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Introduction

Many algebras of functions [START_REF] Deneufchâtel | Independence of hyperlogarithms over function fields via algebraic combinatorics[END_REF] and many special sums [START_REF] Hoang | Aspects combinatoires des polylogarithmes et des sommes d'Euler-Zagier[END_REF][START_REF] Hoang | De l'algèbre des ζ de Riemann multivariées à l'algèbre des ζ de Hurwitz multivariées[END_REF] are governed by shuffle products, their perturbations (adding a "superposition term" [START_REF] Duchamp | Deformations of Algebras: Twisting and Perturbations[END_REF]) or deformations [START_REF] Thibon | Quantum quasi-symmetric functions and Hecke algebras[END_REF]. In order to better understand the mechanisms of these products, we wish here to examine, with full generality the products which are defined by a recursion of the type [START_REF] Enjalbert | Combinatorial study of Hurwitz colored polyzêtas[END_REF] au ⋆ bv = a (u ⋆ bv)

+ b (au ⋆ v) + φ(a, b) u ⋆ v , (1) 
the empty word being the neutral of this new product.

We then provide some classical combinatorial applications. In most cases, the law φ is dual2 and under some growth conditions the obtained algebra is an enveloping algebra.

In the second section, there is a version of the Cartier-Quillen-Milnor and Moore3 without any use of the Poincaré-Birkhoff-Witt construction. We are obliged to restate the CQMM theorem without supposing any basis because we aim at "varying the scalars" in forthcoming papers (germs of functions, arithmetic functions, etc.) and, in order to do this at ease, we must cope safely with cases where torsion (non-zero annihilators) may appear (and then, one cannot have any basis). See (counter) examples in the section.
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First steps

Let X be a totally ordered alphabet 4 . The free monoid and the set of Lyndon words, over X, are denoted respectively by X * and LynX. The neutral element of X * , i.e. the empty word is denoted by 1 X * . Let Q X be equipped with the concatenation and the shuffle product which is defined on the words by

∀w ∈ X * , w ⊔⊔ 1 X * = 1 X * ⊔⊔ w = w, ∀x, y ∈ X, ∀u, v ∈ X * , xu ⊔⊔ yv = x(u ⊔⊔ yv) + y(xu ⊔⊔ v), (2) 
or by their dual co-products, ∆ = ∆ conc and ∆ = ∆ ⊔⊔ , defined, for any w ∈ X * by,

∆ conc (w) = w=uv u ⊗ v ∆ ⊔⊔ (w) = I+J=[1..|w|] w[I] ⊗ w[J] (3) 
One gets two Hopf algebras

H ⊔⊔ = (Q X , conc, 1 X * , ∆ ⊔⊔ , ǫ, a • ) and H ∨ ⊔⊔ = (Q X , ⊔⊔ , 1 X * , ∆ conc , ǫ, a ⊔⊔ ) (4) 
mutually dual with respect to the pairing given by

(∀u, v ∈ X * )( u | v = δ u,v ) . (5) 
The antipodes and the co-units are the same and given by, for x i1 , . . . , x ir ∈ X and P ∈ Q X ,

ǫ(P ) = P | 1 X * , a ⊔⊔ (w) = a • (w) = (-1) r x ir . . . x i1 , . (6) 
By the CQMM theorem, the connected, graded positively, cocommutative Hopf algebra H ⊔⊔ is isomorphic to the enveloping algebra of the Lie algebra of its primitive elements which here is Lie Q X . Hence any basis of the free algebra Lie Q X5 can be completed, by the PBW construction, as a linear basis [START_REF] Loday | Série de Hausdorff, idempotents Eulériens et algèbres de Hopf[END_REF] for an example of such a construction) and, when the basis is finely homogeneous, so is {b w } w∈X * and one can construct, by duality, a basis { bw } w∈X * of H ⊔⊔ (viewed as a Q-module) such that :

{b w } w∈X * of U(Lie Q X ) = Q X (see below
∀u, v ∈ X * , bu | b v = δ u,v . (7) 
For

w = l i1 1 . . . l i k k with l 1 , . . . l k ∈ LynX, l 1 > . . . > l k bw = b⊔⊔ i1 l1 ⊔⊔ . . . ⊔⊔ b⊔⊔ i k l k i 1 ! . . . i k ! . (8) 
(see [START_REF] Bui | Dual bases for noncommutative symmetric and quasi-symmetric functions via monoidal factorization[END_REF][START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF]). For example, Chen, Fox and Lyndon [START_REF] Chen | Free differential calculus, IV. The quotient groups of the lower central series[END_REF] constructed the PBW-Lyndon basis {P w } w∈X * for U(Lie Q X ) as follows

P x = x for x ∈ X, P l = [P s , P r ]
for l ∈ LynX, with standard factorization l = (s, r), P w = P i1 l1 . . .

P i k l k for w = l i1 1 . . . l i k k , l 1 > . . . > l k , l 1 . . . , l k ∈ LynX. (9 
) Schützenberger and his school constructed the linear basis {S w } w∈X * for A = (Q X , ⊔⊔ , 1 X * ) by duality (w.r.t. eq.5 ) and obtained the transcendence basis of A, {S l } l∈LynX as follows6 

S l = xS u , for l = xu ∈ LynX, (10) 
S w = S ⊔⊔ i1 l1 ⊔⊔ . . . ⊔⊔ S ⊔⊔ i k l k i 1 ! . . . i k ! for w = l i1 1 . . . l i k k , l 1 > . . . > l k . (11) 
After that, Mélançon and Reutenauer [START_REF] Reutenauer | Free Lie Algebras[END_REF] proved that7 , for any w ∈ X * ,

P w = w + v>w,v=w c v v and S w = w + v<w,v=w d v v. ( 12 
)
On other words, the elements of the bases {S w } w∈X * and {P w } w∈X * are upper and lower triangular respectively and are multihomogeneous. Moreover, thanks to the duality of the bases {P w } w∈X k and {S w } w∈X k , if D X denotes the diagonal series over X one has

D X = w∈X * w ⊗ w = w∈X * S w ⊗ P w = ց l∈LynX exp(S l ⊗ P l ). ( 13 
)
In fact as stated in [START_REF] Reutenauer | Free Lie Algebras[END_REF], this factorization holds in the framework of enveloping algebras and it will be shown in detail how to handle this framework even in the absence of any basis. It is CQMM with an analytic point of view.

3 General results on summability and duality 3.1 Total algebras and duality

Series and infinite sums

We here recall the results used to handle infinite sums in the sequel. The underlying topology is that of the pointwise convergence (the target being undowed with the discrete topology). This section may therefore be skipped by the reader which is familiar with these matters.

In the sequel, we will need to construct spaces of functions on different monoids (mainly direct products of free monoids). We set, once for all the general construction of the corresponding convolution algebra.

Let A be a unitary commutative ring and M a monoid. Let us denote A M the set8 of all (graphs of) mappings M → A. This set is endowed with its classical structure of module. In order to extend the product defined in A[M ] (the

Mu,v = Pu | v and Nu,v = Su | v .
The triangular matrices M and N are unipotent and satisfy the identity N = ( t M ) -1 . In Eq. 12, the underlined words u stand for their multidegree i.e. u = (|u|x) x∈X algebra of the monoid M ), it is essential that, in the sums

f * g = m∈M uv=m f (u)g(v) m (14) 
the inner sums uv=m f (u)g(v) make sense. For that, we suppose that the monoid M fulfills condition "D" (i.e. M is of finite decomposition type [START_REF] Boubaki | Algèbre, Chap I-III[END_REF] Ch III.10). Formally, we say that M satisfies condition "D" iff, for all m ∈ M , the set

{(u, v) ∈ M × M | uv = m} (15) 
is finite. In this case eq.14 endows A M with the structure of an AAU 9 . This algebra is traditionally called the total algebra of M (see [START_REF] Boubaki | Algèbre, Chap I-III[END_REF] Ch III.10) and has very much to do with the algebra of series 10 . Here, it will be denoted, with an unambiguous abuse of denotation, by A M . The pairing

A M ⊗ A[M ] -→ A (16) 
defined by 11

f | g := m∈M f (m)g(m) (17) 
allows to consider the total algebra as the dual of the module A[M ] i.e., through this pairing

A M ≃ (A[M ]) * .
One says that a family (f i ) i∈I of A M is summable [START_REF] Berstel | Rational series and their languages[END_REF] iff, for every m ∈ M , the mapping i → f i | m is finitely supported. In this case, the sum i∈I f i is exactly the mapping m -→ i∈I f i | m so that, one has by definition

i∈I f i | m = i∈I f i | m . (18) 
Finally, let us remark that the set

M 1 ⊗M 2 = {u⊗v} (u,v)∈M1×M2 is a (monoidal) basis of A[M 1 ] ⊗ A[M 2 ] and M 1 ⊗ M 2 is a monoid (in the product algebra A[M 1 ] ⊗ A[M 2 ]) isomorphic to the direct product M 1 × M 2 .
3.1.2 Summable families in Hom spaces. A) and the notion of summability developed above can be seen as a particular case of that of a family of endomorphisms f i ∈ Hom(V, W ) for which Hom(V, W ) appears as a complete space. 9 Associative Algebra with Unit. 10 Actually, the algebra of commutative (resp. noncommutative) series on an alphabet X is the total algebra of the free commutative (resp. free) monoid on X 11 Here A[M ] is identified with the submodule of finitely supported functions M → A.

In fact, A M ≃ (A[M ]) * = Hom(A[M ],
It is indeed the pointwise convergence for the discrete topology. We will not expand that topic here. The definition is similar of that of a summable family of series [START_REF] Berstel | Rational series and their languages[END_REF], viewed as a family of linear forms.

Definition 1. i) A family (f i ) i∈I of elements in Hom(V, W ) is said to be summable iff for all x ∈ V , the map i → f i (x) has finite support. As a quantized criterium it reads

(∀x ∈ V )(∃F ⊂ I, F finite)(∀i / ∈ F )(f i (x) = 0) (19)
ii) If the family (f i ) i∈I ∈ Hom(V, W ) I fulfils the condition 19 above its sum is given by (

i∈I f i )(x) = i∈I f i (x) (20) 
It is an easy exercise to show that the mapping V → W defined by the equation 20 is in fact in Hom(V, W ). Remark that, as the limiting process is defined by linear conditions, if a family (f i ) i∈I is summable, so is

(a i f i ) i∈I (21) 
for an arbitrary family of coefficients (a i ) i∈I ∈ A I . This tool will be used in section (3.2) to give an analytic presentation of the theorem of Cartier-Quillen-Milnor-Moore in the case when V = W = B is a bialgebra.

The most interesting feature of this operation is the interchange of sums. Let us state it formally as a proposition the proof of which is left to the reader.

Proposition 1. Let (f i ) i∈I be a family of elements in Hom(V, W ) and (I j ) j∈J be a partition of I ( [START_REF] Bourbaki | Théorie des ensembles[END_REF] ch II §4 n o 7 Def. 6), then, the following statements are equivalent i) (f i ) i∈I is summable ii) for all j ∈ J, (f i ) i∈Ij is summable and the family ( i∈Ij f i ) j∈J is summable.

In these conditions, one has

i∈I f i = j∈J ( i∈Ij f i ) (22) 
We derive at once from this the following practical criterium for double sums.

Proposition 2. Let (f α,β ) (α,β)∈X×Y be a doubly indexed summable family in Hom(V, W ), then, for fixed α (resp. β) the "row-families" (f α,β ) β∈Y (resp. the "column-families" (f α,β ) α∈X ) are summable and their sums are summable. Moreover

(α,β)∈X×Y f α,β = α∈X β∈Y f α,β = β∈Y α∈X f α,β . (23) 

Substitutions

Let A be an AAU and f ∈ A. For every polynomial P ∈ A X (= A[X * ], one can compute P (f ) by

P (f ) = n≥0 P | X n f n . ( 24 
)
One checks at once that P → P (f ) is a morphism12 of AAU's between A X and A. Moreover, this morphism is compatible with the substitutions as one checks easily that, for

Q ∈ A[X] P (Q)(f ) = P (Q(f )) (25) 
(it suffices to check that P → P (Q)(f ) and P → P (Q(f )) are two morphisms which coincide on P = X).

In order to substitute within series, one needs some limiting process. The framework of A = Hom(V, W ) and summable families will be here sufficient (see paragraph 3.1.2). We suppose that (V,

δ V , ǫ V ) is a co-AAU and that (W, µ W , 1 W ) is an AAU. Then (Hom(V, W ), * , e) is an AAU (with e = 1 W • ǫ V ). A series S ∈ A[[X]
] and f ∈ Hom(V, W ) being given, we say that f ∈ Dom(S) iff the family ( S | X n f * n ) n≥0 is summable 13 . We have the following properties

Proposition 3. If f ∈ Dom(S) ∩ Dom(T ) and α ∈ A, one has (αS)(f ) = αS(f ) ; (S + T )(f ) = S(f ) + T (f ) (26) 
and

(T S)(f ) = T (f ) * S(f ) . ( 27 
)
If ((f ) * n ) n≥0 is summable and S(0) = 0 then f ∈ Dom(S) ∩ Dom(T (S)) ; S(f ) ∈ Dom(T ) (28) 
and

T (S)(f ) = T (S(f )) (29) 
Proof. Let us first prove eq.27 . As f ∈ Dom(S) ∩ Dom(T ), the families

( S | X n f * n ) n≥0 and ( T | X m f * m ) n≥0 are summable, then so is T | X m f * m * S | X n f * n n,m≥0 (30) 
as, for every

x ∈ V , δ(x) = N i=1 x (1) 
i ⊗ x

(2) i and for every i ∈ I,

supp w.r.t. m ( T | X m f * m (x (1) i )) ; supp w.r.t. n ( S | X n f * n (x (2) 
i ))

are finite. Then outside of the cartesian product of the (finite) union of these supports, the product

( T | X m f * m * S | X n f * n )(x) = µ W (( T | X m f * m ⊗ S | X n f * n )(δ(x))) (31) is zero. Hence the summability. Now T (f ) * S(f ) = ∞ m=0 ( T | X m f * m ) * ∞ n=0 ( S | X n f * n ) = ∞ m=0 ∞ n=0 ( T | X m S | X n f * n+m ) = ∞ s=0 ∞ n+m=s T | X m S | X n f * s = ∞ s=0 ( T S | X s )f * s = (T S)(f ) (32)
We now prove the statements (28) and (29). If ((f ) * n ) n≥0 is summable then f belongs to all domains (i.e. is universally substitutable) by virtue of eq.21 . For all x ∈ V , there exists

N x ∈ N such that n > N x =⇒ (f ) * n (x) = 0 . Now, for S such that S(0) = 0, one has S = ∞ n=1 S | X n X n and then S k = ∞ n=k S k | X n X n . Now, in view of eq.27 , one has S(f ) * n (x) = S n (f )(x) = ∞ m=n S n | X m (f ) * m (x) (33) 
which is zero for n > N x . Hence the summability of (S(f ) * n ) n≥0 which implies that S(f

) ∈ Dom(T ). The family ( T | X n S n | X m (f ) * m ) (n,m)∈N 2 is summable because, if x ∈ V and if n or m is greater than N x then T | X n S n | X m (f ) * m (x) = 0 (34)
thus T (S(f )) is then computed by (where we use the fact that, if S(0) = 0, then

S n | X m = 0 for m < n) T (S(f )) = ∞ n=0 T | X n S(f ) * n = ∞ n=0 T | X n ∞ m=n S n | X m (f ) * m = ∞ n=0 ∞ m=0 T | X n S n | X m (f ) * m = ∞ m=0 ∞ n=0 T | X n S n | X m (f ) * m = ∞ m=0 T (S) | X m (f ) * m = T (S)(f ) . (35) 
In the free case (i.e. V = W are the bialgebra (A X , conc, 1 X * , ∆ ⊔⊔ , ǫ)), one has a very useful representation of the convolution algebra Hom(V, W ) through images of the diagonal series. This representation will provide us with the key lemma (2). Let

D X = w∈X * w ⊗ w.
be the diagonal series attached to X.

Proposition 4. Let A be a commutative unitary ring and X an alphabet. Then i) For every f ∈ End(A X ), the family

(u ⊗ f (u)) u∈X * is summable in A X * ⊗ X * .
ii) The representation

f → ρ(f ) = u∈X * u ⊗ f (u) ( 36 
)
is faithful from (End(A X ), * ) to (A X * ⊗X * , ⊔⊔ ⊗conc). In particular, for f ∈ End(A X ) and P ∈ A[X], one has

ρ(P (f )) = P (ρ(f )) (37) iii) If f (1 X * ) = 0 and S ∈ A[[X]] is a series, then (ρ(f ) n ) n≥0 is summable in (A X * ⊗ X * , ⊔⊔ ⊗conc) and ρ(S(f )) = S(ρ(f )) (38)
Proof. (of Prop.( 4)) (i) and (iii) are easily checked. For (ii), let us compute

ρ(f )(⊔⊔ ⊗conc)ρ(g) = u,v∈X * (u ⊗ f (u))(⊔⊔ ⊗conc)(v ⊗ g(v)) = u,v∈X * (u ⊔⊔ v) ⊗ (conc(f (u) ⊗ g(v))) = u,v∈X * w∈X * ( u ⊔⊔ v | w w ⊗ conc(f (u) ⊗ g(v)) = w∈X * w ⊗ u,v∈X * ( u ⊔⊔ v | w conc(f (u) ⊗ g(v)) = w∈X * w ⊗ u,v∈X * ( u ⊗ v | ∆(w) conc(f (u) ⊗ g(v)) = w∈X * w ⊗ (conc • (f ⊗ g) • ∆)[w] = w∈X * w ⊗ (f * g)[w] (39) 
Moreover, ρ is faithful because (ρ(f ) = 0 =⇒ f = 0).

3.2 Theorem of Cartier-Quillen-Milnor-Moore (analytic form)

General properties of bialgebras

From now on, we suppose that A be a unitary commutative Q-algebra (i.e. Q ⊂ A).

The aim of Cartier-Quillen-Milnor-Moore theorem is to provide necessary and sufficient conditions for B to be an enveloping algebra, we will discuss this condition in detail in the sequel.

Let (B, µ, e B , ∆, ǫ) be a (general) A-bialgebra. One can always consider the Lie algebra of primitive elements P rim(B) and build the map

j B : U(P rim(B)) → B .
Then, A = j B (U(P rim(B))) is the subalgebra generated by the primitive elements.

Prim(B)

A B U(Prim(B)) The mapping i B,A is into but i B,A ⊗ i B,A may not be so. This is the case for

i A,P i U ,P i B,A i A,U j B
B = (Q[ǫ][x], ., 1 Q[ǫ][x] , ∆, c) where (Q[ǫ][x],
., 1 B ) is the usual polynomial algebra with coefficients in the algebra of dual numbers Q[ǫ] (with ǫ 2 = 0) and

∆(x) = x ⊗ 1 + 1 ⊗ x + ǫx ⊗ x, c(x) = 0
(see details and proofs below, in sec. 3.3).

In general, one has (only) ∆ B (A) ⊂ Im(i B,A ⊗ i B,A ), this can be simply seen from the following combinatorial argument.

For any list of primitive elements L = [g 1 , g 2 , • • • , g n ] and

I = {i 1 < i 2 < .. < i k } ⊂ {1, 2, .., n}, put L[I] = g i1 g i1 • • • g i k , the product of the sublist. One has ∆(g 1 g 2 • • • g n ) = ∆(L[{1, 2, .., n}]) = I+J={1,2,..,n} L[I] ⊗ L[J] . (40) 
From (eq.40 ) one gets also that j B is a morphism of bialgebras. If for any reason, there exists a lifting of as a comultiplication of A, then j B is into (see the statement and the proof below). Formula (eq.40 ) proves that we have the following maps (save thehypothetical -dotted one).

∆ B • i B,A (41) 
A G A A G ⊗ A G A ⊗ A s G ∆ ⊔⊔ ∆ A s G ⊗ s G
Where G ∈ Prim(B) is any generating set of the AAU A. We emphasize the fact that, in the diagram above, G must be understood set-theoretically (i.e. with no relation between the elements 14 ).

In fact, one has the following proposition Proposition 5. Let B be a bialgebra over a (commutative) Q-algebra A, the notations being those of figures 1 and 2, then the following statements are equivalent i) For a generating set is free as an A-module, the proof of this fact is a consequence of the PBW theorem 15 . But, here, we will construct the section in the general case using projectors which are now classical for the free case but which still can be computed analytically [START_REF] Reutenauer | Free Lie Algebras[END_REF] as they lie in Q[[X]] and still converge in A. (Injectivity of j B , construction of the section τ • σ). -As A is the subalgebra of B generated by Prim(B), one has Im(j B ) = A.

G ⊂ P rim(B), ker(s G ) ⊂ ker(s G ⊗ s G ) • ∆ ⊔⊔ . ii) For any generating set G ⊂ P rim(B), ker(s G ) ⊂ ker(s G ⊗ s G ) • ∆ ⊔⊔ . iii) j B is into. Proof. i) =⇒ iii)
Remark that all series n≥0 a n (I + ) * n are summable on A (not in general on B for example in case B contains non-trivial group-like elements). We define

c = log * (I) = n≥1 (-1) n-1 n (I + ) * n (42)
and remark that, in view of Prop. ( 4), in the case when B = A X one has A = B and, with S(X) = log(1 + X)

w∈X * w ⊗ π 1,A (w) = ρ(log(I)) = ρ(S(I + )) = S(ρ(I + )) = S( w∈X * w =1 X * w ⊗ w) = S(D X -1 X * ⊗ 1 X * ) = log(D X ) . (43) 
We first prove that π 1,A is a projector A → Prim(B). The key point is that ∆ A (the restriction of the comultiplication to A) is a morphism of bialgebras 16A → A ⊗ A. We first prove that ∆ A "commutes" with the convolution. This is a consequence of the following property

Lemma 1. i) Let f i ∈ End(B i ), be such that ϕf 1 = f 2 ϕ. B 1 B 2 B 1 B 2 ϕ f 1 ϕ f 2
Figure 4: Intertwining with a morphism of bialgebras (the functions of f i below will be computed with the respective convolution products).

i) Then, if P ∈ A[X], one has

ϕP (f 1 ) = P (f 2 )ϕ . (44) 
ii) If the series n≥0 (I + (i) ) * n , i = 1, 2 are summable and, if f 1 (1) = 0 (which implies f 2 (1) = 0) and S ∈ A[[X]], the families ( S | X n f * n i ) n∈N are summable, we denote by S(f i ) their sums (note that this definition is coherent with the previous ones when S is a polynomial). One has, for the convolution product,

ϕS(f 1 ) = S(f 2 )ϕ . ( 45 
)
Proof. The only delicate part is (ii). First, one remarks that, if ϕ is a morphism of bialgebras, one has

(ϕ ⊗ ϕ) • ∆ + 1 = ∆ + 2 • ϕ (46)
then, the image by ϕ of an element of order less than N (i.e. such that ∆ +(N ) 1

(x) = 0) is of order less than N . Let now S be a univariate series S = ∞ k=0 a k X k . For every element x of order less than N and f ∈ End(B), one has

S(f )(x) = ∞ k=0 a k f * k (x) = ∞ k=0 a k µ (k-1) f ⊗k ∆ (k-1) (x) = ∞ k=0 a k µ (k-1) (f ⊗k ) • (I ⊗k + )∆ (k-1) (x) = N k=0 a k µ (k-1) (f ⊗k )∆ (k-1) + (x) . (47) 
This proves, in view of (i) that ϕ • S(f 1 ) = S(f 2 ) • ϕ.

Thanks to Lemma 1, we can now prove that π 1 is a projector B → Prim(B).

In case B is cocommutative, the comultiplication ∆ is a morphism of bialgebras, so one has Now, we consider

∆ • log * (I) = log * (I ⊗ I) • ∆ . ( 48 
I A = exp * (log * (I A )) = n≥0 1 n! π * n 1,A , (52) 
where

π 1,[A] = log * (I A ).
Let us prove that the summands form a resolution of unity. First, one defines A [n] as the linear span of the powers {P n } P ∈Prim(B) or, equivalently, of the symmetrized products

1 n! σ∈Sn P σ(1) P σ(2) • • • P σ(n) . ( 53 
) It is obvious that Im(π 1,A ) * n ) ⊂ A [n] . We remark that π * n 1,A = µ (n-1) B π ⊗n 1,A ∆ (n-1) = µ (n-1) B π ⊗n 1,A I ⊗n + ∆ (n-1) = µ (n-1) B π ⊗n 1,A ∆ (n-1) + (54)
as π 1,A I + = π 1,A . Now, let P ∈ Prim(A). We compute π * n 1,A (P m ). Indeed, if m < n, one has

π * n 1,A (P m ) = µ n-1 B ∆ n-1 + (P m ) = 0 . ( 55 
)
If n = m, one has, from (40) for m > 2 which is a consequence of the general equality (see eq.43 )

∆ n-1 + (P n ) = n!P ⊗n ( 
w∈X * (w ⊗ π 1 (w)) = log( w∈X * w ⊗ w) (58) 
because, for Y = {a} (and then A X = A[a]) one has log(

w∈X * w ⊗ w) = log( n≥0 a n ⊗ a n ) = log( n≥0 1 n! (a ⊗ a) (⊔⊔ ⊗conc) n ) = log(exp(a ⊗ a)) = a ⊗ a (59) 
this proves that π * n 1,A (A [m] ) = 0 for m = n and hence the summands of the sum

I A = exp * (log * (I A )) = n≥0 1 n! π * n 1,A . ( 60 
)
are pairwise orthogonal projectors with Im(π * n 1,A ) = A [n] and then

A = ⊕ n≥0 A [n] . (61) 
This decomposition enables to construct σ by

σ(P n ) = 1 n! ∆ (n-1) + (P n ) ∈ T n (Prim(B)) ( 62 
)
for n ≥ 1 and, one sets σ(1

B ) = 1 T (Prim(B) .
It is easy to check that j B • τ • σ = Id A as A is (linearly) generated by the powers (P m ) P ∈Prim(B),m≥0 .

End of the proof of proposition 5.iii) =⇒ ii) If j B is into, then i U ,A is one-to-one and one gets a comultiplication

∆ A : A → A ⊗ A
such that, for any list of primitive elements L = [g 1 , g 2 , • • • g n ] (the denotations are the same as previously)

∆ A (g 1 g 2 • • • g n ) = ∆(L[{1, 2, .., n}]) = I+J={1,2,..,n} L[I] ⊗ A L[J] (63) 
but, this time, the tensor product ⊗ A is understood as being in A ⊗ A. This guarantees that the diagram Fig. 2 commutes for any G. ii) =⇒ i) Obvious.

Counterexamples and discussion

Counterexamples

It has been said that, with

B = (Q[ǫ][x], ., 1 Q[ǫ][x]
, ∆, c) (notations as above), j B is not into, let us show this statement. The q-infiltration coproduct [START_REF] Duchamp | Direct and dual laws for automata with multiplicities[END_REF] ∆ q is defined on the free algebra K X (K is a unitary ring), by its values on the letters

∆ q (x) = x ⊗ 1 + 1 ⊗ x + q(x ⊗ x) (64) 
where q ∈ K. One can show easily that, for a word w ∈ X * ,

∆ q (w) = I∪J=[1..|w|] q |I∩J| w[I] ⊗ w[J] (65) 
with, as above (for

I = {i 1 < i 2 < .. < i k } ⊂ {1, 2, .., n} and w = a 1 a 2 • • • a n ), w[I] = a i1 a i2 • • • a i k .
Then, with K = Q[ǫ], q = ǫ, X = x, one has (as a direct application of Eq. 65)

∆ ǫ (x n ) = n k=0 n k x k ⊗ x n-k + ǫ n k=1 k n k x k ⊗ x n-k+1 . (66) 
This proves that, here, the space of primitive elements is a submodule of K.x and solving ∆ ǫ (λx) = (λx) ⊗ 1 + 1 ⊗ (λx), one finds λ = λ 1 ǫ. Together with ǫ x ∈ P rim(B) this proves that P rim(B) is of Q-dimension one (in fact equal to Q.(ǫ x)). Now, the consideration of the morphism of Lie algebras

P rim(B) → K[x]/(ǫK[x]
) which sends ǫ x to x proves that, in U(P rim(B)), we have (ǫ x)(ǫ x) = 0 and j B cannot be into. For a graded counterexample 17 , one can see that, with

K = Q[ǫ], X = {x, y, z}, B = K X and ∆(x) = x ⊗ 1 + 1 ⊗ x + ǫ (y ⊗ z), ∆(y) = y ⊗ 1 + 1 ⊗ y, ∆(z) = z ⊗ 1 + 1 ⊗ z (67)
the same phenomenon occurs (for the gradation, one takes deg(y

) = deg(z) = 1, deg(x) = 2).

The theorem from the point of view of summability

From now on, the morphism j B is supposed into.

The bialgebra B being supposed cocommutative, we discuss the equivalent conditions under which we are in the presence of an enveloping algebra i.e.

B ∼ =A-bialg U(P rim(B)) (68) 
from the point of view of the convergence of the series log * (I) 18 . These conditions are known as the theorem of Cartier-Quillen-Milnor-Moore (CQMM).

Theorem 1. [START_REF] Boubaki | Groupes et Algèbres de Lie[END_REF] Let B be a A-cocommutative bialgebra (A is a Q-AAU) and A, as above, the subalgebra generated by Prim(B). Then, the following conditions are equivalent : 17 This example is due to Darij Grinberg. 18 In a A-bialgebra, one can always consider the series of endomorphisms

n≥1 (-1) n-1 n (I + ) * n . (69) 
The family ( (-1) n-1

n (I + ) * n ) n≥0 is summable iff ((I + ) * n ) n≥0 is (use eq.21 ).
i) B admits an increasing filtration

B 0 = A.1 B ⊂ B 1 ⊂ • • • ⊂ B n ⊂ B n+1 • • •
compatible with the structures of algebra (i.e. for all p, q ∈ N, one has B p B q ⊂ B p+q ) and coalgebra :

∀n ∈ N, ∆(B n ) ⊂ p+q=n B p ⊗ B q .
ii) ((Id + ) * n ) n∈N is summable in End(B).

iii) B = A.

Proof. We prove (ii) =⇒ (iii) =⇒ (i) =⇒ (ii) (70)

(ii) =⇒ (iii). -
The image of j B it is the subalgebra generated by the primitive elements. Let us prove that, when ((Id + ) * n ) n∈N is summable, one has Im(j B ) = B. The series log(1 + X) is without constant term so, in virtue of (29) and the summability of ((Id + ) * n ) n∈N , one has

exp(log(e + Id + )) = exp(log(1 + X))(Id + ) = 1 End(B) + Id + = e + Id + = I (71)
Set π 1 = log(e + Id + ).

To end this part, let us compute, for x ∈ B

x = exp(π 1 )(x) = ( n≥0 1 n! π * n 1 )(x) = ( N n=0 1 n! µ (n-1) π ⊗n 1 )∆ (n-1) (x) ( 72 
)
where N is the first order for which ∆ +(n-1) (x) = 0 (as π 1 • Id + = π 1 ). This proves that B is generated by its primitive elements. The implications (iii) =⇒ (i) and (i) =⇒ (ii) are obvious.

Remark 1. i) The equivalence (i) ⇐⇒ (iii) is the classical CQMM theorem (see [START_REF] Boubaki | Groupes et Algèbres de Lie[END_REF]). The equivalence with (ii) could be called the "Convolutional CQMM theorem". The combinatorial aspects of this last one will be the subject of a forthcoming paper. ii) When Prim(B) is free, we have B ∼ =k-bialg U(P rim(B)) and B is an enveloping algebra.

iii) The (counter) example is the following with A = k[x] (k is a field of characteristic zero). Let Y be an alphabet and A Y be the usual free algebra (the space of non-commutative polynomials over Y ) and ǫ, the "constant term" linear form. Let conc be the concatenation and ∆ the dual law of the shuffle product (cf supra).

Then the bialgebra (A Y , conc, 1 Y * , ∆, ǫ) is a Hopf algebra (it is the enveloping algebra of the Lie polynomials). Let A + Y = ker(ǫ) and, for N ≥ 2 J N = x N .A + Y then, J N is a Hopf ideal and P rim(A Y /(J N )) is never free (no basis).

4 Application to the φ-deformed shuffle.

4.1 General results for the φ-deformed shuffle.

Let Y = {y i } i∈I be still a totally ordered alphabet and A Y be equipped with the φ-deformed stuffle defined by [START_REF] Enjalbert | Combinatorial study of Hurwitz colored polyzêtas[END_REF] i) for any w ∈ Y * , 1

Y * φ w = w φ 1 Y * = w,
ii) for any y i , y j ∈ Y and u, v ∈ Y * ,

y i u φ y j v = y j (y i u φ v) + y i (u φ y j v) + φ(y i , y j )u φ v, ( 73 
)
where φ is an arbitrary mapping which satisfy the recursion of eq.73 . For n = 0, we have only a pre-image and

φ : Y × Y -→ AY .
φ ≤0 (1 Y * ) = 1 Y * ⊗ 1 Y * . Suppose φ ≤n already constructed and let (u, v) ∈ (Y * × Y * ) ≤n+1 \ (Y * × Y * ) ≤n , i.e. |u| + |v| = n + 1. One has three cases : u = 1 Y * , v = 1 Y * and (u, v) ∈ Y + × Y + .
For the first two, one uses the initialisation of the recursion, thus

φ ≤n+1 (w, 1 Y * ) = φ ≤n+1 (1 Y * , w) = w .
Indeed, noticing that ∆(1) = 1 ⊗ 1, one has

S(y i u, y j v) = w∈Y * y i u ⊗ y j v | ∆(w) w = w∈Y + y i u ⊗ y j v | ∆(w) w = ys∈Y, w ′ ∈Y * y i u ⊗ y j v | ∆(y s w ′ ) y s w ′ = ys∈Y, w ′ ∈Y * y i u ⊗ y j v | y s ⊗ 1 + 1 ⊗ y s + n,m∈I γ s n,m y n ⊗ y m ∆(w ′ ) y s w ′ = ys∈Y, w ′ ∈Y * y i u ⊗ y j v | (y s ⊗ 1)∆(w ′ ) y s w ′ + ys∈Y, w ′ ∈Y * y i u ⊗ y j v | (1 ⊗ y s )∆(w ′ ) y s w ′ + ys∈Y, w ′ ∈Y * y i u ⊗ y j v | ( n,m∈I γ s n,m y n ⊗ y m )∆(w ′ ) y s w ′ = w ′ ∈Y * u ⊗ y j v | ∆(w ′ ) y i w ′ + w ′ ∈Y * y i u ⊗ v | ∆(w ′ ) y j w ′ + ys∈Y, w ′ ∈Y * u ⊗ v | γ s i,j ∆(w ′ ) y s w ′ = y i w ′ ∈Y * u ⊗ y j v | ∆(w ′ ) w ′ + y j w ′ ∈Y * y i u ⊗ v | ∆(w ′ ) w ′ + ys∈Y γ s i,j y s w ′ ∈Y * u ⊗ v | ∆(w ′ ) w ′
= y i S(u, y j v) + y j S(y i u, v) + φ(y i , y j )S(u, v)

then the computation of S shows that, for all u, v ∈ Y * , S(u, v) = u φ v as S is bilinear, so S = φ .

Theorem 2.

i) The law φ is commutative if and only if the extension

φ : AY ⊗ AY -→ AY is so.
ii) The law φ is associative if and only if the extension 

φ : AY ⊗ AY -→ AY is so. iii) Let γ z x,y := φ(x,
(∀z ∈ X)(#{(x, y) ∈ X 2 |γ z x,y = 0} < +∞) . (79) 
Proof. (i) First, let us suppose that φ be commutative and consider T , the twist, i.e. the operator in A Y * ⊗ Y * defined by

T (S) | u ⊗ v = S | v ⊗ u . (80) 
It is an easy check to prove that T is a morphism of algebras. If φ is commutative, then so is the following diagram.

Y A Y * ⊗ Y * A Y * ⊗ Y * ∆ φ ∆ φ T
and, then, the two morphisms ∆ φ and T • ∆ φ coincide on the generators Y of the algebra A Y and hence over A Y itself. Now for all u, v, w ∈ Y * , one has

v φ u | w = v ⊗ u | ∆ φ (w) = u ⊗ v | T • ∆ φ (w) = u ⊗ v | ∆ φ (w) = u φ v | w (81) 
which proves that v φ u = u φ v. Conversely, if φ is commutative, one has, for i, j ∈ I φ(y j , y i ) = y j φ y i -(y j ⊔⊔ y i ) = y i φ y j -(y i ⊔⊔ y j ) = φ(y i , y j ) .

(ii) Likewise, if φ is associative, let us define the operators

∆ φ ⊗ I : A Y * ⊗ Y * → A Y * ⊗ Y * ⊗ Y * (83) by ∆ φ ⊗ I(S) | u ⊗ v ⊗ w = S | (u φ v) ⊗ w (84) 
and, similarly,

I ⊗ ∆ φ : A Y * ⊗ Y * → A Y * ⊗ Y * ⊗ Y * (85) by I ⊗ ∆ φ (S) | u ⊗ v ⊗ w = S | u ⊗ (v φ w) (86) 
it is easy to check by direct calculation that they are well defined morphisms and that the following diagram iii) B φ is isomorphic to (A Y , conc, 1 Y * , ∆ ⊔⊔ , ǫ) as a bialgebra. iv) I + is ⋆-nilpotent.

Proof. We only prove the following implication (the other ones are easy) iv) =⇒ iii) Let us set y ′ s = π 1 (y s ), then using a rearrangement of the star-log of the diagonal series, we have

y s = k≥1 1 k! s ′ 1 +•••+s ′ k =s π 1 (y s ′ 1 ) . . . π 1 (y s ′ k ) (88) 
This proves that the multiplicative morphism given by Φ(y s ) = y ′ s is an isomorphism. But this morphism is such that ∆ φ • Φ = (Φ ⊗ Φ) • ∆ ⊔⊔ which proves the claim.

Remark 2. i) Theorem 3 a) holds for general (dualizable, coassociative) φ be it commutative of not.

ii) It can happen that there is no antipode (and then, I + cannot be ⋆-nilpotent) as the following example shows. Let Y = {y 0 , y 1 } and φ(y i , y j ) = y (i+j mod 2) , then ∆(y 0 ) = y 0 ⊗ 1 + 1 ⊗ y 0 + y 0 ⊗ y 0 + y 1 ⊗ y 1 ∆(y 1 ) = y 1 ⊗ 1 + 1 ⊗ y 1 + y 0 ⊗ y 1 + y 1 ⊗ y 0 (89) then, from eqns 89, one derives that 1 + y 0 + y 1 is group-like. As this element has no inverse in K Y . Thus, the bialgebra B φ cannot be a Hopf algebra. iii) When I + is nilpotent, the antipode exists and is computed by a φ = (I) * -1 = (e + I + ) * -1 = n≥0 (-1) k (I + ) * k (90) (see section (3.2)). iv) In QFT, the antipode of a vector h ∈ B is computed by

S(1) = 1, S(h) = -h + (1) (2) 
S(h (1) )h (2) (91)

and by using the fact that S is an antimorphism. This formula is used in contexts where I + is ⋆-nilpotent (although the concerned bialgebras are often not cocommutative). Here, one can prove this recursion from eq.90 .

Conclusion

We have depicted the framework which is common to different kinds of shuffles. For all these, provided that I + be * -nilpotent, the bialgebra

(A Y , conc, 1 Y * , ∆ φ , ε) is isomorphic to (A Y , conc, 1 Y * , ∆ ⊔⊔ , ε)
and the straightening algorithm is simply the morphism which sends each y s ∈ Y to π 1 (y s ) = log(I)(y s ) (this bialgebra is then a Hopf algebra). In other cases, such as the infiltration given by ∆(y s ) = y s ⊗ 1 + 1 ⊗ y s + y s ⊗ y s group-like elements without inverse may appear (and therefore no Hopf structure can be hoped).
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 1 Figure 1: The sub-algebra A generated by primitive elements.
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 2 Figure 2: The unique lifting ∆ A (when it exists).
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 3 Figure 3: The sub-bialgebra A generated by primitive elements.

  ) But log * (I ⊗ I) = log * ((I ⊗ e) * (e ⊗ I)) = log * (I ⊗ e) + log * (e ⊗ I) = log * (I) ⊗ e + e ⊗ log * (I) . (49) Then ∆(log * (I)) = (log * (I) ⊗ e + e ⊗ log * (I)) • ∆ (50) which implies that log * (I)(B) ⊂ P rim(B). To finish the proof that π 1 is a projector onto P rim(B), it suffices to remark that, for x ∈ P rim(B) and n ≥ 2, (Id + ) * n (x) = 0 then log * (I)(x) = Id + (x) = x . (51)
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 5 Figure 5: Intertwining with one primitive element.
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 26 Let φ : Y × Y -→ AY be defined by its structure constants (y i , y j ) -→ φ(y i , y j ) = k∈I γ k i,j y k . The recursion (73) defines a unique mapping φ : Y * × Y * -→ A Y . Proof. Let us denote (Y * × Y * ) ≤n the set of words (u, v) ∈ Y * × Y * such that |u| + |v| ≤ n. We construct a sequence of mappings φ ≤n : (Y * × Y * ) ≤n -→ A Y .

  b) If A is a Q-algebra then, the following conditions are equivalent i) B φ is an enveloping bialgebra ii) the algebra AY admits an increasing filtration (AY ) n n∈N(AY ) 0 = {0} ⊂ (AY ) 1 ⊂ • • • ⊂ (AY ) n ⊂ (AY ) n+1 ⊂ • • •compatible with both the multiplication and the comultiplication ∆ φ i.e.(AY ) p (AY ) q ⊂ (AY ) p+q ∆ φ ((AY ) n ) ⊂ p+q=n (AY ) p ⊗ (AY ) q .

That is to say comes by dualization of a comultiplication.

CQMM in the sequel

In the sequel, the order between the words will be understood as the lexicographic total ordering <. For example, with a < b, one has ab < b.

The basis can be reindexed by Lyndon words and then one uses the canonical factorization of the words.

Therefore A is a polynomial algebra A ≃ Q[LynX].

Recall that the duality preserves the (multi)homogeneous degrees and interchanges the triangularity of polynomials[START_REF] Reutenauer | Free Lie Algebras[END_REF]. For that, one can construct the triangular matrices M and N whose entries are the coefficients of the multihomogeneous triangular polynomials, {Pw} w∈X k and {Sw} w∈X k in the basis {w} w∈X * , respectively :

In general Y X is the set of all (total) mappings X → Y [2] Ch 2.5.2.

In case A is a geometric space, this morphism is called "evaluation at f " and corresponds to a Dirac measure.

Where f * n denotes straightforwardly the n-th power of f w.r.t. the convolution product.

We will see, below and in paragraph 3.3 how it is crucial to consider that [λx] and λ[x] are not necessarily equal, when λx ∈ G (for clarity, [y] ∈ A G is the image of y ∈ G).

See[START_REF] Boubaki | Groupes et Algèbres de Lie[END_REF] Ch2 §1 n o 6 th 1 for a field of characteristic zero and §1 Ex. 10 for the free case (over a ring A with Q ⊂ A).

In fact it is the case for any cocommutative bialgebra, be it generated by its primitive elements or not.

One can prove that, in case Y is a semigroup, the associated φ fulfils eq.79 iff Y fulfils "condition D" of Bourbaki (see[START_REF] Boubaki | Algèbre, Chap I-III[END_REF])

For the last case, write u = y i u ′ , v = y j v ′ and use, to get φ ≤n+1 (y i u ′ , y j v ′ ) = y i φ ≤n (u ′ , y j v ′ )+y j φ ≤n (y i u ′ , v ′ )+y i+j φ ≤n (u ′ , v ′ ) this proves the existence of the sequence ( φ ≤n ) n≥0 . Every φ ≤n+1 extends the preceding so there is a mapping

which extends all the φ ≤n+1 (the graph of which is the union of the graphs of the φ ≤n ). This proves the existence. For unicity, just remark that, if there were two mappings φ , ′ φ , the fact that they must fulfil the recursion (73) implies that φ = ′ φ . We still denote by φ and φ the linear extension of φ and φ to AY ⊗ AY and A Y ⊗ A Y respectively. Then φ is a law of algebra (with 1

Then i) for all w ∈ Y + we have

ii) for all u, v, w ∈ Y * , one has

Proof. i) By recurrence on |w|. If w = y s is of length one, it is obvious from the definition. If w = y s w ′ , we have, from the fact that ∆ is a morphism

the development of which proves that ∆(w) is of the desired form.

ii

It is easy to check (and left to the reader) that, for all u ∈ Y * , S(u, 1) = S(1, u) = u. Let us now prove that, for all y i , y j ∈ Y and u, v ∈ Y * S(y i u, y j v) = y i S(u, y j v) + y j S(y i u, v) + φ(y i , y j )S(u, v) .

(

is commutative. This proves that the two composite morphisms

coincide on Y and then on A Y . Now, for u, v, w, t ∈ Y * , one has

which proves the associatvity of the law φ . Conversely, if φ is associative, the direct expansion of the right hand side of 0 = (y i φ y j ) φ y k -y i φ (y j φ y k ) (

proves the associativity of φ.

iii) We suppose that (γ z x,y ) x,y,z∈X satisfies eq.79 . In this case ∆ φ takes its values in A Y ⊗ A Y so its dual, the law φ is dualizable. Conversely, if

which proves the claim.

From now on, we suppose that φ : AY ⊗ AY -→ AY is an associative and commutative law (of algebra) on AY .