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1 LIAFA, University Paris Diderot and CNRS, France
2 LIGM, University Paris-Est Marne-la-Vallée and CNRS, France

Abstract. The classical theory of constrained-channel coding deals with
the following questions: given two languages representing a source and
a channel, is it possible to encode source messages to channel messages,
and how to realize encoding and decoding by simple algorithms, most
often transducers. The answers to this kind of questions are based on the
notion of entropy.
In the current paper, the questions and the results of the classical theory
are lifted to timed languages. Using the notion of entropy of timed lan-
guages introduced by Asarin and Degorre, the question of timed coding
is stated and solved in several settings.

1 Introduction

This paper is the first attempt to lift the classical theory of constrained-channel
coding to timed languages.

Let a language S represent all the possible messages that can be generated
by a source, and C all the messages that can transit over a channel. Typical
problems addressed by coding theory are:

– Is it possible to transmit any source generated message via the channel?
– What would be the transmission speed?
– How to encode the message before and to decode it after transmission?

The answers given by the theory of channel coding are as follows: to each lan-
guage L is associated a non-negative real number h(L), called its entropy, which
characterizes the quantity of information in bits per symbol. In order to transmit
information in real-time (resp. with speed α) the entropy of the source should
not exceed the one of the channel: h(S) ≤ h(C) (resp. αh(S) ≤ h(C)). For reg-
ular (or more precisely sofic) languages, whenever the information inequalities
above are strict, the theory of channel coding provides a transmission protocol
with a simple encoding and decoding (realized by a finite-state transducer). For
the practically important case when S = Σ∗ and h(S) < h(C), the decoding can
be made even simpler (sliding-window). A typical example is EFMPlus code [12]
allowing writing any binary file (i.e. the source {0, 1}∗, with entropy 1) onto a
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DVD (the channel C = (2, 10)− RLL admits all the words without factors 11,
101 and 011, its entropy is 0.5418, see [9]) with almost optimal rate α = 1/2.

Classical theory of channel coding deals with discrete messages. It is, however,
important to consider data words, i.e. discrete words augmented with data, e.g.
real numbers. In this paper, we develop the theory of channel coding for the most
studied class of data languages: timed languages. Several models of information
transmission are possible for the latter:

– the source is a timed language; the channel is a discrete language. In this
case, lossless encoding is impossible, and we will consider encoding with some
precision ε;

– the source and the channel are timed languages, we are interested in exact
(lossless) encoding;

– the source and the channel are timed languages, some scaling of time data
is allowed.

Our solution will be based on the notion of entropy of timed languages [3]. For
several models of transmission of timed data we will write information inequal-
ities relating entropies of sources and channels with parameters of encodings
(rate, precision, scaling, see below). Such an inequality is a necessary condition
for existence of an encoding. On the other hand, whenever the information in-
equality holds (in its strict form) and the languages are regular (sofic), we give
an explicit construction for simple timed encoding-decoding functions.

Related work. Constrained-channel coding theory for finite alphabets is a well-
established domain; we refer the reader to monographs [13, 9, 8], handbook chap-
ters [14, 7] and references therein. We started exploring information contents of
timed languages in [2–4] where the notion of entropy was introduced and related
to information measures such as Kolmogorov complexity and ε-entropy. Tech-
nically, we strongly build on discretization of timed languages, especially [3, 6].
In a less formal way, a vision of timed languages as a special kind of languages
with data [11, 10] was another source of inspiration.

Paper structure. In Sect. 2 we recall basic notions of the discrete theory of
constrained-channel coding. In Sect. 3 we briefly recall some results and con-
structions on volume, entropy and discretization of timed languages. In Sect. 4
we state our main results on timed theory of constrained-channel coding. In
Sect. 5 we discuss the rationale, perspectives and applications of this work.

2 Theory of channel coding for finite alphabet languages

In this section we give an elementary exposition3 of some basic notions and
results from the theory of constrained-channel coding, see [14, 13, 8, 7] for more
details.

3 We avoid here the terminology of symbolic dynamics, standard in the area of coding.
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2.1 Terminology

LetΣ be a finite alphabet. A factor of a wordw ∈ Σ∗ is a contiguous subsequence
of its letters. A language L is factorial whenever for each word w ∈ L every factor
of it is in the language. A language L is extensible whenever for each word w ∈ L
there exists a letter a ∈ Σ such that wa ∈ L.

These two conditions are usual in the context of coding and can be justified
in practice as follows. If we can encode (decode) some long word w (e.g. a movie
file), then we want also to encode (decode) its contiguous fragments (e.g. a short
scene in the middle of the movie). On the other hand, some extension of w should
correspond to a longer movie.

A language L, which is regular, factorial and extensible, is called sofic. Sofic
languages can be recognized by finite automata whose states are all initial and
final (this ensures factoriality) and all have outgoing transitions (this ensures
extensibility).

Given a language L, we denote by Ln its sublanguage of words of length n.
The entropy h(L) of a language over a finite alphabet is the asymptotic growth
rate of the cardinality of Ln, formally defined by (all the logarithms are base 2):

h(L) = lim
n→∞

1

n
log |Ln|.

The limit (finite or −∞) always exists if L is factorial. For a sofic language L
recognized by a given automaton, its entropy h(L) can be effectively computed
using linear algebra. In particular if L = Σ∗ for a k-letter alphabet Σ then
h(L) = log k. Finally, the intuitive meaning of the entropy is the amount of
information (in bits per symbol) in typical words of the language.

Most of our coding functions have a special property defined below.

Definition 1 (almost injective). A (partial) function φ : Σ∗ → Γ ∗ is called
almost injective with delay d ∈ IN, if for any n and w,w′ ∈ Σn, and u, u′ ∈ Σd

it holds that
φ(wu) = φ(w′u′) ⇒ w = w′.

Intuitively, if such a function is used to encode messages, then knowing the
code of some message wu one can decode w, i.e. the whole message except its last
d symbols. Thus the decoding is possible with delay d. This can be formalized
as follows:

Definition 2 (almost inverse). For an almost injective function φ : Σ∗ → Γ ∗

with delay d its d-almost inverse family of functions ψn : Γ ∗ → Σn is character-
ized by the following property: for any w ∈ Σn and v ∈ Γ ∗,

w = ψn(v) ⇔ ∃u ∈ Σd : φ(wu) = v.

Lemma 1. If the domain of an almost injective function φ is extensible and
ψn is its almost inverse, then ψn is a surjection to this domain (constrained to
words of length n).
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2.2 Coding: the basic case

Let A and A′ be two alphabets (source and channel alphabets), S ⊂ A∗ and
C ⊂ A′∗ factorial extensible languages and d ∈ IN. The aim is to encode any
source message w ∈ S to a channel message φ(w) ∈ C. The latter message can
be transmitted over the channel.

Definition 3. An (S,C)-encoding with delay d is a function φ : S → C (total
on S but not necessarily onto C) such that

– it is length preserving: ∀w ∈ S, |φ(w)| = |w|,
– it is almost injective with delay d.

The first condition means that the information is transmitted in real-time (with
the transmission rate 1). The second one permits decoding.

A natural question is to find necessary and sufficient conditions on S and C
for an (S,C)-encoding (with some delay) to exist. This question can be addressed
by comparing the entropy of the languages S and C. Roughly, the channel lan-
guage should contain at least as much information per symbol as the source
language. Formally, we define the information inequality:

h(S) ≤ h(C). (II1)

Proposition 1. Let S and C be factorial and extensible languages. If an (S,C)-
encoding exists then (II1) necessarily holds.

Proof. Let φ : S → C be an (S,C)-encoding with delay d. By Lemma 1 its almost
inverse ψ maps C onto S. More precisely, for every n we have ψn(Cn+d) = Sn.
Hence, the cardinalities should satisfy: |Sn| ≤ |Cn+d|. Finally we have

lim
n→∞

1

n
log |Sn| ≤ lim

n→∞

1

n
log |Cn+d|

and the expected inequality h(S) ≤ h(C). ⊓⊔
Thus, (II1) is necessary for existence of the coding. For sofic languages (if the

inequality is strict) it is also sufficient. Moreover, the encoding can be realized
by a sort of finite-state machine. We present this fundamental result in the
following form which is essentially the finite-state coding theorem from [14],
Theorem 10.3.7 in [13].

Theorem 1. Let S and C be sofic languages. If the strict version of (II1) holds,
then there exists an (S,C)-encoding realized by a finite-state transducer which is
right-resolving on input and right-closing on output4.

The reader is now motivated to get through a couple of definitions.

Definition 4 (transducer). A transducer is a tuple τ = (Q,A,A′, ∆, I,O)
with a finite set Q of control states; finite input and output alphabets A and A′;
a set of transitions ∆ (each transition δ has a starting state ori(δ) and an ending
state ter(δ)); input and output labeling functions I : ∆→ A and O : ∆→ A′.

4 Such a transducer is also called a finite-state (S,C)-encoder.
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Fig. 1. A sofic automaton of a channel C and a ({0, 1}∗, C)-encoder

The transducer is said to be right-resolving on input whenever for each state
q ∈ Q every two different edges starting from q have different input labels.
For such a transducer, the input automaton with a fixed initial state i, i.e.
Ai = (Q,A,∆, I, i, Q) is deterministic, we denote by Si the language of this
automaton.

The transducer is right-closing on output with delay d whenever every two
paths π and π′ of length d+1 with the same output label and the same starting
state q always have the same initial edge π1 = π′

1.
A transducer τ satisfying both properties performs the encoding process in

a natural way: an input word w of S is read from a state i along a path πw,
and this path determines the output word O(πw). The function φi : Si → A′∗

defined as w 7→ O(πw) is length preserving and almost injective with delay d.

Example 1. Consider the source language S = {0, 1}∗ and the channel language
C recognized by the sofic automaton on the left of Fig. 1. The language C
is composed by all the words on {a, b, c} that do not contain any block bc.
The entropy of the source is h(S) = 1, and the one of the channel is h(C) =
2 log

[

(1 +
√
5)/2

]

≈ 1.3885. The information inequality h(S) < h(C) holds and
we can encode S in C using the transducer on the right of Fig. 1.

2.3 Other coding settings

Similarly to the previous section, other coding settings can be considered. For
example, we can transmit information over a channel with some rate α = p

q , when
q letters of the channel message correspond to p letters of the source message
(the previous section corresponds thus to the case α = 1).

Definition 5. An (S,C)-encoding with rate α ∈ Q+ and delay d is a function
φ : S → C (total on S and not necessarily onto C) such that

– it is of rate α, i.e. ∀w ∈ S, ⌈α|φ(w)|⌉ = |w|;
– it is almost injective (with delay d).

In this setting, the information inequality takes the form:

αh(S) ≤ h(C), (II2)

and it is a necessary and almost sufficient condition for the code to exist:
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Proposition 2. Let S and C be factorial and extensible languages. If an (S,C)-
encoding with rate α exists, then (II2) necessarily holds.

Proposition 3. Let S and C be sofic languages. If a strict inequality (II2) holds,
then an (S,C)-encoding of rate α exists. Moreover, it can be realized by a finite-
state transducer of rate α.

We skip here a natural definition of such a transducer.

3 Preliminaries on timed languages

3.1 Timed alphabets, words, languages, and automata

We call k-M -alphabet a set A = [0,M ]×Σ where Σ is a k-letter alphabet and
M a positive integer bound, so that every letter in A corresponds to a real-
valued delay (seen as data) in [0,M ] and a discrete event in Σ. Timed words
and languages are respectively words and languages over a k-M -alphabet. We
define factor-closed and extensible timed language as in the untimed case.

Timed automata as described below can be used to define timed languages,
which are called regular. First we note Gc,M the set of all c-dimensional M -
bounded rectangular integer guards, i.e. Cartesian products of c real intervals
Ii, i ∈ {1..c}, having integer bounds in {0..M}. A timed automaton is thus a tuple
A = (Q, c,M,Σ,∆, I, F ) where Q is a finite set of locations; c ∈ IN is the number
of clocks; M ∈ IN is an upper bound on clock values; Σ is a finite alphabet of
events; ∆ ⊆ Q × Q × Σ × Gc,M × 2{1..c} is a set of transitions; I : Q → Gc,M

maps each location to an initial constraint; F : Q→ Gc,M maps each location to
a final constraint. A transition δ = 〈ori(δ), ter(δ),L(δ), g(δ), r(δ)〉 ∈ ∆ is such
that ori(δ) is its origin location, ter(δ) is its ending location, L(δ) is its label,
g(δ) is the guard that clock values must satisfy for firing δ and r(δ) is the set of
clocks reset by firing it.

A timed word (t1, a1) . . . (tk, ak) is in the language of a timed automaton
if there exists a run (qi,xi)i∈{0..k} with qi ∈ Q and xi ∈ [0,M ]c, such that
x0 ∈ I(q0), xk ∈ F (qk) and such that for all i, there exists δi ∈ ∆ satisfying
ori(δi) = qi−1, ter(δi) = qi, L(δi) = ai, xi−1+ti ∈ g(δi) and xi = r(δi)(xi−1+ti)
(i.e. equal to xi−1 + ti where coordinates in r(δi) are substituted by zeros).

A timed automaton is said to be right-resolving if outgoing transitions from
the same location with the same label have pairwise incompatible guards. If we
add the condition of having only one initial state we obtain the classical definition
of determinism of [1]. Languages recognized by right-resolving timed automata
are also said right-resolving. Right-resolving factor-closed and extensible timed
regular languages are called sofic.

An example of timed automaton is given in Fig. 2.

3.2 Volume and entropy

From now on A denotes a k-M -alphabet [0,M ] × Σ. Let L ⊆ An be a timed
language and n ∈ IN, we denote by Ln the set of timed words of length n
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p q r

c, x ∈ [0, 3], x := 0

a, x ∈ [0, 3] d, x ∈ [0, 2], x := 0

b, x ∈ [0, 2]

Fig. 2. A timed automaton (all the states are initial and final).

in L. For each w = w1 . . . wn ∈ Σn we denote by Lw the (possibly empty)
set of points t = (t1, . . . , tn) ∈ R

n such that (t1, w1) . . . (tn, wn) ∈ Ln. Thus
Ln =

⊎

w∈Σn Lw × {w} (by a slight abuse of notation).
The language L is said to be measurable whenever for all w ∈ Σ∗, Lw is

Lebesgue measurable, i.e. its (hyper-)volume Vol(Lw) is well defined. The volume
is just the n-dimensional generalization of interval length in R, area in R

2, volume
in R

3,. . . Examples of timed languages and their volume are given later, we also
refer to the papers [3, 6] for more detailed examples. For a timed regular language
L, languages Lw (w ∈ Σ∗) are just finite unions of convex polytopes (see for
instance Fig. 4) and hence measurable [3]. In the sequel, all timed languages
considered are measurable. The volume of Ln and the volumetric entropy of L
are defined respectively as

Vol(Ln) =
∑

w∈Σn

Vol(Lw); H(L) = lim
n→∞

1

n
log Vol(Ln),

and it can be shown that the limit exists for any factorial language.
For our running example on Fig. 2, Lac = {(t1, t2) | t1 + t2 ≤ 3} and Lbd =

{(t1, t2) | t1 + t2 ≤ 2}; and their volumes are respectively 4.5 and 2; and thus
L2(q), the sublanguage of L2 of words accepted by runs starting from q, has
volume 6.5. We have L2n(q) = (L2(q))

n whose volume is 6.5n, the entropy of the
whole language H(L) is thus at least 0.5 log 6.5 (in fact it is exactly 0.5 log 6.5).

3.3 Discretization of languages and entropy

Here we adapt some definitions and results from [3, 6]. For a k-M -alphabet A =
[0,M ]×Σ, we denote by Aε its ε discretization: Aε = {0, ε, 2ε, . . . ,M}×Σ. We
remark that Aε is a finite alphabet of size k(

M
ε +1). An ε-discrete word is a timed

word whose timed delays are multiples of ε. Given a timed language L ⊆ A∗, its
ε-discretization Lε is the discrete language on Aε composed by ε-discrete words
in L: Lε = L ∩ Aε

∗.
Given an ε-discrete word w = (t1, a1) . . . (tn, an), its ε-North-East-neighbor-

hood is the timed set BNE
ε (w) = {(u1, a1) . . . (un, an) | ui ∈ [ti, ti+ ε], i = 1..n}.

We extend this definition to associate timed languages with languages of ε-
discrete words BNE

ε (Lε) = ∪w∈LεBNE
ε (w).

We will use discretization in a three-step reduction scheme:
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1. discretize the timed languages S,C with a sampling rate ε to obtain Sε, Cε;
2. use classical coding theorem 1 with Sε, Cε;
3. go back to timed languages by taking ε-NE-neighborhood of Sε and Cε.

The following lemma is the main tool for this reduction scheme, it is a variant
of results of [3, 6]:

Lemma 2. Let S be a timed sofic language. If H(S) > −∞ then for all positive
small enough ε, one can compute ε-discrete sofic languages S−

ε and S+
ε that verify

BNE
ε (S−

ε ) ⊆ S ⊆ BNE
ε (S+

ε ), and H(S) + log 1
ε = h(S−

ε ) + o(1) = h(S+
ε ) + o(1).

4 Timed coding

Similarly to classical results presented in Sect. 2, we will consider several settings
for transmission of timed words over a channel. For every setting we will for-
mulate an information inequality, and show that it is necessary and, with some
additional hypotheses, sufficient for a coding to exist.

4.1 Timed source, discrete channel, approximate transmission

In practice, timed and data words are often transmitted via discrete (finite al-
phabet) channels. For example, a timed log of events in an operating system (a
timed message) can be stored as a text file (ASCII message). The delays in the
timed word cannot be stored with infinite precision, thus the coding is necessar-
ily approximate. More precisely, the set of timed source messages w of a length n
is infinite, while the set of discrete channel messages of the same length is finite.
For this reason, the coding cannot be injective, and necessarily maps many timed
words to a same discrete word. It is natural to require that all the timed words
with the same code are ε-close to each other. This justifies Def. 6 below. We give
first some notation. For two timed words of same length w = (t1, a1) . . . (tn, an)
and w = (t′1, a

′
1) . . . (t

′
n, a

′
n), the distance dist(w,w′) between w and w′ is equal

to +∞ if a1 . . . an 6= a′1 . . . a
′
n, otherwise it is max1≤i≤n |ti − t′i|. Let A be a k-M

alphabet, Σ′ be a finite alphabet, S be a factorial extensible measurable timed
language on A, C be a factorial extensible language on Σ′, and α, ε be positive
reals and d be a non negative integer.

Definition 6. Similarly to Def. 1 we say that a partial function φ : A∗ → Σ′∗

is almost approximately injective with precision ε and delay d if

∀n ∈ IN, w, w′ ∈ An ∀u, u′ ∈ Ad : φ(wu) = φ(w′u′) ⇒ dist(w,w′) < ε.

Its almost inverse is a multi-valued function family ψn : Σ′∗ → An characterized
by the following property: for any w ∈ An it holds that w ∈ ψn(v) if and only if
some u ∈ Ad yields φ(wu) = v.

Lemma 3. Given an almost approximately injective function φ with precision
ε and delay d, let ψn be its almost inverse family. Then for every v the diameter
of ψn(v) is at most ε. If the domain of φ is extensible, then the image of ψn

coincides with this domain (constrained to length n).
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Definition 7. An (S,C)-encoding of a rational rate α, precision ε and delay d
is a function φ : S → C (total on S) such that

– it is of rate α: i.e. ∀w ∈ S, ⌈α|φ(w)|⌉ = |w|;
– it is almost approximately injective with precision ε and delay d.

The information inequality for this setting has the form:

α(H(S) + log(1/ε)) ≤ h(C), (II3)

which corresponds to information contents of S equal to H(S) + log(1/ε), see
the formula for Kolmogorov complexity of timed words in [3].

Proposition 4. For a factorial extensible measurable timed language S and a
factorial extensible discrete language C the following holds. If an (S,C)-encoding
of rate α, precision ε, and some delay d exists then necessarily (II3) must be
satisfied.

Proof. Let φ be an (S,C)-encoding of rate α, precision ε and delay d, and ψ
its almost inverse. By Lemma 3, for every n it holds that Sn = ψn(C⌊(n+d)/α⌋).
This leads to an inequality on volumes

Vol(Sn) ≤
∑

v∈C⌊(n+d)/α⌋

Vol(ψn(v)).

Any ψ(v) has a diameter ≤ ε and thus is included in a cube of side ε and volume
εn. We have:

Vol(Sn) ≤ εn|C⌊(n+d)/α⌋|.
Thus

α

n
log Vol(Sn) ≤

α

n
log εn|C⌊(n+d)/α⌋| = α log ε+

⌊(n+ d)/α⌋
n/α

|C⌊(n+d)/α⌋|
⌊(n+ d)/α⌋ .

Taking the limit as n tends to infinity we obtain αH(S) ≤ α log ε + h(C) and
then (II3) holds. ⊓⊔

We strengthen a little bit (II3) to have a (partial) converse result for sofic
timed languages.

Proposition 5. For a sofic timed language S with H(S) > −∞, there exists a
function RS such that limx→0RS(x) = 0 and the following holds. Whenever the
entropy of a sofic discrete language C verifies the inequality α(H(S)+log(1/ε)+
RS(ε)) < h(C), then there exists an (S,C)-encoding of rate α, precision ε and
some delay d. Moreover it can be realized by a “real-time transducer” sketched
below in the proof.

Proof (Sketch). Let S be a sofic timed language. For ε > 0, let S+
ε be its ε-

discretized over-approximation given by Lemma 2. We define

RS(ε) = h(S+
ε )−H(S)− log(1/ε),

9



it satisfies the required condition: RS(ε) = o(1) (see Lemma 2). Let C be a sofic
discrete language such that

α(H(S) + log(1/ε) +RS(ε)) < h(C),

we prove that an (S,C)-encoding of rate α, precision ε and some delay d exists.
Lemma 2 gives us

S ⊆ BNE
ε (S+

ε ) and αh(S+
ε ) = α(H(S) + log(1/ε) +RS(ε)) < h(C).

Thus by Prop. 3 an (S+
ε , C)-encoding of rate α and some delay d exists and

can be realized by a finite-state transducer τε of rate α and delay d. If we
replace for each transition its input label (a, kε) by the label a and the guard
t ∈ [kε, (k+1)ε], we obtain a real-time transducer τ with input BNE

ε (S+
ε ) whose

output is in C. The injectivity of τε ensures that τ realizes an approximately
injective function with precision ε. ⊓⊔

4.2 Timed source, timed channel, exact transmission

Another natural setting is when a timed message is transmitted via a timed chan-
nel. In this case, the coding can be exact (injective). For the moment we consider
length-preserving transmission (see Sect. 4.4 for faster and slower transmission).

Let A, A′ be a k-M and a k′-M ′ alphabet, S and C factorial extensible
measurable timed languages on these alphabets, and d ∈ IN.

Let ℓ and σ be positive rationals. A function f : A′n → A∗ is said to be
ℓ-Lipshitz whenever for all x, y in its domain, dist(f(x), f(x′)) ≤ ℓ dist(x, x′).
We call a function σ-piecewise ℓ-Lipshitz if its restriction to each cube of the
standard σ-grid on A′n is ℓ-Lipshitz.

We can now state the definition of an (S,C)-encoding:

Definition 8. An (S,C)-encoding with delay d (and step σ) is a function φ :
S → C such that

– it is length preserving: |φ(w)| = |w|,
– it is almost injective (with delay d),
– no time scaling: the almost inverse ψn are σ-piecewise 1-Lipshitz.

The last condition rules out a possible cheating when all the time delays are
divided by 1000 before transmission over the channel. We will come back to this
issue in Sect. 4.3.

The information inequality in this setting takes a very simple form:

H(S) ≤ H(C). (II4)

The necessary condition for existence of a coding has a standard form (for tech-
nical reasons we require the channel to be sofic):

Proposition 6. If for a factorial extensible measurable timed language S and a
sofic timed language C an (S,C)-encoding of delay d exists, then (II4) holds.
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Proof. We consider first the most interesting case when H(C) > −∞. We will
prove that for any ζ > 0 the inequality H(S) ≤ H(C)+ ζ holds. Suppose φ is an
(S,C)-encoding of delay d (and step σ), and ψ its almost inverse. By Lemma 1,
for any natural n we have Sn ⊂ ψn(Cn+d).

Since C is sofic, Lemma 2 applies, and for a fixed ǫ, each Cn can be covered by
C+

n , a union of Kn,ε cubes of size ε with H(C) + log 1
ε = limn→∞

logKn,ε

n + o(1).
We choose ε dividing σ and small enough such that

H(C) + log
1

ε
> lim

n→∞

logKn,ε

n
− ζ. (1)

Thus we have Sn ⊂ ψn(C
+
n+d), and, passing to volumes we get

Vol(Sn) ≤ Vol(ψn(C
+
n+d)) ≤ Kn+d,εε

n, (2)

indeed, since ψn is 1-Lipshitz on each ε-cube, ψn-image of each such cube has a
diameter ≤ ε and thus a volume ≤ εn. Passing to logarithms, dividing by n and
taking the limit as n→ ∞ in (2) we get

H(S) ≤ lim
n→∞

logKn+d,ε

n+ d
+ log ε,

and applying inequality (1) we obtain

H(S) ≤ H(C) + log
1

ε
+ ζ + log ε = H(C) + ζ,

which concludes the proof for the case when H(C) > −∞. The remaining case
H(C) = −∞ is a simple corollary of the previous one. ⊓⊔

As usual, when both timed languages S and C are sofic and the information
inequality (II4) strict, the converse holds.

Proposition 7. If for sofic timed languages S and C it holds that H(S) <
H(C), then there exists an (S,C)-encoding (with some delay d). Moreover it can
be realized by a “real-time transducer” described below in the proof.

Proof (Sketch). Let S and C be sofic timed languages whose entropies verify
−∞ < H(S) < H(C). We prove that an (S,C)-encoding with some delay d
exists. Let C−

ε and S+
ε be as in Lemma 2, i.e. such that

S ⊆ BNE
ε (S+

ε ); BNE
ε (C−

ε ) ⊆ C;

H(S) + log
1

ε
= h(S+

ε ) + o(1); H(C) + log
1

ε
= h(C−

ε ) + o(1).

The discretization step ε can be chosen small enough such that h(S+
ε ) <

h(C−
ε ). Thus by Theorem 1 a finite-state (S+

ε , C
−
ε )-encoder τε exists.

We replace each transition δǫ of τǫ with input label (a, kε) and output label
(b, lε) by a transition δ with input label a, guards t ∈ [kε, (k + 1)ε], output
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Fig. 3. Left: A−

ε
: an automaton recognizing C−

ε
with ε = 1. Right: its split form.

label b and increment/decrement c(δ) = (l− k)ε. We obtain what we call a real-
time transducer τ . Its input language is BNE

ε (S+
ε ) and its output language is

included in BNE
ε (C−

ε ) ⊆ C. The encoding is performed as follows: a timed word
(t1, a1) . . . (tn, an) is in the input language if there is a path δ1 . . . δn such that
I(δi) = ai and ti satisfies the guard of δi: ti ∈ [kε, (k + 1)ε]; the output timed
word is in this case (t′1, b1) . . . (t

′
n, bn) with t

′
i = ti + c(δi), bi = O(δi).

The collection of cubes BNE
ε (w), w ∈ S+

ε (resp. w ∈ C−
ε ) forms a partition

of timed languages BNE
ε (S+

ε ) (resp. BNE
ε (C−

ε )), they are cubes of the standard
σ-grid with the step σ = ǫ. Transducer τ only translates cubes. Translations are
1-Lipshitz and thus the last condition of an (S,C)-encoding holds.

The remaining degenerate case when −∞ = H(S) < H(C) is an easy corol-
lary of the non-degenerate one. ⊓⊔

ori(δ) ter(δ) I(δ) g(δ) O(δ) c(δ)
q p0 e [0, 1] a 0
q p1 f [0, 1] a 1
q′ p′0 e [0, 1] a 0
q′ r f [0, 1] b 1
p0 q e [0, 1] c 0
p0 q′ f [0, 1] c 0
p′0 q e [0, 1] c 1
p′0 q′ f [0, 1] c 1
p1 q e [0, 1] c 0
p1 q′ f [0, 1] c 0
r q e [0, 1] d 0
r q′ f [0, 1] d 0

Table 1. The coding transducer

The following example illustrates the
construction of the transducer. Let the
source timed language be S = ([0, 1] ×
{e, f})∗ and the channel timed language
C be recognized by the automaton on
Fig. 2. We have seen that the entropy
H(C) is at least 0.5 log 6.5 and thus
H(C) > H(S) = log 2. By Prop. 7 an
(S,C)-encoding exists. To realize this
encoding we take ε = 1. There are four
cubes included in the language C2(q):
([0, 1]× [0, 1]×{ac}, [0, 1]× [0, 2]×{ac},
[1, 0]× [0, 1]×{ac}, [0, 1]× [0, 1]×{bd})
while the cubes to encode (language S2)
are [0, 1]×{ee}, [0, 1]×{ef}, [0, 1]×{fe},
[0, 1]×{ff}. The transducer will repeat-
edly map four “input cubes” to four “output cubes”. We build an automaton for
discrete words C−

ε (as in Lemma 2, such words correspond to “output cubes”) in
Fig. 3, left. Then, as usual in coding, we first split the state p0 and then the state
q (each in two copies) to obtain an automaton with constant outdegree 2 (Fig. 3,
right). This automaton accepts the same language C−

ε , and can be transformed
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to the desired transducer just by adding input letters and increment/decrement
to its transition. The transitions of the transducer are given in Table 1.

4.3 A variant: scaling allowed

In some situations, timed data can be scaled for coding, which leads to a new
term in the information inequality. Let λ > 0 be a rational bound on scaling
factor. We modify Def. 8 by replacing 1-Lipshitz by 1/λ-Lipshitz.

Definition 9. An (S,C)-encoding with delay d, scaling λ and step σ is a func-
tion φ : S → C such that

– it is length preserving: |φ(w)| = |w|,
– it is almost injective (with delay d),
– it has scaling at most λ: the almost inverse ψn are σ-piecewise 1/λ-Lipshitz.

The information inequality for this case becomes:

H(S) ≤ H(C) + logλ. (II5)

The problem of coding with scaling can be easily reduced to the one considered
in the previous section. Indeed, for a timed language C let λC be the same
language with all times multiplied by λ (the entropy of this language is H(λC) =
H(C) + logλ). A function φ is an (S,C)-encoding with scaling λ if and only if
the “λ-scaled” function λφ is an (S, λC)-encoding without scaling. Using this
reduction, the results below are corollaries of Prop. 6-7.

Proposition 8. If for factorial extensible measurable timed language S and sofic
timed C an (S,C)-encoding with scaling λ and delay d exists then (II5) holds.

Proposition 9. If for sofic timed languages S and C (with H(S) > −∞) the
strict version of (II5) holds, then there exists an (S,C)-encoding with scaling λ
(with some delay d). Moreover it can be realized by a “real-time transducer”.

4.4 A speedup and a slowdown lead to a collapse

For untimed channels, transmission with some rate α 6= 1leads to the factor α in
information inequalities (II2), (II3). Unfortunately, for timed channels this does
not work: any rate α 6= 1 leads to a collapse of the previous theory.

Definition 10. An (S,C)-encoding with rational rate α, delay d and step σ is
a function φ : S → C such that

– its rate is α, i.e. ∀w ∈ A∗, ⌈α|φ(w)|⌉ = |w|;
– it is almost injective (with delay d);
– no time scaling: its almost inverse ψ is σ-piecewise 1-Lipschitz.

For α > 1 no coding is possible, and for α < 1 it always exists. More precisely,
the two following propositions hold.
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Proposition 10. For factorial measurable timed languages S and C if H(S) >
−∞ and α > 1, then no (S,C)-encoding with rate α exists.

Proof (Sketch). The proof follows the same lines as that of Prop. 6. Suppose φ is
such an (S,C)-encoding, and ψ its almost inverse. By Lemma 1, for any natural
n we have Sn ⊂ ψn(C⌊(n+d)/α⌋). Each Cn can be covered by C+

n , a union of

Kn,ε cubes of size ε satisfying inequality (1) We have Sn ⊂ ψn(C
+
⌊(n+d)/α⌋), and,

passing to volumes we get Vol(Sn) ≤ Vol(ψn(C
+
⌊(n+d)/α⌋)) ≤ K⌊(n+d)/α⌋,εε

n.

Passing to logarithms, dividing by n and taking the limit as n→ ∞ we get

H(S) ≤ α−1 lim
n→∞

logK⌊(n+d)/α⌋,ε

⌊(n+ d)/α⌋ + log ε,

and applying inequality (1) we obtain

αH(S) ≤ H(C) + log(1/ε) + ζ + α log ε = H(C) + ζ − (α − 1) log(1/ε).

Choosing ε small enough makes the inequality wrong. This contradiction con-
cludes the proof. ⊓⊔

Proposition 11. For sofic timed languages S and C (with H(C) > −∞) and
any α < 1 there exists an (S,C)-encoding with rate α (and some delay d).
Moreover it can be realized by a kind of timed transducer.

The construction is non-trivial and uses spare time durations in the channel
message to transmit discrete information.

5 Discussion and perspectives

In the previous section, we have established several results on timed channel
coding following the standard scheme: a setting of information transmission –
information inequality – coding existence theorem – synthesis of an encoder/de-
coder. We believe that this approach can be applied to various situations of
data transmission (and compression). We also consider it as a justification of our
previous research on entropy of timed languages [2–4]. In this concluding section,
we explain some of our choices and immediate perspectives of this approach.

The time is not preserved. In the central Def. 8 and Prop. 6,7, we con-
sider codings of timed words that preserve the number of events, and not their
duration. This choice is compatible to the general idea of dealing with data
words (in our case, sequences of letters and real numbers), and less so with the
standard timed paradigm. We use again the example of Fig. 2 to illustrate this
feature. For n ∈ IN, the timed word w = [(0.5, e)(0.5, f)]n is encoded to the
timed word w′ = [(0.5, a)(1.5, c)]n, both have 2 events. However, the duration of
w is (0.5 + 0.5)n = n, while the duration of w′ is (0.5 + 1.5)n = 2n.

Other settings to explore. It would be still interesting to explore coding
functions preserving durations. On the theoretical side, a more detailed analysis
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Fig. 4. Top: transducers τ1 : S → C and τ2 : C → S. Bottom: languages S2 and C2.

for transmission speeds different from 1, as in Sect. 4.4 would probably lead to
information inequalities instead of a collapse. Many other settings of transmis-
sion of information could be practically relevant: approximated transmission of
a timed source on a timed channel; coding of a discrete source on a timed chan-
nel; coding using transducers of a fixed precision; coding of other kinds of data
languages. On the other hand, more physical models of timed and data channels
would be interesting to study, one can think of a discrete channel with a fixed
baud rate coupled with an analog channel with a bounded frequency bandwidth.
Finally, some special codes, such as sliding-window, error-correcting etc., should
be explored for timed and data languages.

What is a timed transducer? In the classical theory of constrained chan-
nel coding, several kinds of transducers are used for encoding/decoding, such as
those leading to a sliding-block window decoding. In this paper, we have realized
our codes by using some very restricted ad hoc timed transducers. They behave
like timed (in our case, real-time) automata on the input, and “print” letters
and real numbers on the output; we believe that this is the correct approach.
However, the right definition of a natural class of timed transducers adequate to
coding remains an open question. As a preliminary definition, we suggest timed
automata that output, on each transition, a letter and a real number (which
is an affine combination of clock values). While reading a timed word, such a
transducer would output another timed word. We illustrate this informal defi-
nition with the example of mutually inverse transducers τ1 and τ2 (encoder and
decoder) on Fig. 4. Let us consider a run of the transducer τ2 on the timed word
(t1, b)(t2, c) . . . We start from q with x = 0, y = 0, after reading (t1, b) the value
of x and y is t1, we fire the transition, the output is (t1, a), we pass in q where we
read (t2, c), the value of x is t2 and the value of y is t1+ t2, we fire the transition,
the output is (2t2 − (t1 + t2) + 1, a) = (t2 − t1 + 1, a), we pass in p etc.

For τ1, the input language of timed words of length 2 starting from p is
S2(p) = {(t1, b)(t2, c) | t1 ∈ [0, 1], t1+t2 ∈ [1, 2]}, while for the second transducer
it is C2(p) = {(t1, a)(t2, a) | t1 ∈ [0, 1], t2 ∈ [0, 1]}. These two languages are
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depicted in Fig. 4, they have the same volume. It would be impossible to realize
this kind of encoding using “rectangular” transducers as in Sect. 4.

How to improve code synthesis? The encoders in Sect. 4 are not com-
pletely satisfactory: they use non-integer guards even when the source and the
target language are defined using integer timed automata. We believe that this
issue can be avoided using a broader class of transducers as suggested just above.

What about timed symbolic dynamics? The classical theory of constrai-
ned-channel coding uses as a convenient terminology, and as a toolset, a branch
of the theory of dynamical systems called symbolic dynamics. One of us, in [5],
started a formulation of timed languages and automata in terms of symbolic
dynamics. Relating it to timed channel coding remains a future work.

Applications. In practice, when transmitting (or storing) information con-
taining discrete events and real-valued data, all the information is first converted
to the digital form and next encoded for transmission or storage. Our paradigm
combines both steps and, in principle, provides better bounds and codes. How-
ever, more research is needed to come up with useful practical codes.
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