertainties structure mentioned in the first section. 

 

III. LMI FORMULATION 

 

Because of the uncertainties, cheeking a LMI condition for the switched system, with 

performances stipulated above, is not trivial. In order to obtain a LMI condition to 

synthesize the state feedback gains, one needs to use the following corollaries: 

 

Corollary 1[19]: For real matrices A , B  and 0
T

S S   with appropriate dimensions 

and a positive constant  , we have: 

 

1T T T T
A B B A A A B B 


    (13) 

 

and 1T T T T
X Y Y X X S X Y SY


    (14) 

 

Corollary 2: for real matrices A , B , W , Y , Z  and a regular matrix Q  with 

appropriate dimensions we have: 

 

1

0 0

T T T T T

T

Y W B A Y B Q B W

W AB Z W Z AQ A


    

     
    

 (15) 

 

Proof of corollary 2 : For real matrices A , B , W , Y , Z  and a regular matrix Q  with 

appropriate dimensions, the matrix: 

 

0

T T T
Y W B A

W AB Z

 
 

 

 can be rewritten as: 
0

0
0

T T T
Y W B A

W Z AB

   
    

   

 

 

From the inequality (13) we have: 

 



   
1

0 0
0 0 0 0

0 0

T T

T T
B B

B A M A M B
A A


      

              
      

 (16) 

 

that leads to (15) and end the proof. 

■ 

 

Now, let us make a bijective change of variable on the state feedback gains; Z K W
 
 . 

Then, the main result can be summarized by the following theorem: 

 

Theorem 1: If there exists a symmetric positive definite matrix W , matrices Z


 and 

positive constants 
1

  
2

 , 
3

  
4

 , 
5

  
6

 , 
7

  such that: 

 

 *
0

 
 

   

 (17) 

 

with: 

 

   1 3 1 1

2 2 1 3 2 4 2 2
2

T T T T T

a a b b
A W B Z WA Z B d W H H H H
          

   
   

         

, 

1

2

2

2

1

2

0

0

0

b

b

c

d

a

T T T

T

N

N Z

N W

N Z

N W

W A Z B d W

B

C W D Z



 



 



   



  

 

 

 

 

 

 

 

 
    

 

 

 

 

 

 

 
 

 



and 

   

 

 

1,1

1

3

1

2 4

5 ,5

1 6 ,6

1

1 8

0

* * 0 0 0

0 0 0 0

0 0 0 0
0

0 0 0 * 0

0 0 0 *

0 0 0 0

a

b

T

d

r W

N W

N Z

D

H





 

















 

 


 

 
 

   

 
 

 

 
 

, 

 

and where 1 1

1,1 5 2 6 7 1
diag     

 
       
 

,  

1

5 ,5 5 1 1 8 1 1

T T

b b d d
I H H N N

   
 


     , 

2

6 ,6 6 7 2 2

T T

c c d d
I H H H H

   
         

for 1, 2, ..., N  . 

 

Then, the quadratic stability of the closed-loop switched system (3) is ensured under an 

arbitrary switching rule, with guaranteed disturbance attenuation level   and with the 

pole location of each linear subsystem inside the disk-pole  ,d r
 

  depicted in 

figure 1. 

 

Proof: 

Starting from the inequality (10) and separating the uncertainties, (10) becomes: 

 

0     (18) 

 

with : 

 

         

 

 

 

2

2

1

2

2 1

* 2 * * *

0 0

0 *

0

T

T

A B K W d W

W A B K d W r W

B I

C D K W D I

   

    



   


    

 
   

 
 


 

   

  

 



and 

            

    

   

      

2

2

1

2 1

* * * *

0 0 0

0 0 *

0 0

T

T

A t B t K W

W A t B t K

B t

C t D t K W D t

  

  



   

    
 

   
   

 

 
   

 

. 

 

After the bijective change of variable Z K W
 
 , one obtains: 

 

         

 

2

2

1

2

2 1

* * 2 * * *

0 0

0 *

0

T T T

T

A W B Z d W

W A Z B d W r W

B I

C W D Z D I

   

    



   


     

 
  

  
 
 

  

  

 

and 

             

   

   

     

2

2

1

2 1

* * * * *

0 0 0

0 0 *

0 0

T T T

T

A t W B t Z

W A t Z B t

B t

C t W D t Z D t

  

  



   

     

 
  

  
 
 

     

. 

 

Holding the uncertainties structure shown in section I, thus   is written as: 

 

     

 

 

1,1

2 ,1

3,1

4 ,1 1 1 1

* * *

0 0 0

0 0 *

0 0
d d d

H t N
 

 

 

  
 
 
   

, 

       1,1 2 2 2
* *

a a a b b b
H t N W H t N Z

    
       , 

   2 ,1 2 2 2

T T T T T T T

a a a b b b
W N t H Z N t H

      
     ,  3,1 1 1 1b b b

H t N
  

    

 and    4 ,1 2 2 2c c c d d d
H t N W H t N Z

      
     . 

 

Now, by the means of corollaries 1 and 2, the matrix   containing the uncertainties 

can be bounded in order to find some scalar constants as following: 

 

 diag    

 



where: 

 

1

1,1 1 1 2 2 2

1 3 1

2 2 2 3 4 2 2

1 1 1

5 1 1 6 7 2 2

T T T T

a a a a b b

T T T

b b a a b b

T T T T

b b c c d d

W N N W H H Z N N Z

H H H H H H

N N W N N W Z N N Z

       

     

       

  

  

  



  

  

   

  

  

, 

2 ,2 3 4 2 2

T T T

a a b b
W N N W Z N N Z

   
    , 1

3,3 5 1 1 8 1 1

T T

b b d d
H H N N

   
 


    

and 
4 ,4 6 7 2 2 8 1 1

T T T

c c d d d d
H H H H H H

     
      . 

 

Finally, by adding matrices   and  , and using the Shur complement on the 

diagonal block terms, one finds easily LMI conditions of theorem 1. 

 ■ 

 

IV. EXAMPLE AND SIMULATION 

 

To illustrate the results of theorem 2, we consider a numerical example that is composed 

of the following matrices: 

 

1

0 1

3 -0.2
A

 
  

 

, 
2

1 1

2 0
A

 
  
 

, 

 
 

     1 1 1 1

0 0 0
sin 0.01 0

0.0005 sin 0 0.05
a a a

A t t H t N
t

   
       

  

, 

 
 

     2 2 2 2

0.10.001 cos 0
cos 0.01 0

00 0
a a a

t
A t t H t N

   
       

  

,  

11 12 2 2
B B I


  ,    11 12 2 2

0B t B t


    , 
21

0

1
B

 
  
 

, 
22

1

0
B

 
  
 

, 

 
 

   21 2 1 2 1 2 1

0 0
cos

0.01 cos 0.01
b b b

B t t H t N
t

   
       

  

, 

 
 

   22 2 2 2 2 2 2

0.010.01sin
sin

00
b b b

t
B t t H t N

   
       

  

,  



 1 2
1 0C C  ,    1 2 1 2

0C t C t


    , 
11 12 2 1

0D D


  ,    11 12 2 1
0D t D t


    , 

21 22
1D D   and    21 22

0D t D t    . 

 

The external disturbance of the switched system is given by the vector: 

     0.001 sin 2 2 cos 2t t t     , this one is attenuated at the level 0.45  . By 

choosing the following specifications: 
1

1r  , 
2

1.5r  , 
1

0.9d  , 
2

1.2d  , 

corresponding to the radius and the distance of the disk-pole from the origin of complex 

plan for the pole of each sub-systems as depicted in figure 1. 

 

After solving the LMI (17) of theorem 1, one obtains the following state feedback gains: 

 1
0.8516 -2.6653K  ,  2

-3.0497 -2.8451K   and the matrix 

1
0.1812 0.1240

0.1240 0.0958
P W

  
   

 

. 

 

The switched system is subjected to a known commutation law, whose rule consists in 

fixing a dwell time for each one. We choose to switch regularly at every 0.25 seconds 

from one mode of operation to another by starting from sub-system 2, as illustrated in 

figure 5.  

 

The initial state conditions are fixed at  1
0 1x  ,  2

0 0x   and represented by * in the 

phase diagram, figure 3. Thus, this shows the convergence of the system to the 

equilibrium point.  

 

The system is stabilised with a settling time less than four seconds as depicted in figure 

2. Finally, the control signal is illustrated by figure 4. Figure 5 shows the switching 

signal. 

 

V. CONCLUSION 

This work deals with robust control synthesis for a class of hybrid dynamical system. 

This one concerns a set of linear uncertain and switched systems with arbitrary 



switching rules. In fact, based on a state feedback control, we have developed sufficient 

conditions in term of LMI that ensures the attenuation of the external disturbances 

according to H criterion. Then, robust poles placements according to the desired 

specifications, namely, the damping factor and time response of each sub-system, were 

considered. Our future work intends to consider that the states are not available for 

measurements to get LMI conditions in the case of hybrid observer synthesis. 
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Figure 2. State trajectories x1 and x2 
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Figure 3. Phase plan 
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Figure 4. Control input signal 
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