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Abstract: An alternative to inverse-dynamics joint-torques estimation in human stance is 

proposed. This alternative is based on unknown-input observers which, from 

measurements of the angular positions, allow real-time estimation of joint torques and 

angular velocities. To design the aforementioned observer, a nonlinear state-space 

dynamical descriptor model is proposed. The descriptor model is then written into the form 

of a Takagi-Sugeno (T-S) model, from which a T-S observer in the descriptor form is 

designed. Then, convergence of the estimation errors (in position, velocities and torques) is 

established using a quadratic Lyapunov function through LMI conditions. Finally, the 

proposed approach is successfully compared with commonly used inverse-dynamics joint-

torques estimation. 
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1. INTRODUCTION 

 

Biomechanics applies the procedures and knowledge of many different sciences and 

disciplines in original ways. In this article, concepts drawn from automatic control theory 

and computer science are employed to deal with a biomechanical problem: the evaluation 

of joint torques in human standing. Realizing a movement or staying steady is an easy task 

for healthy people but it could prove to be a difficult work for those suffering from strokes 

or postural disorders. Improving movement or postural capabilities is possible only when a 

good diagnosis is made. Thus, since the myoskeletal system can be regarded as a 

dynamical one where segment positions and trajectories are the system outputs and joint 

torques are the inputs, postural or movement disorders can be more accurately evaluated 

by clinicians when both are well measured. Joint torques are classically estimated in 

biomechanics from motion capture and measurement of the ground reaction force. The 

well known “bottom-up” inverse-dynamics method is then used to solve Newton-Euler 

equations for each segment from the ground (where external forces are measured) to the 

top, one after another (Winter, 1990). The major drawback of this technique is that 

measurement errors are reported successively from the bottom to the top, leading to 

uncertainties on the estimation of joint torques (Zajac, 1993; Cahouët and Amarantini, 

2002). These measurement errors are partially due to the confrontation of two 

heterogeneous captors, the force plate and the motion capture device, and especially with 



      

the difficulties to make the two captor frames perfectly coincide in experimental studies 

(McCaw and De Vita, 1995). An objective to define an efficient joint torques estimation 

technique is to reduce the number of captors to its minimum, i.e. the motion capture 

device. Another source of error is the need of computing velocities from the segments 

positions, which makes the inverse-dynamics joint torques estimation highly noise-

sensitive and ruins real-time estimations (Zajac, 1993; Hatze, 2001). In this paper, an 

alternative to inverse dynamics is proposed by the use of a nonlinear unknown-input 

observer that allows the real-time estimation of both the joint torques and the angular 

velocities from angular positions measurement. Based on a nonlinear state-space descriptor 

dynamical model of human stance, presented in the next section, the objective is to depict 

a convenient way to design a nonlinear observer allowing estimation of joint torques in 

human stance with good accuracy. Among nonlinear control theory, Takagi-Sugeno (T-S) 

fuzzy model-based approach has nowadays become popular since it has shown its 

efficiency to control complex nonlinear systems in a wide range of application area, see 

e.g (Khiar et al., 2007; Liu, 2007; Abdelazim and Malik, 2005; Bernal et al., 2006). 

Indeed, Takagi and Sugeno have proposed a fuzzy model to describe nonlinear models 

(Takagi and Sugeno, 1985) as a collection of linear time invariant (LTI) models blended 

together with nonlinear functions. Conversely, T-S descriptors have been introduced by 

(Taniguchi et al., 2001) and some recent results have dealt with controller design (Bouarar 

et al., 2007) or observer design for descriptor systems (Marx et al., 2007). Nevertheless, in 

the latter, the proposed observer is not strictly in the descriptor form leading to less 

applicability to mechanical systems. Therefore, stability conditions for T-S observers in 

the descriptor form are provided in section 3. Then, a fuzzy T-S unknown-input observer 

in descriptor form is derived from the proposed nonlinear model of human standing in 



      

section 4. Finally, based on simulations and experimental results, comparisons between the 

obtained T-S unknown-inputs observer results and the ones obtained with the commonly 

used in biomechanics inverse dynamics approaches will be discussed.  

 

2. DOUBLE INVERTED PENDULUM MODELING OF HUMAN 

STANCE 

 

When an individual is quietly standing (i.e. without voluntary movement) in the sagittal 

plane, knees and neck movements are slower than ankles and hip movements. Thus, 

depending on the environment and certain pathological assumptions, two main sway 

strategies have been experimentally observed: the "ankle" strategy and the "hip" strategy 

(Nashner and McCollum, 1985). When a quietly standing individual is mainly oscillating 

around the ankle, the sway strategy is called the ankle strategy and, when he is mainly 

oscillating around the hip, the sway strategy is called the hip strategy. According to that, a 

planar double inverted pendulum has been chosen to model the human body in the sagittal 

plane, figure 1. The lower pendulum oscillates around point A  at the ankle, and the upper 

pendulum around point H  at the hip.  

This model is based on two assumptions:  

- both inverted pendulum segments are rigid and connected by hinge joints  

- the neuromuscular system, i.e. the muscle actuators and the central nervous system, 

provides the necessary joint torques 
1

u  at the ankle and 
2

u  at the hip to stabilize 

standing. 

These torques are the inputs of the double inverted pendulum model, and the associated 

angular positions are its outputs. In figure 1, segment 1 represents the lower limbs, not 



      

including the feet; segment 2 represents the trunk, head and upper limbs. The inertial 

characteristics 
1

m , 
2

m , 
1

I , 
2

I  and K  for both segments 1  and 2  can be estimated using 

anthropometric tables (Winter, 1990). 
1

  and 
2

  are the generalized angular coordinates of 

segments 1 and 2 with respect to the vertical axis. 

This double inverted pendulum dynamical model can be obtained using the Lagrange’s 

equation and is given by: 

                          1 2 1 2 1 2 1 2
, , , , ,M t t y t S t t t t y t G t t y t Ru t           (1) 

with      1 2

T

u t u t u t     the torques vector,      1 2

T

y t t t      the positions 

vector,     
    

    

1 2

1 2

1 2

cos
,

cos

a c t t
M t t

c t t b

 
 

 

 
  

  

 the inertia matrix,  

        
      

      

2 1 2

1 2 1 2

1 1 2

0 sin
, , ,

sin 0

c t t t
S t t t t

c t t t

  
   

  

 
  

   


 


 the 

anti-symmetric matrix,     

 

 

 

 

1

1

1 2

2

2

sin
0

,
sin

0

t
d

t
G t t

t
e

t




 





 

 

 

 

 

  

 the gravitational 

matrix, 
1 1

0 1
R

 
  
 

 the matrix linking joint torques to generalized torques and the 

constant parameters 
2 2 2

1 1 1 2 1
a I m K L m L   , 2

2 2 2
b I m L  , 

2 1 2
c m L L , 

 2 1 1
d m m K gL   and 

2 2
e m gL . 

Considering 
1 2 1 2

T
x     

 
   a state vector of the system, (1) can be written as the 

following nonlinear state space descriptor: 



      

           

   

E x t x t A x t x t Bu t

y t Cx t

  





 (2) 

with:   
 1 2

0

0 ,

I
E x t

M  

 
  
 

,   
   1 2 1 2 1 2

0

, , , ,

I

A x t
G S     

 
  

  
 

, 
0

B
R

 
  
 

 and 

 0C I . 

 

3. T-S FUZZY DESCRIPTOR MODELS AND OBSERVERS 

 

T-S modelling:  

Let us consider the generic state-space representation of a nonlinear descriptor model as: 

              

      

E x t x t A x t x t B x t u t

y t C x t x t

  





 (3) 

where  
n

x t    is the state vector,  
m

u t    the input vector and  
p

y t    the outputs 

vector. For simplicity, one considers the problem always well defined, i.e.   E x t  is 

regular for each  
n

x t   . 

A fuzzy Takagi-Sugeno representation in a descriptor form leads to a collection of LTI 

models in descriptor form blended together with nonlinear functions (Taniguchi et al., 

2000): 

            

      

1 1

1

e r

k k i i i

k i

r

i i

i

v z t E x t h z t A x t B u t

y t h z t C x t

 




 




 


 





 (4) 

where e  and r  are respectively the number of fuzzy sets for the left and the right part of 

the state equation (4).  z t  is the premise vector depending on the state variables 



      

     1 2 1
, ,t t t    and  2

t . Functions    0
i

h z t  ,  1, ,i r  ,    0
k

v z t  , 

 1, ,k e   satisfy the convex sum property, i.e.  
1

1

e

k

k

v z


  (resp.  
1

1

r

i

i

h z


 ). 
k

E , 

i
A , 

i
B  and 

i
C  are the matrices defining each e r  LTI descriptors that compose the T-S 

descriptor.  

Recall that there is a systematic way to go from the nonlinear descriptor (3) to one of its 

T-S representation (4). This way is called the sector nonlinearity approach (Tanaka and 

Wang, 2001). In that case, the T-S descriptor (4) matches exactly the nonlinear model (3) 

in a compact set of the state variables. Note that infinity of T-S models can represent a 

single nonlinear model (Taniguchi et al., 2001). At last, the number of linear models 

obtained is directly linked to the number of the considered nonlinear terms. If there are 
L

n  

nonlinear terms involved in the sector nonlinearity approach, then the number of linear 

models of the TS model is 2 Ln
. Of course, the greater the number of linear models the 

more conservative the results (see Tanaka and Wang 2001 and Sala et al. 2005 and 

references therein). Due to this the descriptor model of human stance (2) can be written in 

a T-S descriptor using the well-known sector nonlinearity approach form considering the 

nonlinear functions contained in the matrices   E x t  and   A x t . These functions are: 

     1 2 1 2
, cos - 1,1        (5) 

 
 sin

,1 , 1, 2
i

i i

i

i


  


   
 

 (6) 

     3 1 2 1 1 1 2
, , sin ,             (7) 

     4 1 2 2 2 1 2
, , sin ,             (8) 

with 0.2172    corresponding to the minimum of the function  .i
  over  . 



      

Thus a TS model can be derived matching exactly the nonlinear model in a compact set of 

the state vector (with limited rates) using 5
2 32  linear models. 

Note that the functions  3 1 2 1
, ,     and  4 1 2 2

, ,    , due to the Coriolis effect, are 

physiologically limited and can be neglected because of the small range of the velocities in 

human standing. Moreover, in the case of T-S state estimation it is easier to cope with a 

premise vector  z t  depending only on the measured variables  y t  (Guerra et al., 2006). 

Both points will be discussed further with the experimental results presentation. Thus, in 

the sequel a restricted T-S descriptor with 3
2 8  linear models will be constructed by 

eliminating the nonlinearities  3
   and  4

  . 

To obtain each LTI models and the membership functions composing a T-S model 

matching (2), the following sector nonlinearity transformation is employed: 

   
 

 

 
 

 1 1 2 2 1 2

1 2 1 2

1 2 1 2

, ,

1 , , 1
, cos - 1 1

2 2

v v   

     
    

 
     

 

 (9) 

 
   

 

 

 1 2

sin 1
1

1 1

i i

i ii i i

i i

i

w z w z

    
  

  


    

 
 

, 1, 2i   and 0.2217    (10) 

Thus, (9) and (10) allow defining the membership functions: 

 
 1 2

1 1 2

1 cos -
,

2
v

 
 


  and  

 1 2

2 1 2

cos - 1
,

2
v

 
 


  (11) 

     
     

 

1 1 2 2

1 1 2 11 1 21 2 2

1 1
,

1

h w w
   

   



 
 



 (12) 

     
     

 

1 1 2 2

2 1 2 12 1 22 2 2

1
,

1

h w w
    

   



 
 



 (13) 



      

     
     

 

1 1 2 2

3 1 2 11 1 22 2 2

1
,

1

h w w
    

   



 
 



 (14) 

     
     

 

1 1 2 2

4 1 2 12 1 21 2 2

1
,

1

h w w
    

   



 
 



 (15) 

Leading to 
1

0

0

I

E a c

c b

 

 
   

    

, 
2

0

0

I

E a c

c b

 

 
   

    

, 
1

0

0
0

0

I

A d

e

 

 
   

    

, 

2

0

0
0

0

I

dA

e

 

 
   

  
  

, 
3

0

0
0

0

I

A d

e



 

 
   

    

, 
4

0

0
0

0

I

dA

e





 

 
   

  
  

. 

Thus, considering    1 2

T
z t   , the simplified fuzzy T-S descriptor model of human 

stance can be expressed as: 

           

   

2 4

1 1

k k i i

k i

v z t E x t h z t A x t Bu t

y t C x t

 


 



 

 
 (16) 

 

Fuzzy Takagi-Sugeno observer descriptor structure: 

Using the general T-S descriptor form (4), it is possible to propose a nonlinear observer 

based on this form:  

           

          

      

1 1

1 1

1

ˆ ˆ

ˆ

ˆ ˆ

e r

k k i i i

k i

e r

k i ik

k i

r

i i

i

v z t E x t h z t A x t B u t

v z t h z t K y t y t

y t h z t C x t

 

 




   




 








 

 





 (17) 

where  x̂ t  and  ŷ t  are respectively the estimated state vector and the output vector. 
ik

K  

are the observer gain matrices. Let us quote that the general case would imply the use of 



      

 ẑ t , i.e.   ˆ
i

h z t  and   ˆ
k

v z t  instead of   i
h z t  and   k

v z t . This general case is 

harder and very few results are available (Guerra et al., 2006). The purpose of this section 

is to derive sufficient conditions of convergence for the estimation error of a T-S observer. 

Summarizing for the present application, choosing an approximation of the nonlinear 

descriptor model (2) with 3
2 8  LTI models, instead of an exact one with 5

2 32  LTI 

models (included the neglected functions  3
   and  4

  ) is a good compromise between 

model complexity (in terms of LMI resolution) and its reliability with respect to the 

application. 

 

Estimation error convergence: 

A way to obtain sufficient convergence conditions for T-S fuzzy descriptor observer is to 

rewrite (4) using the augmented state      
*

,
T

T T
x t x t x t 

 
 :  

              

      

* * * * *

1 1 1

* *

1

e r r

k i ik i i

k i i

r

i i

i

E x t v z t h z t A x t h z t B u t

y t h z t B x t

  




 




 


  





 (18) 

where *
0

0 0

I
E

 
  
 

, *
0

ik

i k

I
A

A E

 
  

 

, *
0

i

i

B
B

 
  
 

 and  
*

0
i i

C C . In a similar way, the 

fuzzy T-S observer (17) is written as, with      
*

ˆ ˆ ˆ,
T

T T
x t x t x t 

 
  and *

0

ik

ik

K
K

 
  
 

: 

              

          

      

* * * * *

1 1 1

*

1 1

* *

1

ˆ ˆ

ˆ

ˆ

e r r

k i ik i i

k i i

e r

k i ik

k i

r

i i

i

E x t v z t h z t A x t h z t B u t

v z t h z t K y t y t

y t h z t B x t

  

 




 




 








  

 





 (19) 



      

Let us define the augmented prediction error as            *
ˆ ˆ,

T
TT

x t x t x t x t x t
 

  
  

  ; 

its derivative can be written as: 

            
* * * * * *

1 1 1

e r r

k i j ik jk i

k i j

E x t v z t h z t h z t A K C x t

  

  
      (20) 

The following theorem ensures the convergence of the state reconstruction error for a 

suitable set of *

ik
K  (Guelton et al., 2006).  

 

Theorem 1: Let us consider the fuzzy descriptor model (20). The convergence of the 

estimation error is ensured if there exist: 
1 1

0
T

P P  , 
3

P  and 
4

P  regular, 
ik

K , 

 1, ,k e  ,  , 1, ,i j r  , j i , such that: 

0
k

ii
   (21) 

0
k k

ij ji
     (22) 

with 
 3 3 3 3

1 3 4 4 4 4

*
T T T T T

i i i jk jk ik

ij T T T T T

k i jk i k k

A P P A C K P P K C

P E P P A P K C E P P E

   
   

      

. 

 

Note that a star  *  in a symmetric matrix indicates a transpose quantity. 

 

Proof: Consider the Lyapunov candidate function       
* * * *T T

V x t x t E Px t   , then (20) 

is stable if: 

* *
0

T
E P PE   (23) 

and 

       
* * * * * *

0
T T T T

x t E Px t x t E Px t       (24) 



      

are satisfied. 

Consider 
1 2

3 4

P P
P

P P

 
  
 

, (23) leads to 
1 1

0
T

P P   and 
2

0P  . Moreover, with (20) and 

(23), (24) can be rewritten as: 

          * * * * * * * * * *

1 1 1

0

e r r
T

T T

k i j ik jk i ik jk i

k i j

x v z t h z t h z t A K C E P PE A K C x

  

 
          

 
   

 (25) 

After mathematical development with the matrices defined in (18) and (19), (25) yields: 

        
 3 3 3 3

1 1 1 1 3 4 4 4 4

*
0

T T T T Te r r
i i i jk jk i

k i j T T T T T

k i j k i jk i k k

A P P A C K P P K C
v z t h z t h z t

P E P P A P K C E P P E  

   
 

      
  

 (26) 

Obviously (26) is satisfied if (21) and (22) hold. ■ 

 

Note that it is straightforward to apply any relaxation schemes found in the literature in 

addition to the conditions given in theorem 1 (Liu and Zhang, 2003; Tuan et al., 2001). 

At last, let us point out that conditions (21) and (22) are LMIs in 
1

P , 
3

P  and 
4

P , i.e. 

providing that 
ik

K  are given. On the contrary, if 
ik

K  and 
1

P , 
3

P , 
4

P  have to be searched 

together, it is necessary to render these conditions LMI. Some results are available in 

(Guelton, 2003; Guerra et al., 2004). Note also that, for the present application, 
ik

K  are 

computed apart using pole placement to ensure some performances, whereas theorem 1 is 

only used to check the stability. 

 

Comment 1: As stated in (Guerra et al., 2004; Guelton 2003), it can be interesting, in the 

case of mechanical systems with time varying inertia, to investigate the convergence of an 

observer based on a descriptor form rather than a “classical” state-space representation. 



      

Indeed, the descriptor approach appears sometimes to be less conservative than the 

“classical” approach. Of course in order to solve the descriptor state estimation with the 

use of classical ODE solvers,   E x t  have to be invertible. Note that the equation (2) is 

always well defined as   E x t  is non singular for each  
n n

y t     since:  

 E x  non singular     1 2 1 2
, , ,M     invertible      1 2 1 2

, , det , 0M     .  

         
2

2 2 2 2

2 2 2 1 1 1 2 1 2 1 2 1 2
det cos 0M m L I m K L I m L m L L          

  
 2 2 2 2 2

1 2 2 1 2 1 2 2 1 2 2 1 1

1 2 2 2 2

2 1 2

cos 1
L m L m K I I m L I I m L I

m L L
 

   
   , which obviously is not 

possible on   since 
 2 2 2 2 2

1 2 2 1 2 1 2 2 1 2 2 1 1

2 2 2

2 1 2

0
L m L m K I I m L I I m L I

m L L

   
 . 

 

To illustrate the benefit of a descriptor approach for some nonlinear models, let us consider 

an example. With the state vector being also the premise vector  1 2

T

x z x x   let 

define: 

 

2

1

1 2

2

2

1
1

1
,

1
1

1

x
E x x

x

 

 
 
 

 
 

, 
4.7 4.7

0.2 1.5
A

  
  
 

 and    2 2
cos 3 1C x x    . 

This is constructed in a way such that classical conditions for fuzzy observer design (Liu 

and Zhang, 2003) cannot be fulfilled. The observer in a descriptor form will have 3
2 8  

LTI models, due to the nonlinear terms 
2

1

1

1 x
, 

2

2

1

1 x
 and  2

cos x . Its representation is 

exact in the whole space 
2

  as the nonlinearities are bounded. The number of LMI 

conditions without any relaxation scheme is:  1 2 12e r r   . Let us notice that a 



      

“classical” TS observer will be obtained using  
1

1 2
,E x x


. That leads to consider 4 

different nonlinearities, thus 4
2 16  LTI models. What is worse is that the number of LMI 

conditions is then  1 2 136r r    which explains that classical conditions fail. 

 

4. UNKNOWN INPUT OBSERVER DESIGN 

 

Let us recall that the primary objective of this study is the joint torques estimation. In 

human studies, measuring joint torque with external apparatus is ethically outlawed. To 

overcome this problem, an unknown input observer will be designed under the assumption 

  0u t  . This hypothesis states that the input dynamics is much slower than the observer 

state dynamics. 

Defining the extended vector      
T

e T T
x t x t u t 

 
, the T-S descriptor observer (17) 

reduces to: 

                    

   

1 1 1 1

ˆ ˆ ˆ

ˆ ˆ

e r e r

e e e e e

k k i i k i ik

k i k i

e e

v z t E x t h z t A x t v z t h z t K y t y t

y t C x t

   


  



 

   


(27) 

with 
0

0

ke

k

E
E

I

 
  
 

, 
0 0

ie

i

A B
A

 
  
 

, 
0

ike

ik

K
K

 
  
 

 and  0
e

C C  and matrices 
k

E , 
i

A , B  

and C  defined as in equation (16). 

 

Observer tuning: 

In order to simulate the joint torques estimated by the unknown inputs observer, the whole 

nonlinear model has to be stabilized. Several ways to ensure the closed loop stability and 

performances can be investigated, pole placement, quadratic criterion, H


 attenuation … 



      

In the case of the proposed application, it can be shown that using a simple linear state 

feedback control law    u t Fx t   associated with a pole placement technique is enough 

to reach the prescribed objectives, i.e. stabilizing the model (16) around the erect position, 

the unstable equilibrium point 
1 2

0    and ensuring a faster system dynamic than the 

observer with a reasonable behaviour of the state vector signals, see figure 2.  

In the same way for the estimation error convergence some performances can be easily 

added using extra LMI conditions (Gahinet et al. 1994). In this study, a pole placement 

technique was used readily giving good results. Of course, the same kind of results can be 

obtained by introducing, for example, a decay rate on the Lyapunov function or finding an 

upper bound of a quadratic criterion (see Tanaka and Wang 2001, Sala et al. 2005 and 

references therein). 

Obviously the observer tuning depends on each investigated individual. In this paper, the 

torques of a 28 year-old male subject, weighting 69.8 K g  and measuring 1.85 m  were 

investigated. It is the same individual for the parameter tuning, simulation and real-time 

experiments. Parameters of the double inverted pendulum model of human stance (1), 

given in table 1, have been obtained using the anthropometric tables given in (Winter, 

1990) and optimized as described in (Guelton et al., 2003). 

The tuning has been done in simulation on a flexion movement from the erect position 

   1 2
, 0, 0    to    1 2

, 6 , 3     , depicted in figure 2, with realistic dynamic 

considering physiological constraints, i.e. with acceptable velocities and torques for the 

human capability. As explained previously, a pole placement technique was used. An 

acceptable compromise was obtained using four poles at 60  for the linear control. For, 

the T-S observer gains 
ik

K , pole placements was made on the linear models 



      

 
1

k i ik
E A K C


  using two dominant poles at 18  and four auxiliary at 55 . As an 

illustration, the following observer gain matrices relating to the LTI models    , 1,1i k   

and    , 1, 2i k   are given: 

11

852 849

1369 3033

0.7 0.5

2.5 5.7

21.8 39.6

14.3  31.1

K

 

 

 

 
  

 

 

 
  

, 
12

849 -848

-1365 3023

0.7 -0.5

-2.5 5.6

-6.7 22.4

-14.2 31

K

 

 

 

 
  

 

 

 
  

. 

The convergence of the state estimation error is ensured with the computed gains 
ik

K  if the 

conditions given in theorem 1 are satisfied. The following solution of theorem 1, obtained 

using the Matlab LMI Toolbox (Gahinet et al., 1995), ensures the convergence of the 

estimation error:  

 

1

0.0501

-0.0012 0.0553 *

-0.1481 -0.0049 4.5036
 

0.0013 -0.1360 -0.3046 6.9666

-0.0001 0.0000 -0.0000 0.0000 0.0000

0.0002 -0.0011 0.0002 -0.0015 -0.0000 0.0000

P

 

 

 

 
  

 

 

 

 

, 

3

0.0000 0.0000 1.6153 0.5494 -0.0000 -0.0029

-0.0004 -0.0021 0.1220 -0.5631 0.0029 -0.0029

-0.0001 0.0001 0.0009 0.0005 -0.0000 0.0005

-0.0001 -0.0001 0.0008 0.0013 -0.0000 0.0022

-0.0000 -0.0000 -0.2181 -0.1979 0.0000 0.0004

0.

P 

0001 0.0003 1.1731 0.2658 -0.0004 -0.0000

 

 

 

 

 

 

 

 

 

, 



      

4

0.0000 0.1615 -0.0004 -0.0004 0.0000 -0.0039

-1.2115 0.0002 0.0043 0.0215 0.0039 -0.0039

0.0151 -0.0238 0.0008 -0.0009 -0.0000 0.0006

0.0150 -0.1184 0.0009 0.0008 -0.0001 0.0029

-0.0016 -0.0213 0.0000 0.0001 0.0000 0.0005

0.159

P 

8 0.0216 0.0006 -0.0029 -0.0005 0.0000

 

 

 

 

 

 

 

 

 

. 

Figure 2 shows the estimate state  x̂ t  following trajectories  x t  as well as the two joint 

torques estimation  û t  following the simulated ones  u t  for the observer tuning 

simulation. 

In order to illustrate the benefits of the T-S unknown-inputs observer (27), a comparison 

with a linear unknown-inputs observer is performed. This linear observer is obtained from 

the LTI model obtained by the linearization of (2) around the unstable equilibrium point 

1
0   and 

2
0   (erect position); it is written as: 

        

   

* *
ˆ ˆ ˆ

ˆ ˆ

e e e

L L L

e e

E x t A x t K y t y t

y t C x t

   






 (28) 

with 
1

0

0

e

L

E
E

I

 
  
 

, 
1

0 0

e

L

A B
A

 
  
 

, 
0

ike

L

K
K

 
  
 

 and  0
e

C C . 

e

L
K  is chosen using the same pole placement as the nonlinear observer. Note that it 

corresponds to one of the LTI models of the T-S descriptor, i.e.  1
1v    and  1

1h   . To 

point out the behavioural differences, “large” angles are used in order to not fulfil the 

linear approximation. A complex movement has been set up to reach and outrun human 

standing physiological limits, see figure 3. 

From 10t s , the error of the linear observer becomes significant since the angular 

positions are large. Thus, low angles hypothesis is not respected and the linear observer 

failed to estimate the inputs. On the other hand, the error of the fuzzy observer is 



      

acceptable except for the fastest transients of the joint torques, at 0.5t s  and 5t s . Of 

course this is due to the observer dynamic. Nevertheless, note that these simulated torques 

are not physiologically possible with respect to the human capabilities. 

 

Comment 2: Recall that the nonlinearities  3 1 2 1
, ,     and  4 1 2 2

, ,     have been 

removed to obtain the T-S model. For the whole set of simulations, these neglected terms 

contributions remain always lower than 1% except for fast transient that are not 

physiologically possible. This explains the choice made. 

 

5. EXPERIMENTAL RESULTS 

 

Experimental protocol: 

Movements were captured at a frequency of 120Hz  using an AMTI force-plate 

synchronized with a VICON 612 motion capture device (Figure 4). The 3-dimensional 

reconstruction error was evaluated at 0.6 m m . Reflective markers define fourteen segments 

of the subject's body. Based on the measured positions of these fourteen body segments, 

and through the use of anthropometric tables (Winter, 1990) associated with an 

optimization algorithm (Guelton et al., 2003), the centre of mass and the inertia of both 

parts of the double inverted pendulum model in the sagittal plane were determined. The 

subject was asked to stay barefooted on the force plate and two movements were captured. 

The first one was in quiet standing (QS) during 30s and the second one was a combined 

trunk flexion/extension (CTE) that disturbed the subject's equilibrium, provoking ankle 

and hip oscillations in the sagittal plane. 

 



      

Linear vs nonlinear observer experimental results: 

From data collected by the motion capture system, the linear and the nonlinear unknown 

inputs observers have been used to estimate the subject’s angular velocities and torques in 

standing. These results will be compared to the ones obtained from the “global inverse 

dynamics” method (Winter, 1990) from the motion equation (1) that can be rewritten as: 

   

   

2

1 1 2 1 2 2 1 2 1 2

2

2 1 1 2 2 1 1 2 2

cos sin sin

cos sin sin

u a c c d u

u c b c e

       

       

       


     

  

  
 (29) 

with constant parameters 2 2 2

1 1 1 2 1
a I m K L m L   , 2

2 2 2
b I m L  , 

2 1 2
c m L L , 

 2 1 1
d m m K gL  , 

2 2
e m gL  and those given in table 1. 

To be computed, this method needs the same measurement as the observers, i.e. the 

angular positions  1 2
  , as well as the numerical computation of the angular velocities 

1 2
  
 
   and accelerations 

1 2
  
 
  . A particular attention has been made to both 

numerical derivative and filtering processes. According to (Carpenter et al., 2001), 90%  of 

the spectral power density of the centre of mass excursion is situated between 0  and 6 H z . 

Thus, for noise attenuation, both video and force-plate (needed in the following results) 

data were filtered through a fourth-order zero-phase lag filter with a cut-off frequency of 

6 H z  (Gustafsson, 1996; Mitra, 2001). However, although this cut-off frequency is 

appropriate for angular position, it is not appropriate for the estimation of successive 

derivatives. Unfortunately, if angular velocity and acceleration are estimated using a 6 H z  

filtered angular position, the obtained velocity and acceleration measurements may not 

represent 90%  of the spectrum density of the real angular velocity and acceleration. The 

aim of this study is not to propose a generic method to overcome this problem; one can 

only emphasize that particular attention must be paid to the filtering process. It appears 



      

quite suitable estimating the derivatives using a measured signal, and then filtering the 

angular velocity and acceleration thus obtained. 
1 2

  
 
   and 

1 2
  
 
   were obtained 

using the central difference technique on  1 2
   ( Nougier, 2001). 

The results for the QS experiment corresponds to small positions and velocities balancing 

around the equilibrium point. Of course, the linear assumption being nearly true, whatever 

the method is, the results remain very close and are not presented. 

Figure 5 shows the state estimation for the CTE experiment where high angular amplitudes 

are observed. In the same way as the simulation results, the linear observer provides 

incorrect estimations when the subject performs a movement that is far from the 

equilibrium point. To confirm this point, the detailed estimations of the ankle torques 
1

u  

between 5t s  and 15t s  are presented figure 6. Between 7t s  and 9t s , the linear 

observer provides no satisfactory estimation. Note that due to the observer dynamic 

(usable for real-time estimation) a “delay” can be noticed. 

As an additional explanation to the linear observer discordance, figure 7 shows the time 

evolution of the nonlinear membership function   1
v x t  obtained from the nonlinear term 

   1 2
cosy     included in the inertia matrix (see model (1) and (16)). Recall that the 

linear observer corresponds to one of the LTI models of the T-S model, i.e.  1
1v y   and 

 1
1h y  . Thus, when the inertia of the whole body varies with high angular amplitudes 

  1
v x t  is going far from 1  and the linear observer fails to give good results. 

 

Nonlinear observer vs classical inverse dynamics approaches: 

In biomechanical studies, three inverse-dynamics approaches are often used (Cappozzo 

and Pedotti, 1975; Winter, 1990): 



      

 The first one, called “global inverse dynamics”, has been previously employed. It is 

based on the whole body motion equations, i.e. the formal relation linking the joint 

torques to the angular positions, velocities and accelerations (Zajac and Gordon, 1989). 

This approach requires the angular positions, velocities and acceleration measurements 

and/or estimations to compute joint torques. 

 The second one is called the “top-down” inverse dynamics and also needs the angular 

positions, velocities and acceleration measurements and/or estimations to compute joint 

torques. Computing joint torques follows an iterative process illustrated in figure 8. In 

this way, the dynamical equilibrium conditions, given by the Newton-Euler equations, 

are applied successively to each body segments in order to obtain successively joint 

torques from the terminal segment to the one in contact with the external environment. 

This technique is sensitive to noise measurement since the uncertainties due to velocities 

and accelerations computation are transmitted successively to joint torques estimations 

(Zajac, 1993). This entails increasing errors related to the iteration number (Challis and 

Kerving, 1996). 

  The third, commonly used in biomechanics, is called “Bottom-up” inverse dynamics. It 

is based on the same iterative process as the “Top-down” technique but consists in 

solving the Newton-Euler equation from the body segment in contact with the external 

environment to the last one (figure 8). Thus, in addition to angular positions, velocities 

and accelerations measurements and/or computations, the “Bottom-up” technique also 

requires the external forces measurements. This method is less sensitive to noise 

measurements than the “Top-down” method since the external force measurement 

brings an additional knowledge to the angular accelerations (Zajac, 1993). Nevertheless, 

a new error due to the different measurement apparatus frame positioning is introduced 



      

in the iterative process (McCaw and De Vita, 1995). Moreover, the external forces 

measurements contribute to an overestimation that entails the emergence of residual 

forces and torques. These appear solving the last body segment where the dynamical 

equilibrium conditions are consequently not verified (Challis and Kerving, 1996; 

Cahouët and Amarantini, 2002; Hatze, 2002).  

The « Bottom-up » and the « Top-down » inverse dynamics approaches are supposed to 

provide a good estimation at their first iteration. Indeed, the ankle torques computed from 

the “Bottom-up” technique as well as the hip torques computed with the “Top-down” 

technique are supposed to provide good estimations (Cappozzo and Pedotti, 1975; Challis 

and Kerwin, 1996; Hatze, 2002). The detailed formulations associated to these methods 

applied to the double inverted pendulum model of human stance are presented in 

appendix1. 

Figure 9 (a) and (b) show respectively the results obtained from the three inverse dynamics 

approaches and the T-S unknown-inputs observer for the CTE experiment at the ankle and 

at the hip. As expected, the T-S observer and the “global inverse dynamics” provide 

similar results. Effectively, these two approaches take into account the global nonlinear 

model (1). As expected, for the “bottom-up” technique (resp. “Top-down”) the results on 

the hip (resp. ankle) are not satisfactory. 

In the ideal situation, if the measurements are perfectly homogeneous, “Top-down”, 

“Bottom-up” and “Global” inverse dynamics should provide the same results. Putting into 

relation data obtained from two different apparatus (force-plate and optoelectronic system) 

leads to uncertainties due to the intrinsic calibration of each apparatus. This point partially 

explains the residual hip torques emergence presented in figure 10. These residual torques 

correspond to the difference between the hip torques estimated by the “Bottom-up” and the 



      

“Top-down” techniques. In the CTE experiment, they lead to a mean error value of 

4, 5 N m  and a maximal error up to 13, 5 N m  meaning 14, 6%  of the whole amplitude 

variation of the hip torques 
2

u .  

In the case of the QS experiment, the same conclusion can be done with respect to the 

ankle and hip joint torques estimations that are respectively presented in figure 11 (a) and 

(b). The residual hip torques due to the “Bottom-up” approach have a mean value of 

4,1N m  and leads to a maximal error of 5, 2 N m  that corresponds to the whole amplitude 

variation of the hip torques. Moreover, note that concerning the ankle torques, the 

“Bottom-up” approach leads to discordances despite the fact that it is supposed to be more 

accurate than the “Top-down” approach. The overestimation effect associated with the 

“Bottom-up” approach is “amplified” as the studied movement is small. 

Unless using an internal measurement apparatus that is ethically outlaw in human studies, 

there is not any measurement reference available to claim that using an unknown input 

observer is a better method to compute joint torques than using inverse dynamics. 

Nevertheless, some elements show its usefulness, for instance the nonlinear unknown input 

observer always provides close results to the “Global” inverse dynamics approach. 

Moreover, the ankle and hip torques observer estimation are also close respectively to the 

“Bottom-up” and the “Top-down” inverse dynamics technique in the CTE experiment. 

Regarding to the QS experiment, the commonly used “Bottom-up” and “Top-down” 

inverse dynamics approach in biomechanics have shown their limits with respect to small 

movements whereas the observer results remain close to the “global” inverse dynamics 

technique. 

The main advantage of the observer based estimation in comparison to the “global inverse 

dynamics” is real-time capability since they both provide similar results. Indeed, observers 



      

are classically used in state-feedback control for online state estimation when the whole 

state vector is not available. In the present study case, the observer allows both the real 

time estimation of joint torques and angular velocities from the only measurement of the 

angular positions. Another convenient feature of observer based estimation is its capacity 

to filter noise measurements by a convenient gain tuning. On the contrary, inverse-

dynamics-based estimation techniques need, when only the positions are measured, the 

computation of angular velocities and accelerations. Then, in order to obtain relevant 

estimation, special attention has to be made on the filtering and derivative processes, 

which makes inverse dynamics real time capability hazardous.  

Finally, when a dynamical model can be easily obtained and due to the fact that it only 

requires the segments positions measurements, one may assume that the use of an 

unknown-inputs observer is a suitable alternative to the use of inverse dynamics 

techniques in biomechanical studies. 

 

7. CONCLUSION 

 

A nonlinear model of human standing was proposed based on a double inverted pendulum. 

Then, a fuzzy Takagi-Sugeno unknown-inputs observer in descriptor form was designed to 

estimate both the joint torques and the velocities from only the angular position 

measurements. To establish the interest of designing such a nonlinear observer, the results 

were compared successfully in simulation to a linear observer. An experimental study has 

shown that using an unknown-input observer is a more suitable method to compute joint 

torques than using inverse dynamics when a dynamical model is available. Moreover, 

classical inverse dynamics methods need a careful estimation of velocities and 



      

accelerations that are not easy when real time joint torques estimation is expected. 

Consequently, in further study, the use of an unknown-inputs observer for real time human 

balance rehabilitation based on joint torques biofeedback will be possible. 
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APPENDIX 1: « TOP-DOWN » AND « BOTTOM-UP » ANKLE AND HIP 

JOINT TORQUES ESTIMATIONS IN STANDING 

 

Notations : F  denotes the reaction force, P  denotes the gravitational force, 
,F A

M  denotes 

the momentum due to the force F  at the point A  and G  denotes the centre of gravity. 

Subscripts p , 1  and 2  are representing respectively the feet, the lower pendulum and the 

upper pendulum. Indexes x  and z  denote respectively the horizontal and the vertical 

component of a vector. 

 

«  Top-down » inverse dynamics approach : 

The use of the « Top-down » inverse dynamics approach with the double inverted 

pendulum model of human stance needs two steps and is illustrated on the figure A-1. 



      

In the following, masses and segment positions are assumed to be known. The first step 

consists in isolating the upper pendulum segment to bring out the force due to the lower 

limbs acting on the upper pendulum segment 
1 / 2

F  as well as the joint torque 
2

u : 

2

2

1 / 2 2 2

2 , 2 2

G

P H

F m a P

u M I 

 


 


 ( 30) 

After having computed the articular solicitations at the hip, the second step consists in 

isolating the lower pendulum segment constituted by the legs and the thighs. Then, the 

force acting from the feet to the lower pendulum 
0 /1

F  as well as the ankle torque 
1

u  are: 

1

1 2 / 1

0 /1 2 /1 1

1 ,0 ,0 2 1 1

G

P F

F m a F P

u M M u I 

  


    


 ( 31) 

 

 « Bottom-up » inverse dynamics approach: 

The use of the « Bottom-up » inverse dynamics techniques in the case of human standing 

modelled by a double inverted pendulum consists in two steps depicted in figure A-2. 

The first step consists in isolating the feet to bring out the force due to the lower limbs 

acting on the feet 
0 /1

F  as well as the ankle torque 
1

u : 

1 / 0

1 , , 0 0p ext

p p ext p

P O F O

F m a F P

u M M I 

  


  


 ( 32) 

After having computed the articular solicitations at the ankle, the second step consists in 

isolating the lower pendulum segment. Then, the force acting from the lower to the upper 

pendulum segment 
1 / 2

F  as well as the hip torque 
2

u  are: 

1

1 0 / 1

2 /1 0 /1 1

2 , , 1 1 1

G

P H F H

F m a F P

u M M u I 

  


   


 ( 33) 



      

Assumption: The feet movements are small, quantities 
p

m a  and 
0 0

I   are neglected and the 

feet are assumed to be fixed to the ground while quiet standing. 
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Fig. 1: Double inverted pendulum model of human standing. 
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Fig. 2: State variables and torques estimations following a simple trajectories simulation. 
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Fig. 3: Angular position and torques estimations following a complex trajectories 

simulation. 
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Fig. 4: Experimental devices. 
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Fig. 5: experimental results for the CTE experiment. 
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Fig. 6: Detailed ankle torques estimations from the CTE experiment 
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Fig. 7: Evolution of the fuzzy membership function   1
v x t . 
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Fig. 8: “Top-down” and “Bottom-up” inverse dynamics approaches 
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Fig. 9: Comparison of inverse dynamics approaches and the fuzzy unknown inputs 

observer for the CTE experiment, (a) ankle torques estimations, (b) hip torques estimations 

 



      

5 10 15 20
-10

-5

0

5

10

15

Time (s)

R
e
s
id

u
s
 (

N
m

)

0 5 10 15 20 25 30
-10

-5

0

5

10

15

Temps (s )

R
é

s
id

u
s

 (
N

m
)

R és id us

Tim e (s)

R
e

s
id

u
s

(N
m

)

0 5 10 15 20 25 30
-10

-5

0

5

10

15

Temps (s )

R
é

s
id

u
s

 (
N

m
)

R és id us

Tim e (s)

R
e

s
id

u
s

(N
m

)

5 10 15 20
-10

-5

0

5

10

15

Time (s)

R
e
s
id

u
s
 (

N
m

)

0 5 10 15 20 25 30
-10

-5

0

5

10

15

Temps (s )

R
é

s
id

u
s

 (
N

m
)

R és id us

Tim e (s)

R
e

s
id

u
s

(N
m

)

0 5 10 15 20 25 30
-10

-5

0

5

10

15

Temps (s )

R
é

s
id

u
s

 (
N

m
)

R és id us

Tim e (s)

R
e

s
id

u
s

(N
m

)

 

Fig. 10: Residual torques at the hip due to the iterative inverse dynamics approaches 
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Fig. 11: Comparison of inverse dynamics approaches and the fuzzy unknown inputs 

observer for the QS experiment, (a) ankle torques estimations, (b) hip torques estimations 
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Fig. A-1 : « Top-down » inverse dynamics approach applied to the double inverted 

pendulum model of human standing. 
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Fig. A-2: « Bottom-up » inverse dynamics approach applied to the double inverted 

pendulum model of human standing. 

 



      

 

Notation Value designation 

1
L  0.87 m Lower limbs length (without feet) 

2
L  0.26 m 

Distance between the hip (point H ) and the upper 

pendulum {trunk+head+upper limbs}centre of 

gravity (point 
2

G ) 

1
I  1.25 kg/m² Lower limbs (without feet) ineretia 

2
I  2.32 kg/m² 

Upper pendulum {trunk+head+upper limbs}  

ineretia 

1
m  21.87 kg Lower limbs (without feet) mass 

2
m  45.87 kg Upper pendulum {trunk+head+upper limbs}  mass 

K  

0.525  

(without 

units) 

Lower limbs (without feet) centre of mass 
1

G  

location coefficient relating to the length of the 

lower pendulum  

 

Tab. 1: Human standing model parameters. 

 


