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Abstract – In this paper, a global stabilization and robust H


 Dynamic Output Feedback Controller (DOFC) 

design methodology for Takagi-Sugeno (T-S) fuzzy systems is proposed. Based on a standard robust control 

structure, one rewrites an original nonlinear model as an extended nonlinear model with exogenous inputs. The 

latter contains control objectives whose are classically introduced in terms of linear weighting functions in robust 

control theory. Then, in order to point out the interconnection between the extended nonlinear model and the 

designated DOFC, unsolvable stability conditions are derived using Linear Fractional Transformation (LFT) and 

H


 tools. Thus, based on the universal approximator properties of T-S modeling, the obtained nonlinear 

stability conditions are transformed into Linear Matrix Inequalities (LMI) to allow the design of a dedicated Full 

Parallel Distributed Compensation (FPDC) DOFC. In that case, when a solution is tractable from the proposed 

LMI conditions, the synthesized controller guarantees the prescribed stability performances. Finally, a numerical 

example is used to illustrate the validity of the designed approach. 

Keywords: Takagi-Sugeno fuzzy models, robust control, Linear Fractional Transformation (LFT), Linear 

Matrix Inequalities (LMI), H


. 

                                                           
1
 Corresponding author 

mailto:kevin.guelton@univ-reims.fr


__________________________________________________________________________________________ 

1 Introduction 

In the past few years, considerable attention has been devoted to the stability and controller 

design of fuzzy control systems. Among nonlinear control theory, the Takagi-Sugeno (T-S) 

fuzzy model [1] is becoming popular since it is able to universal approximations of a wide 

class of nonlinear systems [2, 3]. Moreover, some recent studies have shown their 

practicability; see e.g [4, 5]. Thus, the T-S fuzzy models are intensively used for analyzing 

stability problems related to fuzzy systems [6, 7]. Several corresponding control schemes 

have been developed, in the literature, to solve the problem of the T-S fuzzy models 

stabilization and control since early nineties (see for instance [8, 9] and references therein). 

The typical approach for controller design is carried out via the so-called Parallel Distributed 

Compensation (PDC) method [10, 11]. 

Since, stability and performance are two essential problems in control theory. Many improved 

results have been proposed such as state feedback [11, 12, 13] and robust static output 

feedback controller design [14]. Note that these approaches remain to static state feedback 

which leads to lower computational cost when implementing real time systems. Nevertheless, 

as the compensation to the nonlinear dynamics of the controlled system remains on a simple 

state feedback, it can be shown that static state feedback are less powerful when specified 

performances are desired with respect to the transient response [15, 16]. 

To improve the closed-loop dynamics control law’s performances, robust control based on 

Dynamic Output Feedback Controller (DOFC) has been extensively studied in various kinds 

of linear systems (Linear Time Invariant (LTI), Linear Parameter Varying (LPV), Linear 

Time Varying (LTV)…) [15, 16, 17]. These techniques are often based on the H


 criteria 

[16, 18] and on the Linear Fractional Transformation (LFT) paradigm [21]. Dealing with T-S 



fuzzy models, DOFC design has been proposed in [20, 27, 28]. Let us point out that, in the 

author’s best knowledge, LFT based approaches are scarcely used in T-S fuzzy approaches. 

In this paper, one proposes an H


 / LFT based DOFC design methodology for T-S fuzzy 

models. This one can be summarized as follows: after introducing the control objectives in 

terms of linear weighting functions, an extended nonlinear model with exogenous inputs can 

be obtained from the nonlinear model. Then, nonlinear T-S fuzzy output feedback dynamic 

control law can be obtained using a finite set of Linear Matrix Inequalities (LMI) with H


 

criteria optimization [16]. 

This paper is organized as follows: After the nonlinear control problem statement, a recall of 

T-S modeling, lower LFT representations and the proposed nonlinear T-S control design 

methodology will be presented in section 2. Finally, the efficiency of the proposed approach 

is illustrated through a numerical example in section 3. 

 

2 Nonlinear control problem statement 

Let us consider the following class of nonlinear systems: 

           

      

x t A x t x t B x t u t

y t C x t x t

  





 (1) 

where  
n

x t    is the state vector,  
m

u t    is the control vector,  
q

y t    is the 

measured output vector,  
n n

A


   ,  
n m

B


    and  
q n

C


    are the state, input and 

output nonlinear matrices, respectively. 

The objective is to design a DOFC given by the following nonlinear state space 

representation: 



           

           

c c c c

c c c

x t A x t x t B x t y t

u t C x t x t D x t y t

  


 


 (2) 

where   cnc
x t    is the controller state vector,   c cn nc

A


   ,   cn qc
B


   ,   cm nc

C


   

and  
c m q

D


   are the controller matrices. 

To design such controller, performance control objectives can be introduced in terms of linear 

weighting functions. This can be achieved using the standard control structure depicted in 

figure 1 [22, 23]. 

 

Figure 1 – Standard control structure diagram 

Within this structure,  
q

w     represent an exogenous input vector,  
q

e     is the error 

vector and      1 2
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T
T T q m
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 is the controlled output vector. The different 

objectives are specified in terms of linear weighting functions  e
W s  and  u

W s  on the 

sensitivity (  S s  transfer) and controls inputs (  KS s  transfer) respectively (figure 1). The 

weighting functions are defined in order to remove the fast variation of the error signal  e t  

and to bound variations of the control signal  u t . The choice of these weighting functions is 

done following the methodology presented in [22, 23]. 
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Thus, the linear tracking weighting function is given by the following linear state space 

representation: 

     

     1

e e e e

e e e

x t A x t B e t

v t C x t D e t

 


 


 (3) 

In the same way, the linear control weighting function is given as follows: 

     

     2

u u u u

u u u

x t A x t B u t

v t C x t D u t

 


 


 (4) 

where  
q

e
x     and  

m

u
x     are the 

e
W  and 

u
W  state vector respectively. e en n

e
A


  , 

en q

e
B


  , eq n

e
C


  , q q

e
D


  , u un n

u
A


  , un m

u
B


  , um n

u
C


   and m m

u
D


   are 

constant matrices. 

Combining (1), (3) and (4), an extended nonlinear model with exogenous inputs can be 

written as follows: 

   

 

 

1 2

1 11 12

2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

x t A x t x t B w t B x t u t

v t C x t x t D w t D u t

y t C x t x t

   


  




    

  

 

 (5) 

where ( ) ( ) ( ) ( )
T

T T T

e u
x t x t x t x t 

 
  is the extended state vector,    2

( ) 0 0 ( )C x t C x t   
  , 

 

 

 

0 ( )

( ) 0 0

0 0 ( )

e e

u

A B C x t

A x t A

A x t

 

 

 

 
 

  , 
1

0

0

e
B

B

 

 

 

  

 ,  

 

2

0

( )

( )

u
B x t B

B x t

 

 

 

 
 

  , 
11

0

e
D

D
 

  
 

 , 

12

0

u

D
D

 
  
 

  and  
 

1

0 ( )
( )

0 0

e e

u

C D C x t
C x t

C

 
  
 

  . 



Let us recall that a convenient way to run to the closed loop formulation from (5) and (2) is to 

consider the well-known LFT tools. Note that, since the striking pioneer work of Redheffer 

[21], this tool play an important role in robust control system design [15, 24]. The LFT 

algebra arises naturally when one describes a so-called “well-posed” feedback system as 

shown by the block diagram depicted in figure 2 where  ( )M x t  and  ( )K x t  are the 

system’s matrices realizations of (5) and (2) respectively defined as: 

 

   

 

 

1 2

1 11 12

2

( ) ( )

( ) ( )

( ) 0 0

A x t B B x t

M x t C x t D D

C x t

 
 

  
 
 

  

  



 (6) 

and 

 
     

     
( )

c c

c c

A x t B x t

K x t
C x t D x t

 
 
 
 

 (7) 

 

Figure 2. Lower LFT diagram 
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From figure 2, the resulting input/output relation can be represented as 

          ,
l

v t F M x t K x t w t  , where  l
F   is said to be the lower LFT of  ( )M x t  on 

 ( )K x t . Then, the corresponding closed loop system’s matrix realization 

      ,
l

F M x t K x t  is given using the Redhefer star product of  ( )M x t  and  ( )K x t  

defined by [15, 21]: 

    
 

 

           

     

       

2 2 2 1

2

1 12 2 12 11

( )
( ) , ( )

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) 0

( ) ( ) ( ) ( )

cl cl

l

cl cl

c c

c c

c c

A x t B
F M x t K x t

C x t D

A x t B x t D x t C x t B x t C x t B

B x t C x t A x t

C x t D D x t C x t D C x t D

 
  
 
 

 
 

  

 
 



   



   

(8) 

Ones the closed-loop dynamics (8) being defined, the goal is now to provide conditions 

ensuring to find a DOFC of the form (2) so that the closed loop system is stable. To address 

this problem, the direct Lyapunov methodology can be employed. Thus, let us consider the 

following candidate quadratic Lyapunov function: 

       0
T

V x t x t Px t    , 0
T

P P   (9) 

The problem is to design a nonlinear DOFC (2) stabilizing the closed loop nonlinear system 

(8) and satisfying the following H


 constraints: 

 

 

 
      

2

2

0
2

sup ,
l

w t

v t
F M x t K x t

w t




   (10) 

where 
2

  is defined as the 
2

L  norm and   is a positive scalar performance level to be 

minimized to ensure the best dynamics of the closed-loop system. 

Then (10) can be rewritten as: 



        2

0

0
T T

v t v t w t w t dt



   (11) 

In the sequel, when there is no ambiguity, the time variable t  and the parameters of the 

nonlinear matrices   x t  will be omitted for more clarity of the mathematical expressions. 

The decrease of (9) can be constrained by (11), it yields: 

2
0

T T T T
x Px x Px v v w w         (12) 

From (8), we have 
cl cl

x A x B w    and 
cl cl

v C x D w  , so (12) can be rewritten as: 

 
2

0

T T T T T T T

cl cl cl cl cl

T T T T T T

cl cl cl

x A P PA x w B Px x PB w x C v

w D v v C x v D w v v w w

   

     

    


 (13) 

That is to say: 

   

 
2

* *

* 0

T T

cl cl

T

cl

cl cl

x A P PA x

w B P I w

v C D I v



    
    

     
        

 

 (14) 

It is obvious that (14) holds if: 

   

 
2

* *

* 0

T

cl cl

T

cl

cl cl

A P PA

B P I

C D I



 
 

  
 
 

 (15) 

Let us consider 
1 21

2 3

0
T

Q Q
L P

Q Q

  
   

 

 and 
1 21

2 3

0
T

P P
L P

P P

  
   

 

 such that: 

-1

1 1

1 2

2 2
0 0

T T

Q I I P
L L L

Q P

   
     

   

 (16) 



Since 1
LL I


 , we have the following constraint 

2 2 1 1

T
Q P I Q P   and the 0P   condition is 

equivalent to 
1

1

0
Q I

I P

 
 

 

 [19]. 

Multiplying respectively left and right by 

0 0

0 0

0 0

L

I

I

 
 

 
 
 

 and 

0 0

0 0

0 0

T

L

I

I

 
 

 
 
 

, one obtains: 

   

 

2 1 1 2

2

1 2

* *

* 0

T T T

cl cl

T

cl

cl cl

L L A A L L

B I

C L L D I



 
 

  
 
 

 (17) 

then, multiplying left by 

1

2
0 0

0 0

0 0

T

L

I

I


 
 

 
 
 

 and right by 

1

2
0 0

0 0

0 0

L

I

I


 
 

 
 
 

, one obtains: 

   

 

1

1 2 2 1

1 2

2

1

* *

* 0

T T T

cl cl

T

cl

cl cl

L A L L A L

B L I

C L D I



 



 
 

  
 
 

 (18) 

Substituting (8) and (16) in (18), an equivalent nonlinear inequality (NLI) can be obtained 

and given in the following extended form: 

       

       

 

   

11

21 22

2

1 1 1

41 42 11

( ) * * *

( ) ( ) * *
0

*

( ) ( )

T T

x t

x t x t

B B P I

x t x t D I



 
 
 

  
 
     

 



 (19) 

where:

           

             

11 1 1 1 2 2

2 2 1 2 2 2 2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

T T T TT T c

T Tc c c T

x t Q A x t A x t Q Q C x t D x t B x t

B x t D x t C x t Q Q C x t B x t B x t C x t Q

   

  

   

  

, 



               

           

21 2 2 1 1 2 2 1

2 2 1 2 2 1 1 2 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

T T T Tc T c

c T T c T c T

x t A x t C x t D x t B x t P A x t Q P B x t C x t Q

P A x t Q P B x t D x t C x t Q P B x t C x t Q

    

  

   

 
, 

           

             

22 1 1 2 2 1

1 2 2 2 2 2 2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

T T T TT c

T Tc c T c

x t A x t P P A x t C x t D x t B x t P

P B x t D x t C x t C x t B x t P P B x t C x t

   

  

   

  

,          41 1 1 12 2 1 12 2
( ) ( ) ( ) ( ) ( )

c c T
x t C x t Q D D x t C x t Q D C x t Q       and 

       42 1 12 2
( ) ( ) ( ) ( )

c
x t C x t D D x t C x t    . 

Remark 1: The nonlinear model (1), with the tracking and control performances (3) and (4), 

is stable via the output feedback control law (2) under H


 performances (10), if there exist 

the matrices 
1 1

0
T

P P  , 
2 2

0
T

P P  , 
1 1

0
T

Q Q  , 
2 2

0
T

Q Q  ,  ( )
c

A x t ,  ( )
c

B x t , 

 ( )
c

C x t ,  ( )
c

D x t  regulars with appropriate dimensions and a scalar 0   such that the 

NLI (19) is fulfilled. 

Notice that, there are no direct tools to solve this NLI. Therefore, in the next section, one 

proposes to use a fuzzy T-S modeling approach in order to provide LMI stability conditions 

able to overcome this problem. 

3 LMI stability formulation based on T-S modelling 

Let us recall that, over the past two decades, there has been rapidly growing interest in 

approximating a nonlinear system by a T-S fuzzy model [1, 6, 25]. The fuzzy modelling 

approach provides a powerful tool for modelling complex nonlinear systems. Unlike 

conventional modelling approaches, where a single model is used to describe the global 

behaviour of a system, T-S modelling approach considers local LTI systems combined by 

membership functions to describe the global behaviour of the nonlinear system [1]. Indeed, a 

continuous time nonlinear system of the form (1) can be approximated by a T-S fuzzy model 

constituted by the r  following IF-THEN rules: 



Plant Rule i: IF 
1
( )z t  is 

1

i
M  and … and ( )

p
z t  is i

p
M , THEN 

     

   

i i

i

x t A x t B u t

y t C x t

 





, 1, 2, ...,i r  (20) 

where 
1
( ) , , ( )

p
z t z t  are the premise variables, 

i

j
M   1, ...,j p  are fuzzy sets, ( )

n
x t   is 

the state vector, ( )
m

u t    is the input vector, ( )
q

y t    is the controlled output vector, 

n n

i
A


  , n m

i
B


   and q n

i
C


   are constant matrices and r  is the number of IF-THEN 

rules. 

Then, using the barycentric defuzzification method [8], the fuzzy model is inferred as: 

         

       

1

1

r

i i i

i

r

i i

i

x t h z t A x t B u t

y t h z t C x t






 




 








 (21) 

with      1
, ,

T

p
z t z t z t 

 
 ,      

1

p

i

i j

j

w z t M z t



   and   
  

  
1

i

i r

i

i

w z t
h z t

w z t







 where 

  i

j j
M z t  is the fuzzy membership grade of  j

z t  in 
i

j
M . 

Note that,    0
i

w z t  ,   
1

0

r

i

i

w z t



 . Therefore, the following convex property holds: 

   0
i

h z t   and   
1

1

r

i

i

h z t



 . 

Note that (21) can obviously be rewritten, when considering the weighting functions (3) and 

(4), in the form of an exogenous input (5). That is to say, by the following exogenous T-S 

model: 



           

          

      

2 1

1

1 11 12

1

2

1

r

i i i

i

r

i i

i

r

i i

i

x t h z t A x t B u t B w t

v t h z t C x t D w t D u t

y t h z t C x t








  




  














    

  

 

 (22) 

where 
i

A , 
1

B , 
2 i

B , 
1 i

C , 
2 i

C , 
11

D  and 
12

D  are the LTI system state matrices defined as: 

0

0 0

0 0

e e i

i u

i

A B C

A A

A

 

 

 

  

 , 
1

0

0

e
B

B

 

 

 

  

 , 
2

0

i u

i

B B

B

 

 

 

  

 , 
1

0

0

0

T
T

e

T

i u

T T

i e

C

C C

C D

 

 

 

 
 

 , 
11

0

e
D

D
 

  
 

  and 

12

0

u

D
D

 
  
 

 . 

Let us also recall that the most commonly used control scheme for T-S fuzzy model is the so-

called Parallel Distributed Compensation (PDC) [11]. The meaning of such control laws is 

the use of the same membership functions as the one used by the T-S model to be stabilized. 

Thus, after checking (19) with the fuzzy blending of (22), one can propose the following PDC 

control law using a summation structure chosen in order to fully compensate the nonlinear 

stability condition (19): 

     

     

1 1 1 1 1

1 1 1

r r r r r

c c c c

i j k ijk j k jk

i j k j k

r r r

c c c

j k jk k k

j k k

x t h h h A x t h h B y t

u t h h C x t h D y t

    

  


 




  



    

  



 (23) 

where 
c

ijk
A , 

c

jk
B , 

c

jk
C  and 

c

k
D  are constant matrices with appropriate dimensions to be 

synthesized. 

Thus, substituting (22) and (23) in (19), the NLI can be rewritten as: 



     

   

 

11

21 22

1 1 1 1 1 1

1 1 12 2 1 12 2 1 12 2 11

* * *

* *
0

*

ijk

ijk ijkr r r

i j k T T

i j k

c c T c

i k i ik i k i

h h h
B B P I

C Q D D C Q D C Q C D D C D I

  

 
 

   
 
 

    

    

      

 (24) 

where 
11 1 1 1 2 2 2 2 1 2 2 2 2

ijk T T T T c T T c c T T c T

i i i k j j k i ik j j ik
Q A A Q Q C D B B D C Q Q C B B C Q             ,  

21 2 2 1 1 1 2 2 1 1 2 2 2 2 1 2 2

ijk T T c T T T T c T c T c c T

i i k j i j k i j ik jk i ijk
A C D B P A Q P B D C Q P B C Q P B C Q P A Q              , 

and 
22 1 1 2 2 1 1 2 2 2 2 2 2

ijk T T T c T T c T c T T c

i i i k j j k i i jk jk i
A P P A C D B P P B D C C B P P B C             . 

Using the following change of variables: 
1 2 1 2

c c

ik k i ik
G D C Q C Q  , 

2 1 2 2

T c c

jk j k jk
G P B D P B  , 

 3 1 2 2 1 2 2 1 1 2 2 2 2

T c c T c T c T

ijk i j k i jk i j ik ijk
G P A B D C Q P B C Q P B C Q P A Q         and 2

  , the 

inequality (24) becomes: 

1 1 1

0

r r r

i j k ijk

i j k

h h h

  

   (25) 

with 

     

   

 

1 1 2 1 1 2

3 2 2 1 1 2 2 2 2

1 1 1

1 1 12 1 1 12 2 11

* * *

* *

- *

 -

T T T

i i j ik ik j

T T c T T T T T

i ijk i k j i i jk i i jk

ijk T T

i i

c

i i ik i k i

A Q Q A B G G B

A G C D B P A A P G C C G

B B P

C Q D G C D D C D I



   
 

      
 

 
  

. 

Note that, a convenient way to obtain LMI stability conditions from (25) is to search the 

decision variables considering that each 0
ijk

  , for all combination of , , 1, ...,i j k r  [10, 

11]. Obviously, these conditions are conservative. In order to relax LMI stability conditions, 

one proposes to extend the well-known relaxation scheme introduced in [6] to the case of a 

triple summation structure as appearing in (25). Let us consider the following proprieties [6]: 



           2

1 1 1 1 1

r r r r r

i j ij i ii i j ij ji

i j i i j

j i

h z h z h z h z h z   
    



      
 (26) 

Therefore, applying twice (26) on (25) one has: 

   3 2

1 1 1 1 1 1

0

r r r r r r

i iii i j ijj jii i j k ijk ikj

i i j i j k

j i k j

h h h h h h

     

 

             (27) 

Obviously (27) holds if the conditions summarized in the following theorem are satisfied. 

Theorem 1: The T-S fuzzy model with exogenous inputs given by (22) is stable via the 

control law (23) with H


 quadratic performances, if there exist matrices 
1 1

0
T

P P  , 

1 1
0

T
Q Q  , c

k
D , 

1ik
G , 

2 jk
G , 

3 ijk
G  regulars with appropriate dimensions and a scalar 0   

such that the following LMIs are satisfied: 

for 1, ...,i r , 0
iii

   (28) 

for 1, ...,i r , 1, ...,j r  and j i , 0
ijj jii

     (29) 

for 1, ...,i r , 1, ...,j r , 1, ...,k r  and k j , 0
ijk ikj

     (30) 

with 
ijk

  defined in (25). 

Remark 2: For a particular numerical example, when there exist a solution to theorem 1 from 

LMIs (28), (29) and (30), the fuzzy controller matrices defined in (23) stabilizing the fuzzy 

system (21) with respect to the performances objectives introduced by (3) and (4) under 

2
  , are obtained using the bijective change of variables   1

1 2 1 2

c c

ik ik k i
C G D C Q Q


  , 



  1

2 3 1 2 2 1 2 2 1 1 2 2 2

c T c c T c T T

ijk ijk i j k i jk i j ik
A P G P A B D C Q P B C Q P B C Q Q

 
         and 

 1

2 2 1 2

c T c

jk jk j k
B P G P B D


   . 

Remark 3: Note that other relaxations are available in the literature, see e.g. [29, 30, 31]. The 

objective of this study is not dwelling on the subject of relaxing more and more the proposed 

stability condition. Nevertheless, In case where is it required by any practical application, 

these relaxation schemes can obviously be employed together with condition (25) without 

loss of generality. 

4 Simulation results 

To illustrate the efficiency of the above proposed controller design methodology, let us 

consider the following numerical example: 

   ( ) ( ) ( ) ( ) ( )

( ) ( )

x t A x t x t B x t u t

y t C x t

 





 (31) 

where      1 2
[ , ]

T T T
x t x t x t  is the state vector,  u t  is the input vector,    1

y t x t  is the 

measured output vector and   
  

2

1
sin 3

1 1

x t
A x t

 
  
  

,   
  

2

1
1 sin

1

x t
B x t

 
  
  

 and 

1

0

T

C
 

  
 

. 

The desired performance specifications on control system are defined in terms of frequency 

low-pass filter 
e

W  and high-pass filter 
u

W  (respectively defined in (3) and (4)) to remove the 

fast variation of the error signal  e t  and to bound variations of the control signal  u t . In 

order to show the influence of these weighting functions on the whole nonlinear system 



behavior, two cases are considered with different parameters (bandwidth, cut-off frequency 

and static gain). These are given by: 

 Case 1: 
1

-0.5 0.5
:

0.9

e e

e

e

x x e
W

v x

 





, 

2

1000 99.49
:

99.49 10

u u

u

u

x x u
W

v x u

  


 


 (32) 

 Case 2: 
1

-0.0025 -0.4985
:

-0.4985 0.1

e e

e

e

x x e
W

v x e




 


, 

2

1000 99.49
:

99.49 10

u u

u

u

x x u
W

v x u

  


 


 (33) 

Combining (31), (32) (or (33)) and considering 
1 2

T
T T T T

e u
x x x x x 

 
 , for each cases, 

the obtained nonlinear model with exogenous inputs can be represented as: 

   

 

 

1 2

1 11 12

2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

x t A x t x t B w t B x t u t

v t C x t x t D w t D u t

y t C x t x t

   


  




    

  

 

 (34) 

where  2
0 0C C ,  

 

0

( ) 0 0

0 0 ( )

e e

u

A B C

A x t A

A x t

 

 

 

 
 

  , 
1

0

0

e
B

B

 

 

 

  

 ,  

 

2

0

( )

( )

u
B x t B

B x t

 

 

 

 
 

  , 

11
0

e
D

D
 

  
 

 , 
12

0

u

D
D

 
  
 

  and 
1

0

0 0

e e

u

C D C
C

C

 
  
 

 . 

The nonlinear model (34) contains one nonlinearity (   2

1
sin x t ). Thus, according to the 

well know sector nonlinearity approach [8], an exact T-S fuzzy representation of (34) can be 

obtained considering: 

           2 2 2

1 1 1
sin 1 sin 0 1 sinx x x   ,    

2

1 1 1
sinh x x  and    2 1 1 1

1h x h x   (35) 

In that case, one has the following 2 rules T-S fuzzy model: 



           

     

   

2

1 2 1

1

1 12

2

i i i

i

x t h x t A x t B u t B w t

v t C x t D u t

y t C x t




  




 


 

    

 

 

 (36) 

with 
1

1

0

0 0

0 0

e e

u

A B C

A A

A

 

 

 

  

 , 
2

2

0

0 0

0 0

e e

u

A B C

A A

A

 

 

 

  

 , 
1

0

0

e
B

B

 

 

 

  

 , 
21

1

0

u
B B

B

 

 

 

  

 , 
22

2

0

u
B B

B

 

 

 

  

 , 

1

0

0 0

e e

u

C D C
C

C

 
  
 

 , 
2

0

0

T

C

C

 

 

 

  

 , 
12

0

u

D
D

 
  
 

  and where 
1

0 3

1 1
A

 
  
 

, 
2

1 3

1 1
A

 
  
 

, 

1

1

1
B

 
  
 

, 
2

2

1
B

 
  
 

. 

Then, the goal is now to design a DOFC controller such as: 

     

     

2 2 2 2 2

1 1 1 1 1

2 2 2

1 1 1

c c c c

i j k ijk j k jk

i j k j k

c c c

j k jk k k

j k k

x t h h h A x t h h B y t

u t h h C x t h D y t

    

  


 




  



    

  



 (37) 

The LMI conditions proposed in theorem 1 are solved via the Matlab
®
 LMI Control Toolbox 

[26] twice for case 1 and case 2. For each of these two cases, the whole closed loop system 

has been simulated through Matlab/Simulink
®
 with the initial state    0 1 1

T

x   . The 

comparison of the performances is shown in figure 3 where it can be noticed that stabilization 

in case 1 is better than the one in case 2. 
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Figure. 3. Stabilization, state and control signals, comparison between case 1 and case 2 

 

For the reader’s information, the solutions of theorem 1 in the case 1 are given by the 

matrices: 

111 121

1 46 63 1

3 79 79 1134

1 24 79 18643

0 0 0 87

c c
A A

   

 


 

  
 

 

  , 
112 122

4 175 245 4

4 106 117 1134

2 2 49 18644

0 0 0 87

c c
A A

   

 


 

  
 

 

  , 

211 221

0 50 63 1

3 79 79 1134

1 25 79 18643

0 0 0 87

c c
A A

  

 


 

 
 
 

  , 
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4 171 245 4
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2 3 49 18644

0 0 0 87

c c
A A

  

 


 

  
 

 

  , 

 11 12 21 22
159.4 5205 3739 27.1

Tc c c c
B B B B       , 

 11 12 21 22
-0.0036 0.2387 -0.3325 0.0064

c c c c
C C C C    , 

1 2
0

c c
D D  , 



1

1.80 0 0.0001 0.0005

0 174631.80 0 0

0.0001 0 30345386.18 -35325781.03

0.0005 0 -35325781.03 43554724.33

P

 

 

 

 
 
 

 , and 

1

2.05 0.09 5.51 1.21

0.09 46.11 20.86 14

5.51 20.86 32.04 1.57

1.21 14 1.57 33.21

Q

 

 

 

 
 
  

  with a minimal H


 performance level 0.9  , 

5 Conclusion 

In this paper, a general framework for Takagi-Sugeno (T-S) fuzzy models LFT based output 

feedback robust control has been proposed. Thus, adapted from classical linear robust control 

theory [15, 16, 17], an extended model, combining the nonlinear one and the considered 

weighting function has been derived. Then a bounded real lemma has been obtained in the 

general case of nonlinear systems. A way to solve the nonlinear control problem, a fuzzy T-S 

modeling approach is used to derive LMI stability conditions. Indeed, the proposed control 

methodology remains to H


/LFT dynamic output feedback controller synthesis for Takagi-

Sugeno systems. That one allows setting stability performances of the closed-loop system. 

Finally, simulation results and a comparison between two sets of weighting functions have 

been presented and conclude to the efficiency of the proposed nonlinear control synthesis. 
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