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Abstract

In order to extend the Schützenberger’s factorization to general pertur-

bations, the combinatorial aspects of the Hopf algebra of the φ-deformed

stuffle product is developed systematically in a parallel way with those of

the shuffle product. and in emphasizing the Lie elements as studied by

Ree. In particular, we will give an effective construction of pair of bases

in duality.
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1 Introduction

1.1 Motivations

Many algebras of functions [8] and many special sums [10, 11] are ruled out
by shuffle products, their perturbations (adding a “superposition term” [9]) or
deformations [19].
In order to better understand the mechanisms of this products, we wish here to
examine, with full generality the products which are defined by a recursion of
the type

au ⋆ bv = a (u ⋆ bv) + b (au ⋆ v) + φ(a, b)u ⋆ v , (1)

the empty word being the neutral of this new product.
We give a lot of classical combinatorial applications (as shuffle, stuffles and
Hurwitz polzetas), TODO références. In most cases, the law φ is dual2 and
under some growth conditions the obtained algebra is an enveloping algebra.

In the second section, is a version of the CQMM without PBW. We are obliged
to redo the CQMM theorem without supposing any basis because we aim at
“varying the scalars” in forthcoming papers (germs of functions, arithmetic
functions, etc.) and, in order to do this at ease, we must cope safely with cases
where torsion may appear (and then, one cannot have any basis). See (counter)
examples in the section.

Acknowledgements. — The authors wish to thank Darij Grinberg for having
thoroughly read the manuscript, provided a limiting counterexample and par-
ticipated to fruitful interactions. The authors also would like to acknowledge
the “Combinatoire algébrique” Univ. Paris 13, Sorbonne Paris Cité BQR grant.

1.2 First steps

Let X be an totally ordered alphabet3. The free monoid and the set of Lyndon
words, over X , are denoted respectively by X∗ and LynX . The neutral element
of X∗, i.e. the empty word is denoted by 1X∗ . Let Q〈X〉 be equipped by the
concatenation and the shuffle which is defined by

∀w ∈ X∗, w ⊔⊔ 1X∗ = 1X∗ ⊔⊔ w = w,
∀x, y ∈ X, ∀u, v ∈ X∗, xu ⊔⊔ yv = x(u ⊔⊔ yv) + y(xu ⊔⊔ v), (2)

or by their dual co-products, ∆ = ∆conc and ∆ = ∆⊔⊔ , defined by, for any
w ∈ X∗ by,

∆conc(w) =
∑

w=uv

u⊗ v

2That is to say comes by dualization of a comultiplication.
3In the sequel, the order between the words will be understood as the lexicographic by

length total ordering ≺llex. Two words are first compared w.r.t. their length and, in case of
equality, w.r.t. the usual lexicographic ordering. For example, with a < b, one has b ≺llex ab

whereas ab ≺lex b.
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∆⊔⊔ (w) =
∑

I+J=[1..|w|]

w[I]⊗ w[J ] (3)

One gets two Hopf algebras

H⊔⊔ = (Q〈X〉, conc, 1X∗ ,∆⊔⊔ , ǫ, a•) and
H∨

⊔⊔
= (Q〈X〉, ⊔⊔ , 1X∗ ,∆conc, ǫ, a⊔⊔ ) (4)

mutually dual with respect to the pairing given by

(∀u, v ∈ X∗)(〈u | v〉 = δu,v) . (5)

and with, for any xi1 , . . . , xir ∈ X and P ∈ Q〈X〉,

ǫ(P ) = 〈P | 1X∗〉,
a⊔⊔ (w) = a•(w) = (−1)rxir . . . xi1 , . (6)

By the theorem of Cartier-Quillen-Milnor and Moore (CQMM in the sequel), the
connected, graded positively, co-commutative Hopf algebra H⊔⊔ is isomorphic
to the enveloping algebra of the Lie algebra of its primitive elements which
here is LieQ〈X〉. Hence, from any basis of the free algebra LieQ〈X〉 one can4

complete, by the Poincaré-Birkhoff-Witt theorem, a linear basis {bw}w∈X∗ for
U(LieQ〈X〉) = Q〈X〉 (see below (9) for an example of such a construction),
and, when the basis is finely homogeneous, one can construct, by duality, a
basis {b̌w}w∈X∗ of H⊔⊔ (viewed as a Q-module) such that :

∀u, v ∈ X∗, 〈b̌u | bv〉 = δu,v . (7)

For w = li11 . . . likk with l1, . . . lk ∈ LynX, l1 > . . . > lk

b̌w =
b̌⊔⊔

i1
l1

⊔⊔ . . . ⊔⊔ b̌⊔⊔
ik

lk

i1! . . . ik!
. (8)

For example, Chen, Fox and Lyndon [7] constructed the PBW-Lyndon basis
{Pw}w∈X∗ for U(LieQ〈X〉) as follows

Px = x for x ∈ X,
Pl = [Ps, Pr] for l ∈ LynX, standard factorization of l = (s, r),
Pw = P i1

l1
. . . P ik

lk
for w = li11 . . . likk , l1 > . . . > lk, l1 . . . , lk ∈ LynX. (9)

Schützenberger and his school constructed, the linear basis {Sw}w∈X∗ for
A = (Q〈X〉, ⊔⊔ , 1X∗) by duality (w.r.t. eq.5 ) and obtained the transcendence
basis of A {Sl}l∈∈LynX as follows5

Sl = xSu, for l = xu ∈ LynX, (10)

Sw =
S⊔⊔ i1
l1

⊔⊔ . . . ⊔⊔ S⊔⊔ ik
lk

i1! . . . ik!
for w = li11 . . . likk , l1 > . . . > lk. (11)

4The basis can be reindexed by Lyndon words and then one uses the canonical factorization
of the words.

5Therefore A is a polynomial algebra A ≃ Q[LynX].
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After that, Mélançon and Reutenauer [18] proved that6, for any w ∈ X∗,

Pw = w +
∑

v>w,|v|=|w|

cvv and Sw = w +
∑

v<w,|v|=|w|

cvv. (12)

On other words, the elements of the bases {Sw}w∈X∗ and {Pw}w∈X∗ are upper
and lower triangular respectively and are multihomogeneous.
Moreover, thanks to the duality of the bases {Pw}w∈Xk and {Sw}w∈Xk , if DX

denotes the diagonal series over X one has

DX =
∑

w∈X∗

w ⊗ w =
∑

w∈X∗

Sw ⊗ Pw =

ց
∏

l∈LynX

exp(Sl ⊗ Pl). (13)

In fact as stated in [18], this factorization holds in the framework of enveloping
algebras and it will be shown in detail how to handle this framework even in the
abscence of any basis (it is indeed what could be called CQMM analytic form).

2 General results on summability and duality

Let Y = {yi}i∈I be a totally ordered alphabet. The free monoid and the set of
Lyndon words, over Y , are denoted respectively by Y ∗ and LynY . The neutral
of Y ∗ (and then of A〈Y 〉) is denoted by 1Y ∗ .

2.1 Total algebras and duality

2.1.1 Series and infinite sums

In the sequel, we will need to construct spaces of functions on different monoids
(mainly direct products of free monoids). We set, once for all the general con-
struction of the corresponding convolution algebra.
Let A be a unitary commutative ring and M a monoid. Let us denote AM the
set7 of all (graphs of) mappings M → A. This set is endowed with its classi-
cal structure of module. In order to extend the product defined in A[M ] (the
algebra of the monoid M), it is essential that, in the sums

f ∗ g(m) =
∑

m∈M

∑

uv=m

f(u)g(v) (14)

6 Recall that the duality preserves the (multi)homogeneous degrees and interchanges the
triangularity of polynomials [18]. For that, one can construct the triangular matrices M

and N admitting as entries the coefficients of the multihomogeneous triangular polynomials,
{Pw}w∈Xk and {Sw}w∈Xk in the basis {w}w∈X∗ respectively :

Mu,v = 〈Pu | v〉 and Nu,v = 〈Su | v〉.

The triangular matrices M and N are unipotent and satisfy the identity N = (tM)−1.
7In general Y X is the set of all mappings X → Y [2] Ch 2.5.2.
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the inner sum
∑

uv=m f(u)g(v) make sense. For that, we suppose that the
monoid M fulfills condition “D” (be of finite decomposition type [3] Ch III.10).
Formally, we say that M satisfies condition “D” iff, for all m ∈ M , the set

{(u, v) ∈ M ×M | uv = m} (15)

is finite. In this case eq.14 endows AM with the structure of a AAU8. This
algebra is traditionally called the total algebra of M (see [3] Ch III.10) and
has very much to do with the series9. It will be, here (with a slight abuse of
denotation which does not cause ambiguity) denoted A〈〈M〉〉.
The pairing

A〈〈M〉〉 ⊗A[M ] −→ A (16)

defined by10

〈f | g〉 :=
∑

m∈M

f(m)g(m) (17)

allows to see every element of the total algebra as a linear form on the module
A[M ]. One can check easily that, through this pairing, one has

A〈〈M〉〉 ≃ (A[M ])∗ .

One says that a family (fi)i∈I of A〈〈M〉〉 is summable [1] iff, for every m ∈ M ,
the mapping i 7→ 〈fi | m〉 is finitely supported. In this case, the sum

∑

i∈I fi is
exactly the mapping m 7−→

∑

i∈I〈fi | m〉 so that, one has by definition

〈
∑

i∈I

fi | m〉 =
∑

i∈I

〈fi | m〉 . (18)

To end with, let us remark that the set M1 ⊗ M2 = {u ⊗ v}(u,v)∈M1×M2
is a

(monoidal) basis of A[M1] ⊗ A[M2] and M1 ⊗M2 is a monoid (in the product
algebra A[M1]⊗A[M2]) isomorphic to the direct product M1 ×M2.

2.1.2 Summable families in Hom spaces.

In fact, A〈〈M〉〉 ≃ (A[M ])∗ = Hom(A[M ], A) and the notion of summability
developed above can be seen as a particular case of that of a family of endomor-
phisms fi ∈ Hom(V,W ) for which Hom(V,W ) appears as a complete space. It
is indeed the pointwise convergence for the discrete topology. We will not detail
these considerations here.
The definition is similar of that of a summable family of series [1], viewed as a
family of linear forms.

8Associative Algebra with Unit.
9In fact, the algebra of commutative (resp. noncommutative) series on an alphabet X is

the total algebra of the free commutative (resp. X∗) monoid on X
10Here A[M ] is identified with the submodule of finitely supported functions M → A.
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Definition 1. i) A family (fi)i∈I of elements in Hom(V,W ) is said to be
summable iff for all x ∈ V , the map i 7→ fi(x) has finite support. As a quantized
criterium it reads

(∀x ∈ V )(∃F ⊂finite I)(∀i /∈ F )(fi(x) = 0) (19)

ii) If the family (fi)i∈I ∈ Hom(V,W )I fulfils the condition 19 above its sum is
given by

(
∑

i∈I

fi)(x) =
∑

i∈I

fi(x) (20)

It is an easy exercise to show that the mapping V → W defined by the equation
20 is in fact in Hom(V,W ). Remark that, as the limiting process is defined by
linear conditions, if a family (fi)i∈I is summable, so is

(aifi)i∈I (21)

for an arbitrary family of coefficients (ai)i∈I ∈ AI .
This tool will be used in section (2.2) to give an analytic presentation of the
theorem of Cartier-Quillen-Milnor-Moore in the case when V = W = B is a
bialgebra.

The most interesting feature of this operation is the interversion of sums. Let
us state it formally as a proposition the proof of which is left to the reader.

Proposition 1. Let (fi)i∈I be a family of elements in Hom(V,W ) and (Ij)j∈J

be a partition of I ([2] ch II §4 no 7 Def. 6), then TFAE
i) (fi)i∈I is summable
ii) for all j ∈ J , (fi)i∈Ij is summable and the family (

∑

i∈Ij
fi)j∈J is summable.

In these conditions, one has

∑

i∈I

fi =
∑

j∈J

(
∑

i∈Ij

fi) (22)

We derive at once from this the following practical criterium for double sums.

Proposition 2. Let (fα,β)(α,β)∈A×B be a doubly indexed summable family in
Hom(V,W ), then, for fixed α (resp. β) the “row-families” (fα,β)β∈B (resp.
the “column-families” (fα,β)α∈A) are summable and their sums are summable.
Moreover

∑

(α,β)∈A×B

fα,β =
∑

α∈A

∑

β∈B

fα,β =
∑

β∈B

∑

α∈A

fα,β . (23)

2.1.3 Substitutions

Let A be a AAU and f ∈ A. For every polynomial P ∈ A〈X〉 = A[X ], one can
compute P (f) by

P (f) =
∑

n≥0

〈P | Xn〉fn (24)
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one checks at once that P 7→ P (f) is a morphism11 of AAU between A[X ] and
A. Moreover, this morphism is compatible with the substitutions as one checks
easily that, for Q ∈ A[X ]

P (Q)(f) = P (Q(f)) (25)

(it suffices to check that P 7→ P (Q)(f) and P 7→ P (Q(f)) are two morphisms
which coincide at P = X).
In order to substitute within series, one needs some limiting process. The frame-
work of A = Hom(V,W ) and summable families will be here sufficient (see para-
graph 2.1.2). We suppose that (V, δV , ǫV ) is a co-AAU and that (W,µW , 1W )
is a AAU. Then (Hom(V,W ), ∗, e) is a AAU (with e = 1W ◦ ǫV ). A series
S ∈ A[[X ]] and f ∈ Hom(V,W ) being given, we say that f ∈ Dom(S) iff the
family (〈S | Xn〉f∗n)n≥0 is summable. We have the following properties

Proposition 3. If f ∈ Dom(S) ∩Dom(T ) and α ∈ A, one has

(αS)(f) = αS(f) ; (S + T )(f) = S(f) + T (f) (26)

and
(TS)(f) = T (f) ∗ S(f) . (27)

If ((f)∗n)n≥0 is summable and S(0) = 0 then

f ∈ Dom(S) ∩Dom(T (S)) ; S(f) ∈ Dom(T ) (28)

and
T (S)(f) = T (S(f)) (29)

Proof. Let us first prove eq.27 . As f ∈ Dom(S) ∩Dom(T ),
the families (〈S | Xn〉f∗n)n≥0 and (〈T | Xm〉f∗m)n≥0 are summable, then so is

(

〈T | Xm〉f∗m ∗ 〈S | Xn〉f∗n
)

n,m≥0
(30)

as, for every x ∈ V , δ(x) =
∑N

i=1 x
(1)
i ⊗ x

(2)
i and for every i ∈ I,

suppw.r.t. m(〈T | Xm〉f∗m(x
(1)
i )) ; suppw.r.t. n(〈S | Xn〉f∗n(x

(2)
i ))

are finite. Then outside of the cartesian product of the (finite) union of these
supports, the product

(〈T | Xm〉f∗m ∗ 〈S | Xn〉f∗n)(x) = µW ((〈T | Xm〉f∗m ⊗ 〈S | Xn〉f∗n)(δ(x)))
(31)

is zero. Hence the summability.
Now

T (f) ∗ S(f) =

∞
∑

m=0

(〈T | Xm〉f∗m) ∗

∞
∑

n=0

(〈S | Xn〉f∗n) =

11In case A is a geometric space, this morphism is called “evaluation at f” and corresponds
to a Dirac measure.
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∞
∑

m=0

∞
∑

n=0

(〈T | Xm〉〈S | Xn〉f∗n+m) =

∞
∑

s=0

(

∞
∑

n+m=s

〈T | Xm〉〈S | Xn〉
)

f∗s =

∞
∑

s=0

(〈TS | Xs〉)f∗s = (TS)(f) (32)

We now prove the statements (28) and (29). If ((f)∗n)n≥0 is summable then f
belongs to all domains (i.e. is universally substituable) by virtue of eq.21 . For
all x ∈ V , it exists Nx ∈ N such that

n > Nx =⇒ (f)∗n(x) = 0 .

Now, for S such that S(0) = 0, one has S =
∑∞

n=1〈S | Xn〉Xn and then
Sk =

∑∞
n=k〈S

k | Xn〉Xn. Now, in view of eq.27 , one has

S(f)∗n(x) = Sn(f)(x) =

∞
∑

m=n

〈Sn | Xm〉(f)∗m(x) (33)

which is zero for n > Nx. Hence the summability of (S(f)∗n)n≥0 which im-
plies that S(f) ∈ Dom(T ). The family (〈T | Xn〉〈Sn | Xm〉(f)∗m)(n,m)∈N2 is
summable because, if x ∈ V and if n or m is greater than Nx then

〈T | Xn〉〈Sn | Xm〉(f)∗m(x) = 0 (34)

thus T (S(f)) is the sum
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T (S(f)) =
∞
∑

n=0

〈T | Xn〉S(f)∗n =
∞
∑

n=0

〈T | Xn〉
∞
∑

m=n

〈Sn | Xm〉(f)∗m =

∞
∑

n=0

∞
∑

m=0

〈T | Xn〉〈Sn | Xm〉(f)∗m =

∞
∑

m=0

(

∞
∑

n=0

〈T | Xn〉〈Sn | Xm〉
)

(f)∗m =

∞
∑

m=0

〈T (S) | Xm〉(f)∗m = T (S)(f) (35)

In the free case (i.e. V = W are the bialgebra (A〈X〉, conc, 1X∗ ,∆⊔⊔ , ǫ)), one
has a very useful representation of the convolution algebra Hom(V,W ) through
images of the diagonal series. This representation will provide us the key lemma
(2). Let

DX =
∑

w∈X∗

w ⊗ w.

be the diagonal series attached to X .

Proposition 4. Let A be a commutative unitary ring and X an alphabet. Then

i) For every f ∈ End(A〈X〉), the family (u ⊗ f(u))u∈X∗ is summable in
A〈〈X∗ ⊗X∗〉〉.

ii) The representation

f 7→ ρ(f) =
∑

u∈X∗

u⊗ f(u) (36)

is faithful from (End(A〈X〉), ∗) to (A〈〈X∗⊗X∗〉〉, ⊔⊔ ⊗conc). In particular,
for f ∈ End(A〈X〉) and P ∈ A[X ], one has

ρ(P (f)) = P (ρ(f)) (37)

iii) If f(1X∗) = 0 and S ∈ A[[X ]] is a series, then (ρ(f)n)n≥0 is summable in
(A〈〈X∗ ⊗X∗〉〉, ⊔⊔ ⊗conc) and

ρ(S(f)) = S(ρ(f)) (38)

Proof. (of Prop.(4)) Let us compute

ρ(f)(⊔⊔ ⊗conc)ρ(g) =
∑

u,v∈X∗

(u⊗ f(u)(⊔⊔ ⊗conc)(v ⊗ g(v)) =

∑

u,v∈X∗

(u ⊔⊔ v ⊗ (conc(f(u)⊗ g(v)))) =

9



∑

u,v∈X∗

∑

w∈X∗

(〈u ⊔⊔ v | w〉w ⊗ conc(f(u)g(v)) =

∑

w∈X∗

w ⊗ (
∑

u,v∈X∗

(〈u ⊔⊔ v | w〉conc(f(u)g(v))) =

∑

w∈X∗

w ⊗ (
∑

u,v∈X∗

(〈u⊗ v | ∆(w)〉conc(f(u)g(v))) =

∑

w∈X∗

w ⊗ (conc(f ⊗ g)∆(w)) =
∑

w∈X∗

w ⊗ (f ∗ g(w)) (39)

2.2 Theorem of Cartier-Quillen-Milnor-Moore (analytic
form)

2.2.1 General properties of bialgebras

From now on, we suppose that A is a unitary commutative Q-algebra
(i.e. Q ⊂ A).
The aim of Cartier-Quillen-Milnor-Moore theorem is to provide necessary and
sufficient conditions for B to be an enveloping algebra, we will discuss this
condition in detail in the sequel.

Let (B, µ, eB,∆, ǫ) be a (general) A-bialgebra. One can always consider the Lie
algebra of primitive elements Prim(B) and build the map

jB : U(Prim(B)) → B .

Then, A = jB(U(Prim(B))) is the subalgebra generated by the primitive ele-
ments.

Prim(B) A B

U(B)

iA,P

iU ,P

iB,A

iU ,A

jB

Figure 1: The sub-algebra A generated by primitive elements.

The mapping is into iB,A is into but iB,A ⊗ iB,A may not be so. This is the
case for B = (Q[ǫ][x], ., 1Q[ǫ][x],∆, c) where (Q[ǫ][x], ., 1B) is the usual polynomial
algebra with coefficients in the dual numbers (Q[ǫ], ǫ2 = 0) and

∆(x) = x⊗ 1 + 1⊗ x+ ǫx⊗ x, c(x) = 0

(see details and proofs below, in sec. 2.3).
In general, one has (only) ∆B(A) ⊂ Im(iB,A ⊗ iB,A), this can be simply seen
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from the following combinatorial argument.
For any list of primitive elements L = [g1, g2, · · · gn] and
I = {i1 < i2 < .. < ik} ⊂ {1, 2, .., n}, put L[I] = gi1gi1 · · · gik , the product of
the sublist. One has

∆(g1g2 · · · gn) = ∆(L[{1, 2, .., n}]) =
∑

I+J={1,2,..,n}

L[I]⊗ L[J ] (40)

where, for I = {i1 < i2 < .. < ik} ⊂ {1, 2, .., n},

L[I] = gi1gi1 · · · gik . (41)

From (40) one gets also that jB is a morphism of bialgebras. If for any reason,
there exists a lifting of

∆B ◦ iB,A (42)

as a comultiplication of A, then jB is into (see the statement and the proof be-
low). Formula 41 proves that we have the following maps (save the - hypothetic
- dotted one).

A〈G〉 A

A〈G〉 ⊗A〈G〉 A ⊗ A

sG

∆⊔⊔ ∆A

sG ⊗ sG

Figure 2: The unique lifting ∆A (when it exists).

Where G is any generating set of the AAU A. We emphasize the fact that, in
the diagram above, Gmust be understood set-theoretically (i.e. with no relation
between the elements12).
In fact, one has the following proposition

Proposition 5. Let B be a bialgebra over a (commutative) Q-algebra A, the
notations being those of figures 1 and 2, then TFAE
i) For a generating set G ⊂ Prim(B), ker(sG) ⊂ ker(sG ⊗ sG) ◦∆⊔⊔ .
ii) For any generating set G ⊂ Prim(B), ker(sG) ⊂ ker(sG ⊗ sG) ◦∆⊔⊔ .
iii) jB is into.

Proof. i) =⇒ iii) In order to prove this, we need to construct the arrows σ, τ
which are a decomposition of a section of jB. Let us remark that, when Prim(B)
is free as a A-module, the proof of this fact is a consequence of the PBW theo-
rem13. But, here, we will construct the section in the general case using projec-
tors which are now classical for the free case but which still can be computed
analytically [18] as they lie in Q[[X ]] and still converge in A.

12We will see, below and in paragraph 2.3 how it is crucial to consider that [λx] 6= λ[x],
when λx ∈ G (for clarity, [y] ∈ A〈G〉 is the image of y ∈ G).

13See [4] Ch2 §1 no 6 th 1 for a field of characteristic zero and §1 Ex. 10 for the free case
(over a ring A with Q ⊂ A).
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Prim(B) A B

U(B) T(Prim(B))

iA,P

iU ,P

iB,A

σ
jB

τ

Figure 3: The sub-bialgebra A generated by primitive elements.

Proof. (Injectivity of jB, construction of the section τ ◦ σ). —
Let A be the subalgebra of B generated by Prim(B), one has Im(jB) = A.
Remark that all series

∑

n≥0 an(I+)
∗n are summable on A (not in general on B

for example in case B contains non-trivial group-like elements).
We define

c = log∗(I) =
∑

n≥1

(−1)n−1

n
(I+)

∗n (43)

and remark that, in view of Prop. (4), in the case when B = A〈X〉 one has
A = B and, with S(X) = log(1 +X)

∑

w∈X∗

w ⊗ π1(w) = ρ(log(I)) = ρ(S(I+)) = S(ρ(I+)) =

S(
∑

w∈X∗

w 6=1X∗

w ⊗ w) = S(DX − 1X∗ ⊗ 1X∗) = log(DX) (44)

We first prove that π1,A is a projector A → Prim(B). The key point is that
∆A (the restriction of the comultiplication to A) is a morphism of bialgebras 14

A → A⊗A. We begin by to proving that ∆A “commutes” with the convolution.
This is a consequence of the following property

Lemma 1. i) Let fi ∈ End(Bi), be such that ϕf1 = f2ϕ.

B1 B2

B1 B2

ϕ

f1

ϕ

f2

Figure 4: Intertwining with a morphism of bialgebras (the functions of fi below
will be computed with the respective convolution products).

i) Then, if P ∈ A[X ], one has

ϕP (f1) = P (f2)ϕ . (45)

14In fact it is the case for any cocommutative bialgebra, be it generated by its primitive
elements or not.

12



ii) If the series
∑

n≥0(I
+
(i))

∗n, i = 1, 2 are summable, if f1(1) = 0 (which implies

f2(1) = 0) and S ∈ A[[X ]], then the families (〈S | Xn〉f∗n
i )n∈N are summable,

we denote S(fi) their sums (this definition is coherent with the preceding when
S is a polynomial).
One has, for the convolution product,

ϕS(f1) = S(f2)ϕ . (46)

Proof. The only delicate part is (ii). First, one remarks that, if ϕ is a morphism
of bialgebras, one has

(ϕ⊗ ϕ) ◦∆+
1 = ∆+

2 ◦ ϕ (47)

then, the image by ϕ of an element of order less than N (i.e. such that

∆
+(N)
1 (x) = 0) is of order less than N . Let now S be an univariate series

S =
∑∞

k=0 akX
k. For every element x of order less than N and f ∈ End(B)

such that, one has

S(f)(x) =

∞
∑

k=0

akf
∗k(x) =

∞
∑

k=0

akµ
(k−1)f⊗k∆(k−1)(x)

=

∞
∑

k=0

akµ
(k−1)(f⊗k) ◦ (I⊗k

+ )∆(k−1)(x)

=
N
∑

k=0

akµ
(k−1)(f⊗k)∆

(k−1)
+ (x) . (48)

This proves, in view of (i) that ϕ ◦ S(f1) = S(f2) ◦ ϕ.

We reprove now that π1 is a projector [18] B → Prim(B) by means of the
following lemma.
In case B is cocommutative, the comultiplication ∆ is a morphism of bialgebras,
so one has

∆ ◦ log∗(I) = log∗(I ⊗ I) ◦∆ (49)

But

log∗(I ⊗ I) = log∗((I ⊗ e) ∗ (e ⊗ I))
= log∗(I ⊗ e) + log∗(e⊗ I)
= log∗(I) ⊗ e+ e⊗ log∗(I) (50)

Then
∆(log∗(I)) = (log∗(I)⊗ e+ e⊗ log∗(I)) ◦∆ (51)

which implies that log∗(I)(B) ⊂ Prim(B). To finish to prove that π1 is a
projector onto Prim(B), one has just to remark that, for x ∈ Prim(B) and
n ≥ 2 (Id+)∗n(x) = 0 then

log∗(I)(x) = Id+(x) = x . (52)

13



Now, we consider

IA = exp∗(log∗(IA)) =
∑

n≥0

1

n!
π∗n
1,[A] . (53)

where π1,[A] = log∗(IA).
Let us prove that the summands form an resolution of unity.
First, one defines A[n] as the linear span of the powers {Pn}P∈Prim(B) or, equiv-
alently of the symmetrized products

1

n!

∑

σ∈Sn

Pσ(1)Pσ(2) · · ·Pσ(n) . (54)

It is obvious that Im(π∗n
1,[A]) ⊂ A[n]. We remark that

π∗n
1,[A] = µ

(n−1)
B π⊗n

1,[A]∆
(n−1) = µ

(n−1)
B π⊗n

1,[A]I
⊗n
+ ∆(n−1) = µ

(n−1)
B π⊗n

1,[A]∆
(n−1)
+

(55)
as π1,[A]I+ = π1,[A]. Now, let P ∈ Prim(A). We compute π∗n

1,[A](P
m). Indeed,

if m < n, one has

π∗n
1,[A](P

m) = µn−1
B ∆n−1

+ (Pm) = 0 . (56)

If n = m, one has, from (40)

∆n−1
+ (Pn) = n!P⊗n (57)

and hence π∗n
1,[A] is the identity on A[n]. If m > n, the nullity of π∗n

1,[A](P
m) is a

consequence of the following lemma.

Lemma 2. Let B be a bialgebra and P a primitive element of B. Then
i) The series log∗(I) is summable on each power Pm

ii) log∗(I)(P
m) = 0 for m > 2

Proof. i) As ∆∗N
+ (Pm) = 0 for N > m, one has I∗N+ (Pm) = 0 for these values.

ii) Let a be a letter, the morphism of AAU ϕP : A[a] → B, defined by

ϕP (a) = P (58)

is, in fact a morphism of bialgebras and one checks easily that One has just to
check that π1,[A[a]](a

m) = 0 for m > 2 which is a consequence of the general
equality (see eq.44 )

∑

w∈X∗

(w ⊗ π1(w)) = log(
∑

w∈X∗

w ⊗ w) (59)

because, for Y = {a} (and then A〈X〉 = A[a]) one has

14



A[a] B

A[a] B

ϕP

I+
A[a]

ϕP

I+B

Figure 5: Intertwining with one primitive element.

log(
∑

w∈X∗

w ⊗ w) = log(
∑

n≥0

an ⊗ an) =

log(
∑

n≥0

1

n!
(a⊗ a)(⊔⊔ ⊗conc)n) = log(exp(a⊗ a)) = a⊗ a (60)

this proves that π∗n
1,[A](A[m]) = 0 for m 6= n and hence the summands of the

sum

IA = exp∗(log∗(IA)) =
∑

n≥0

1

n!
π∗n
1,[A] . (61)

are pairwise orthogonal projectors with Im(π∗n
1,[A]) = A[n] and then

A = ⊕n≥0 A[n] . (62)

This decomposition permits to construct σ by

σ(Pn) =
1

n!
∆

(n−1)
+ (Pn) ∈ Tn(Prim(B)) (63)

for n ≥ 1 and, one sets σ(1B) = 1T (Prim(B).
It is easy to check that jB ◦ τ ◦ σ = IdA as A is (linearly) generated by the
powers (Pm)P∈Prim(B),m≥0.

End of the proof of proposition 5. —
iii) =⇒ ii) If jB is into, then iU ,A is one-to-one and one gets a comultiplication

∆A : A → A⊗A

such that, for any list of primitive elements L = [g1, g2, · · · gn] (the denotations
are the same as previously)

∆A(g1g2 · · · gn) = ∆(L[{1, 2, .., n}]) =
∑

I+J={1,2,..,n}

L[I]⊗A L[J ] (64)

but, this time, the tensor product ⊗A is understood as being in A ⊗ A. This
guarantees that the diagram Fig. 2 commutes for any G.
ii) =⇒ i) Obvious.
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2.3 Counterexamples and discussion

2.3.1 Counterexamples

It has been said that, with B = (Q[ǫ][x], ., 1Q[ǫ][x],∆, c) (notations as above), jB
is not into, let us show this statement.
The q-infiltration coproduct [5] ∆q is defined on the free algebra K〈X〉 (K is a
unitary ring), by its values on the letters

∆(x) = x⊗ 1 + 1⊗ x+ q(x⊗ x) (65)

where q ∈ K. One can show easily that, for a word w ∈ X∗,

∆q(w) =
∑

I∪J=[1..|w|]

q|I∩J|w[I]⊗ w[J ] (66)

with, as above (for I = {i1 < i2 < .. < ik} ⊂ {1, 2, .., n} and w = a1a2 · · · an),
w[I] = ai1ai2 · · · aik .
Then, with K = Q[ǫ], q = ǫ, X = x, one has (as a direct application of Eq. 66)

∆(xn) =

n
∑

k=0

(

n
k

)

xk ⊗ xn−k + ǫ

n
∑

k=1

(

n
k

)

kxk ⊗ xn−k+1 . (67)

This proves that, here, the space of primitive elements is a submodule of K.x
and solving ∆(λx) = (λx) ⊗ 1 + 1 ⊗ (λx), one finds λ = ǫλ1. Together with
ǫ x ∈ Prim(B) this proves that Prim(B) = Q(ǫ x). Now, the consideration of
the morphism of Lie algebras Prim(B) → K[x]/(ǫK[x]) which sends ǫ x to x
proves that, in U(Prim(B)), we have (ǫ x)(ǫ x) 6= 0 and jB cannot be into.
For a graded counterexample, one can see that, with K = Q[ǫ], X = x, y, z, B =
K〈X〉 and

∆(x) = x⊗1+1⊗x+ ǫ (y⊗z), ∆(y) = y⊗1+1⊗y, ∆(z) = z⊗1+1⊗z (68)

the same phenomenon occurs (for the gradation, one takes
deg(y) = deg(z) = 1, deg(x) = 2).

2.3.2 The theorem from the point of view of summability

From now on, the morphism jB is supposed into.
The bialgebra B being supposed cocommutative, we discuss the equivalent con-
ditions under which we are in the presence of an enveloping algebra i.e.

B ∼=A−bialg U(Prim(B)) (69)

from the point of view of the convergence of the series log∗(I)
15. These condi-

tions are known as the theorem of Cartier-Quillen-Milnor-Moore (CQMM).

15In a A-bialgebra, one can always consider the series of endomorphisms

∑

n≥1

(−1)n−1

n
(I+)∗n . (70)

The family ( (−1)n−1

n
(I+)∗n)n≥0 is summable iff ((I+)∗n)n≥0 is (use eq.21 ).
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Theorem 1. [4] Let B be a A-cocommutative bialgebra (A is a Q-AAU) and A,
as above, the subalgebra generated by Prim(B). Then, the following conditions
are equivalent :

i) B admits an increasing filtration

B0 = A.1B ⊂ B1 ⊂ · · · ⊂ Bn ⊂ Bn+1 · · ·

compatible with the structures of algebra (i.e. for all p, q ∈ N, one has
BpBq ⊂ Bp+q) and coalgebra :

∀n ∈ N, ∆(Bn) ⊂
∑

p+q=n

Bp ⊗ Bq.

ii) ((Id+)∗n)n∈N is summable in End(B).

iii) B = A.

Proof. We prove
(ii) =⇒ (iii) =⇒ (i) =⇒ (ii) (71)

(ii) =⇒ (iii). —

The image of jB it is the subalgebra generated by the primitive elements. Let
us prove that, when ((Id+)∗n)n∈N is summable, one has Im(jB) = B. The series
log(1 +X) is without constant term so, in virtue of (29) and the summability
of ((Id+)∗n)n∈N, one has

exp(log(e+Id+)) = exp(log(1+X))(Id+) = 1End(B)+Id+ = e+Id+ = I (72)

Set π1 = log(e+ Id+).
To end this part, let us compute, for x ∈ B

x = exp(π1)(x) = (
∑

n≥0

1

n!
π∗n
1 )(x) = (

N
∑

n=0

1

n!
µ(n−1)π⊗n

1 )∆(n−1)(x) (73)

where N is the first order for which ∆+(n−1)(x) = 0 (as π1 ◦ Id+ = π1). This
proves that B is generated by its primitive elements.
(iii) =⇒ (i). —

Remark 1. i) The equivalence (i) ⇐⇒ (iii) is the classical CQMM theorem
(see [4]). The equivalence with (ii) could be called the “Convolutional CQMM
theorem”. The combinatorial aspects of this last one will be the subject of a
forthcoming paper.
ii) When Prim(B) is free, we have B ∼=k−bialg U(Prim(B)) and B is an envelop-
ing algebra.
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iii) The (counter) example is the following with A = k[x] (k is a field of char-
acteristic zero). Let Y be an alphabet and A〈Y 〉 be the usual free algebra (the
space of non-commutative polynomials over Y ) and ǫ, the “constant term” linear
form. Let conc be the concatenation and ∆ the unshuffling. Then the bialgebra
(A〈Y 〉, conc, 1Y ∗ ,∆, ǫ) is a Hopf algebra (it is the enveloping algebra of the Lie
polynomials). Let A+〈Y 〉 = ker(ǫ) and, for N ≥ 2 JN = xN .A+〈Y 〉 then, JN
is a Hopf ideal and Prim(A〈Y 〉/(JN )) is never free (no basis).

3 Examples of φ-deformed shuffle.

3.1 Results for the φ-deformed shuffle.

Let Y = {yi}i∈I be still a totally ordered alphabet and A〈Y 〉 be equipped with
the φ-deformed stuffle defined by

i) for any w ∈ Y ∗, 1Y ∗ φw = w φ1Y ∗ = w,

ii) for any yi, yj ∈ Y and u, v ∈ Y ∗,

yiu φyjv = yj(yiu φv) + yi(u φyjv) + φ(yi, yj)u φv, (74)

where φ is an arbitrary mapping

φ : Y × Y −→ AY .

Definition 2. Let

φ : Y × Y −→ AY

defined by its structure constants

(yi, yj) 7−→ φ(yi, yj) =
∑

k∈I

γk
i,j yk.

Proposition 6. The recursion (74) defines a unique mapping

φ : Y ∗ × Y ∗ −→ A〈Y 〉.

Proof. Let us denote (Y ∗ × Y ∗)≤n the set of words (u, v) ∈ Y ∗ × Y ∗ such that
|u|+ |v| ≤ n. We construct a sequence of mappings

φ≤n
: (Y ∗ × Y ∗)≤n −→ A〈Y 〉.

which satisfy the recursion of eq.74 . For n = 0, we have only a premiage and

φ≤0(1Y ∗) = 1Y ∗ ⊗ 1Y ∗ . Suppose φ≤n
constructed and let

(u, v) ∈ (Y ∗ × Y ∗)≤n+1 \ (Y
∗ × Y ∗)≤n, i.e. |u|+ |v| = n+ 1.

One has three cases : u = 1Y ∗ , v = 1Y ∗ and (u, v) ∈ Y + × Y +. For the two
first, one uses the initialisation of the recursion thus

φ≤n+1(w, 1Y ∗) = φ≤n+1(1Y ∗ , w) = w
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for the last case, write u = yiu
′, v = yjv

′ and use, to get

φ≤n+1(yiu
′, yjv

′) = yi φ≤n
(u′, yjv

′)+yj φ≤n
(yiu

′, v′)+yi+j φ≤n
(u′, v′)

this proves the existence of the sequence ( φ≤n
)n≥0. Every φ≤n+1 extends

the preceding so there is a mapping

φ : Y ∗ × Y ∗ −→ A〈Y 〉.

which extends all the φ≤n+1 (the graph of which is the union of the graphs

of the φ≤n
). This proves the existence. For unicity, just remark that, if there

were two mappings φ,
′
φ, the fact that they must fulfill the recursion (74)

implies that φ = ′
φ.

We still denote φ and φ the linear extension of φ and φ to AY ⊗AY and
A〈Y 〉 ⊗A〈Y 〉 respectively.
Then φ is a law of algebra (with 1Y ∗ as unit) on A〈Y 〉.

Lemma 3. Let ∆ be the morphism A〈Y 〉 → A〈〈Y ∗⊗Y ∗〉〉 defined on the letters
by

∆(ys) = ys ⊗ 1 + 1⊗ ys +
∑

n,m∈I

γs
n,m yn ⊗ ym (75)

Then

i) for all w ∈ Y + we have

∆(w) = w ⊗ 1 + 1⊗ w +
∑

u,v∈Y +

〈∆(w) | u⊗ v〉u⊗ v (76)

ii) for all u, v, w ∈ Y ∗, one has

〈u φv | w〉 = 〈u⊗ v | ∆(w)〉⊗ 2 (77)

Proof. i) By recurrence on |w|. If w = ys is of length one, it is obvious from
the definition. If w = ysw

′, we have, from the fact that ∆ is a morphism

∆(w) =

(

ys ⊗ 1 + 1⊗ w +
∑

i,j∈I

γs
i,jyi ⊗ yj

)

(

w′ ⊗ 1 + 1⊗ w′ +
∑

u,v∈Y +

〈u ⊗ v | ∆(w′)〉

)

(78)

the development of which proves that ∆(w) is of the desired form.

ii) Let S(u, v) :=
∑

w∈Y ∗〈u ⊗ v | ∆(w)〉w. It is easy to check (and left to
the reader) that, for all u ∈ Y ∗, S(u, 1) = S(1, u) = u. Let us now prove
that, for all yi, yj ∈ Y and u, v ∈ Y ∗

S(yiu, yjv) = yiS(u, yjv) + yjS(yiu, v) + φ(yi, yj)S(u, v) (79)
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Indeed, remarking that ∆(1) = 1⊗ 1, one has

S(yiu, yjv) =
∑

w∈Y ∗

〈yiu⊗ yjv | ∆(w)〉w =
∑

w∈Y +

〈yiu⊗ yjv | ∆(w)〉w

=
∑

ys∈Y, w′∈Y ∗

〈yiu⊗ yjv | ∆(ysw
′)〉 ysw

′

=
∑

ys∈Y, w′∈Y ∗

〈yiu⊗ yjv |

(

ys ⊗ 1 + 1⊗ ys +
∑

n,m∈I

γs
n,m yn ⊗ ym

)

∆(w′)〉 ysw
′

=
∑

ys∈Y, w′∈Y ∗

〈yiu⊗ yjv | (ys ⊗ 1)∆(w′)〉 ysw
′

+
∑

ys∈Y, w′∈Y ∗

〈yiu⊗ yjv | (1⊗ ys)∆(w′)〉 ysw
′

+
∑

ys∈Y, w′∈Y ∗

〈yiu⊗ yjv | (
∑

n,m∈I

γs
n,m yn ⊗ ym)∆(w′)〉 ysw

′

=
∑

w′∈Y ∗

〈u⊗ yjv | ∆(w′)〉 yiw
′ +

∑

w′∈Y ∗

〈yiu⊗ v | ∆(w′)〉 yjw
′

+
∑

ys∈Y, w′∈Y ∗

〈u⊗ v | γs
i,j∆(w′)〉 ysw

′

= yi
∑

w′∈Y ∗

〈u⊗ yjv | ∆(w′)〉w′ + yj
∑

w′∈Y ∗

〈yiu⊗ v | ∆(w′)〉w′

+
∑

ys∈Y

γs
i,j ys

∑

w′∈Y ∗

〈u⊗ v | ∆(w′)〉w′

= yiS(u, yjv) + yjS(yiu, v) + φ(yi, yj)S(u, v)

then the computation of S shows that, for all u, v ∈ Y ∗, S(u, v) = u φv
as S is bilinear, one has S = φ.

Theorem 2. i) The law φ is commutative if and only if the extension

φ : AY ⊗AY −→ AY

is so.

ii) The law φ is associative if and only if the extension

φ : AY ⊗AY −→ AY

is so.

iii) Let γz
x,y := 〈φ(x, y)|z〉 be the structure constants of φ (w.r.t. the basis Y ),

then φ is dualizable if and only if (γz
x,y)x,y,z∈X is of finite decomposition
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type has the following decomposition property16 in its superscript in the
following sense

(∀z ∈ X)(#{(x, y) ∈ X2|γz
x,y 6= 0} < +∞). (80)

Proof. (i) First, let us suppose that φ be commutative and consider T , the twist,
i.e. the operator in A〈〈Y ∗ ⊗ Y ∗〉〉 defined by

〈T (S) | u⊗ v〉 = 〈S | v ⊗ u〉 (81)

it is left to the reader to prove that T is a morhism of algebras. If φ is commu-
tative, then so is the following diagram.

Y A〈〈Y ∗ ⊗ Y ∗〉〉

A〈〈Y ∗ ⊗ Y ∗〉〉

∆
φ

∆
φ

T

and, then, the two morphisms ∆
φ
and T ◦∆

φ
coincide on the generators

Y of the algebra A〈Y 〉 and hence over A〈Y 〉 itself. Now for all u, v, w ∈ Y ∗, one
has

〈v φu | w〉 = 〈v ⊗ u | ∆
φ
(w)〉 = 〈u⊗ v | T ◦∆

φ
(w)〉 =

〈u⊗ v | ∆
φ
(w)〉 = 〈u φv | w〉 (82)

which proves that v φu = u φv. Conversely, if φ is commutative, one has,
for i, j ∈ I

φ(yj , yi) = yj φyi − (yj ⊔⊔ yi) = yi φyj − (yi ⊔⊔ yj) = φ(yi, yj) (83)

(ii) Likewise, if φ is associative, let us define the operators

∆
φ
⊗ I : A〈〈Y ∗ ⊗ Y ∗〉〉 → A〈〈Y ∗ ⊗ Y ∗ ⊗ Y ∗〉〉 (84)

by
〈∆

φ
⊗ I(S) | u⊗ v ⊗ w〉 = 〈S | (u φv)⊗ w〉 (85)

and, similarly,

I ⊗∆
φ
: A〈〈Y ∗ ⊗ Y ∗〉〉 → A〈〈Y ∗ ⊗ Y ∗ ⊗ Y ∗〉〉 (86)

by
〈I ⊗∆

φ
(S) | u⊗ v ⊗ w〉 = 〈S | u⊗ (v φw)〉 (87)

it is easy to check by direct calculation that they are well defined morphisms
and that the following diagram

16One can prove that, in case Y is a semigroup, the associated φ is fulfills eq.80 iff Y fulfills
“condition D” of Bourbaki (see [3])
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Y A〈〈Y ∗ ⊗ Y ∗〉〉

A〈〈Y ∗ ⊗ Y ∗〉〉 A〈〈Y ∗ ⊗ Y ∗ ⊗ Y ∗〉〉

∆
φ

∆
φ

∆
φ
⊗ I

I ⊗∆
φ

is commutative. This proves that the two composite morphisms

∆
φ
⊗ I ◦∆

φ

and
I ⊗∆

φ
◦∆

φ

coincide on Y and then on A〈Y 〉. Now, for u, v, w, t ∈ Y ∗, one has

〈(u φv) φw | t〉 = 〈(u φv)⊗ w | ∆
φ
(t)〉 = 〈u⊗ v ⊗ w | (∆

φ
⊗ I)∆

φ
(t)〉 =

〈u⊗ v ⊗ w | (I ⊗∆
φ
)∆

φ
(t)〉 = 〈u⊗ (v φw) | ∆ φ

(t)〉 = 〈u φ(v φw) | t〉

which proves the associatvity of the law φ. Conversely, if φ is associative,
the direct expansion of the right hand side of

0 = (yi φyj) φyk − yi φ(yj φyk) (88)

proves the associativity of φ.
iii) We suppose that (γz

x,y)x,y,z∈X is of finite decomposition type in its super-
script, in this case ∆

φ
takes its values in A〈Y 〉 ⊗A〈Y 〉 therefore its dual, the

law φ is dualizable. Conversely, if Im(∆
φ
) ⊂ A〈Y 〉 ⊗ A〈Y 〉, one has, for

every s ∈ I

∑

n,m∈I

γs
n,m yn ⊗ ym = ∆(ys)− (ys ⊗ 1 + 1⊗ ys) ∈ A〈Y 〉 ⊗A〈Y 〉

which proves the claim.

From now on, we suppose that φ : AY ⊗ AY −→ AY be an associative
and commutative law (of algebra) on AY .

Theorem 3. Let A be a Q-algebra. Then if φ is dualizable17, let ∆
φ

:
A〈Y 〉 −→ A〈Y 〉 ⊗A〈Y 〉 denote its dual comultiplication, then

a) Bφ = (A〈Y 〉, conc, 1Y ∗ ,∆
φ
, ε) is a bialgebra.

17For the pairing defined by

∀x, y ∈ Y, 〈x | y〉 = δx,y)
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b) If A is a Q-algebra then, the following conditions are equivalent
i) Bφ is an enveloping bialgebra

ii) the algebra AX admits an increasing filtration
(

(AY )n

)

n∈N
with (AY )0 =

{0}

(AY )0 = {0} ⊂ (AY )1 ⊂ · · · ⊂ (AY )n ⊂ (AY )n+1 ⊂ · · ·

compatible with both the multiplication and the comultiplication ∆
φ
i.e.

(AY )p(AY )q ⊂ (AY )p+q

∆
φ
((AY )n) ⊂

∑

p+q=n

(AY )p ⊗ (AY )q .

iii) Bφ is isomorphic to (A〈Y 〉, conc, 1Y ∗ ,∆⊔⊔ , ǫ) as a bialgebra.
iv) I+ is ⋆-nilpotent.

Proof. (Other - easier - implications to be written)
iv) =⇒ iii) Let us set y′s = π1(ys), then using a rearrangement of the star-log
of the diagonal series, we have

ys =
∑

k≥1

1

k!

∑

s′
1
+···+s′

k
=s

π1(ys′
1
) . . . π1(ys′

k
) (89)

This proves that the multiplicative morphism given by Φ(ys) = y′s is an isomor-
phism. But this morphism is such that ∆

φ
◦Φ = (Φ⊗Φ) ◦∆⊔⊔ which proves

the claim.

Remark 2. i) Theorem 3 a) holds for general (dualizable, coassociative) φ be
it commutative of not.
ii) It can happen that there be no antipode (and then, I+ cannot be ⋆-nilpotent)
as shows the following example.
Let Y = {y0, y1} and φ(yi, yj) = y(i+j mod 2), then

∆(y0) = y0 ⊗ 1 + 1⊗ y0 + y0 ⊗ y0 + y1 ⊗ y1
∆(y1) = y1 ⊗ 1 + 1⊗ y1 + y0 ⊗ y1 + y1 ⊗ y0 (90)

then, from eqns 90, one derives that 1 + y0 + y1 is group-like. As this element
has no inverse in K〈Y 〉, the bialgebra Bφ cannot be a Hopf algebra.
iii) When I+ is nilpotent, the antipode exists and is computed by

a
φ
= (I)∗−1 = (e+ I+)∗−1 =

∑

n≥0

(−1)k(I+)∗k (91)

(see section (2.2)).
iv) In QFT, the antipode of a vector h ∈ B is computed by

S(1) = 1, S(h) = −h+
∑

(1)(2)

S(h(1))h(2) (92)
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and from the fact that S is an antimorphism. This formula is used in con-
texts where I+ is ⋆-nilpotent (although the concerned bialgebras are often not
cocommutative). here, one can prove this recursion from 91.

4 Conclusion
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