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Abstract

In order to extend the Schützenberger’s factorization to general pertur-

bations, the combinatorial aspects of the Hopf algebra of the φ-deformed

stuffle product is developed systematically in a parallel way with those

of the shuffle product and in emphasizing the Lie elements as studied by

Ree. In particular, we will give an effective construction of pair of bases

in duality.
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1 Introduction

Let X be an totally ordered alphabet2. The free monoid and the set of Lyndon
words, over X , are denoted respectively by X∗ and LynX . The neutral element
of X∗, i.e. the empty word is denoted by 1X∗ . Let Q〈X〉 be equipped by the
concatenation and the shuffle which is defined by

∀w ∈ X∗, w ⊔⊔ 1X∗ = 1X∗ ⊔⊔ w = w,
∀x, y ∈ X, ∀u, v ∈ X∗, xu ⊔⊔ yv = x(u ⊔⊔ yv) + y(xu ⊔⊔ v), (1)

or by their dual co-products, ∆ = ∆conc and ∆ = ∆⊔⊔ , defined by, for any
w ∈ X∗ by,

∆conc(w) =
∑

w=uv

u⊗ v

∆⊔⊔ (w) =
∑

I+J=[1..|w|]

w[I]⊗ w[J ] (2)

One gets two Hopf algebras

H⊔⊔ = (Q〈X〉, conc, 1X∗ ,∆⊔⊔ , ǫ, a•) and
H∨

⊔⊔
= (Q〈X〉, ⊔⊔ , 1X∗ ,∆conc, ǫ, a⊔⊔ ) (3)

mutually dual with respect to the pairing given by

(∀u, v ∈ X∗)(〈u | v〉 = δu,v) . (4)

and with, for any xi1 , . . . , xir ∈ X and P ∈ Q〈X〉,

ǫ(P ) = 〈P | 1X∗〉,
a⊔⊔ (w) = a•(w) = (−1)rxir . . . xi1 , . (5)

By the theorem of Cartier-Quillen-Milnor and Moore (CQMM in the sequel), the
connected, graded positively, co-commutative Hopf algebra H⊔⊔ is isomorphic
to the enveloping algebra of the Lie algebra of its primitive elements which
here is LieQ〈X〉. Hence, from any basis of the free algebra LieQ〈X〉 one can3

complete, by the Poincaré-Birkhoff-Witt theorem, a linear basis {bw}w∈X∗ for
U(LieQ〈X〉) = Q〈X〉 (see below (8) for an example of such a construction),
and, when the basis is finely homogeneous, one can construct, by duality, a
basis {b̌w}w∈X∗ of H⊔⊔ (viewed as a Q-module) such that :

∀u, v ∈ X∗, 〈b̌u | bv〉 = δu,v . (6)

For w = li11 . . . likk with l1, . . . lk ∈ LynX, l1 > . . . > lk

b̌w =
b̌⊔⊔

i1
l1

⊔⊔ . . . ⊔⊔ b̌⊔⊔
ik

lk

i1! . . . ik!
. (7)

2In the sequel, the order on the words will be understood as the lexicographic by length
total ordering.

3The basis can be reindexed by Lyndon words and then one uses the canonical factorization
of the words.
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For example, Chen, Fox and Lyndon [5] constructed the PBW-Lyndon basis
{Pw}w∈X∗ for U(LieQ〈X〉) as follows

Px = x for x ∈ X,
Pl = [Ps, Pr] for l ∈ LynX, standard factorization of l = (s, r),
Pw = P i1

l1
. . . P ik

lk
for w = li11 . . . likk , l1 > . . . > lk, l1 . . . , lk ∈ LynX. (8)

Schützenberger and his school constructed, the linear basis {Sw}w∈X∗ for
A = (Q〈X〉, ⊔⊔ , 1X∗) by duality (w.r.t. eq.4 ) and obtained the transcendence
basis of A {Sl}l∈∈LynX as follows4

Sl = xSu, for l = xu ∈ LynX, (9)

Sw =
S⊔⊔ i1
l1

⊔⊔ . . . ⊔⊔ S⊔⊔ ik
lk

i1! . . . ik!
for w = li11 . . . likk , l1 > . . . > lk. (10)

After that, Mélançon and Reutenauer [8] proved that5, for any w ∈ X∗,

Pw = w +
∑

v>w,|v|=|w|

cvv and Sw = w +
∑

v<w,|v|=|w|

cvv. (11)

On other words, the elements of the bases {Sw}w∈X∗ and {Pw}w∈X∗ are upper
and lower triangular respectively and are multihomogeneous.
Moreover, thanks to the duality of the bases {Pw}w∈Xk and {Sw}w∈Xk , if DX

denotes the diagonal series over X one has

DX =
∑

w∈X∗

w ⊗ w =
∑

w∈X∗

Sw ⊗ Pw =

ց
∏

l∈LynX

exp(Sl ⊗ Pl). (12)

Acknowledgements. —
Dedication. —

2 General results on summability and duality

Let Y = {yi}i∈I be a totally ordered alphabet. The free monoid and the set of
Lyndon words, over Y , are denoted respectively by Y ∗ and LynY . The neutral
of Y ∗ (and then of A〈Y 〉) is denoted by 1Y ∗ .

4Therefore A is a polynomial algebra A ≃ Q[LynX].
5 Recall that the duality preserves the (multi)homogeneous degrees and interchanges the

triangularity of polynomials [8]. For that, one can construct the triangular matrices M

and N admitting as entries the coefficients of the multihomogeneous triangular polynomi-
als, {Pw}w∈Xk and {Sw}w∈Xk in the basis {w}w∈X∗ respectively :

Mu,v = 〈Pu | v〉 and Nu,v = 〈Su | v〉.

The triangular matrices M and N are unipotent and satisfy the identity N = (tM)−1.
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2.1 Total algebras and duality

2.1.1 Series and infinite sums

In the sequel, we will need to construct spaces of functions on different monoids
(mainly direct products of free monoids). We set, once for all the general con-
struction of the corresponding convolution algebra.
Let A be a unitary commutative ring and M a monoid. Let us denote AM the
set6 of all (graphs of) mappings M → A. This set is endowed with its classi-
cal structure of module. In order to extend the product defined in A[M ] (the
algebra of the monoid M), it is essential that, in the sums

f ∗ g(m) =
∑

m∈M

∑

uv=m

f(u)g(v) (13)

the inner sum
∑

uv=m f(u)g(v) make sense. For that, we suppose that the
monoid M fulfills condition “D” (be of finite decomposition type [3] Ch III.10).
Formally, we say that M satisfies condition “D” iff, for all m ∈ M , the set

{(u, v) ∈ M ×M | uv = m} (14)

is finite. In this case eq.13 endows AM with the structure of a AAU. This
algebra is traditionnaly called the total algebra of M (see [3] Ch III.10) and
has very much to do with the series7. It will be, here (with a slight abuse of
denotation which does not cause ambiguity) denoted A〈〈M〉〉.
The pairing

A〈〈M〉〉 ⊗A[M ] −→ A (15)

defined by8

〈f | g〉 :=
∑

m∈M

f(m)g(m) (16)

allows to see every element of the total algebra as a linear form on the module
A[M ]. On can check easily that, with this pairing, one has A〈〈M〉〉 ≃ (A[M ])∗.
One says that a family (fi)i∈I of A〈〈M〉〉 is summable [1] iff, for every m ∈ M ,
the mapping i 7→ 〈fi | m〉 is finitely supported. In this case, the sum

∑

i∈I fi is
exactly the mapping m 7−→

∑

i∈I〈fi | m〉 so that, one has by definition

〈
∑

i∈I

fi | m〉 =
∑

i∈I

〈fi | m〉 . (17)

To end with, let us remark that the set M1 ⊗ M2 = {u ⊗ v}(u,v)∈M1×M2
is a

(monoidal) basis of A[M1] ⊗ A[M2] and M1 ⊗M2 is a monoid (in the product
algebra A[M1]⊗A[M2]) isomorphic to the direct product M1 ×M2.

6In general Y X is the set of all mappings X → Y [2] Ch 2.5.2
7In fact, the algebra of commutative (resp. noncommutative) series on an alphabet X is

the total algebra of the free commutative (resp. X∗) monoid on X
8Here A[M ] is identified with the submodule of finitely supported functions M → A.
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2.1.2 Summable families

In fact, A〈〈M〉〉 ≃ (A[M ])∗ = Hom(A[M ], A) and the notion of summability
developed here can be seen as a particular case of that of a family of endomor-
phisms fi ∈ Hom(V,W ) for which Hom(V,W ) appears as a complete space. It
is indeed the pointwise convergence for the discrete topology. We will not detail
these considerations here.
The definition is similar of that of a summable family of series [1], viewed as a
family of linear forms.

Definition 1. i) A family (fi)i∈I of elements in Hom(V,W ) is said to be
summable iff for all x ∈ V , the map i 7→ fi(x) has finite support. As a quantized
criterium it reads

(∀x ∈ V )(∃F ⊂finite I)(∀i /∈ F )(fi(x) = 0) (18)

ii) If the family (fi)i∈I ∈ Hom(V,W )I fulfils the condition 18 above its sum is
given by

(
∑

i∈I

fi)(x) =
∑

i∈I

fi(x) (19)

It is an easy exercise to show that the mapping V → W defined by the equation
19 is in fact in Hom(V,W ). Remark that, as the limiting process is defined by
linear conditions, if a family (fi)i∈I is summable, so is

(aifi)i∈I (20)

for an arbitrary family of coefficients (ai)i∈I ∈ AI .
This tool will be used in section (2.2) to give an analytic presentation of the
theorem of Cartier-Quillen-Milnor-Moore in the case when V = W = B is a
bialgebra.

The most interesting feature of this operation is the interversion of sums. Let
us state it formally as a proposition the proof of which is left to the reader.

Proposition 1. Let (fi)i∈I be a family of elements in Hom(V,W ) and (Ij)j∈J

be a partition of I ([2] ch II §4 no 7 Def. 6), then TFAE
i) (fi)i∈I is summable
ii) for all j ∈ J , (fi)i∈Ij is summable and the family (

∑

i∈Ij
fi)j∈J is summable.

In these conditions, one has
∑

i∈I

fi =
∑

j∈J

(
∑

i∈Ij

fi) (21)

We derive at once from this the following practical criterium for double sums.

Proposition 2. Let (fα,β)(α,β)∈A×B be a doubly indexed summable family in
Hom(V,W ), then, for fixed α (resp. β) the “row-families” (fα,β)β∈B (resp.
the “column-families” (fα,β)α∈A) are summable and their sums are summable.
Moreover

∑

(α,β)∈A×B

fα,β =
∑

α∈A

∑

β∈B

fα,β =
∑

β∈B

∑

α∈A

fα,β . (22)
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2.1.3 Substitutions

Let A be a AAU and f ∈ A. For every polynomial P ∈ A〈X〉 = A[X ], one can
compute P (f) by

P (f) =
∑

n≥0

〈P | Xn〉fn (23)

one checks at once that P 7→ P (f) is a morphism9 of AAU between A[X ] and
A. Moreover, this morphism is compatible with the substitutions as one checks
easily that, for Q ∈ A[X ]

P (Q)(f) = P (Q(f)) (24)

(it suffices to check that P 7→ P (Q)(f) and P 7→ P (Q(f)) are two morphisms
which coincide at P = X).
In order to substitute within series, one needs some limiting process. The frame-
work of A = Hom(V,W ) and summable families will be here sufficient (see para-
graph 2.1.2). We suppose that (V, δV , ǫV ) is a co-AAU and that (W,µW , 1W )
is a AAU. Then (Hom(V,W ), ∗, e) is a AAU (with e = 1W ◦ ǫV ). A series
S ∈ A[[X ]] being given, we say that f ∈ iff the family (〈S | Xn〉f∗n)n≥0 is
summable. It is easy to check that, if f ∈ Dom(S) ∩Dom(T ) and α ∈ A, one
has

(αS)(f) = αS(f) ; (S + T )(f) = S(f) + T (f) (25)

and
(TS)(f) = T (f) ∗ S(f) . (26)

If ((f)∗n)n≥0 is summable and S(0) = 0 then

f ∈ Dom(S) ∩Dom(T (S)) ; S(f) ∈ Dom(T ) (27)

and
T (S)(f) = T (S(f)) (28)

Proof. Let us first prove eq.26 . As f ∈ Dom(S) ∩Dom(T ),
the families (〈S | Xn〉f∗n)n≥0 and (〈T | Xm〉f∗m)n≥0 are summable, then so is

(

〈T | Xm〉f∗m ∗ 〈S | Xn〉f∗n
)

n,m≥0
(29)

as, for every x ∈ V , δ(x) =
∑N

i=1 x
(1)
i ⊗ x

(2)
i and for every i ∈ I,

suppw.r.t. m(〈T | Xm〉f∗m(x
(1)
i )) ; suppw.r.t. n(〈S | Xn〉f∗n(x

(2)
i ))

are finite. Then outside of the cartesian product of the (finite) union of these
supports, the product

(〈T | Xm〉f∗m ∗ 〈S | Xn〉f∗n)(x) = µW ((〈T | Xm〉f∗m ⊗ 〈S | Xn〉f∗n)(δ(x)))
(30)

9In case A is a geometric space, this morphism is called “evaluation at f” and corresponds
to a Dirac measure.
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is zero. Hence the summability.
Now

T (f) ∗ S(f) =

∞
∑

m=0

(〈T | Xm〉f∗m) ∗
∞
∑

n=0

(〈S | Xn〉f∗n) =

∞
∑

m=0

∞
∑

n=0

(〈T | Xm〉〈S | Xn〉f∗n+m) =

∞
∑

s=0

(

∞
∑

n+m=s

〈T | Xm〉〈S | Xn〉
)

f∗s =

∞
∑

s=0

(〈TS | Xs〉)f∗s = (TS)(f) (31)

We now prove the statements (27) and (28). If ((f)∗n)n≥0 is summable then f
belongs to all domains (i.e. is universally substituable) by virtue of eq.20 . For
all x ∈ V , it exists Nx ∈ N such that

n > Nx =⇒ (f)∗n(x) = 0 .

Now, for S such that S(0) = 0, one has S =
∑∞

n=1〈S | Xn〉Xn and then
Sk =

∑∞
n=k〈S

k | Xn〉Xn. Now, in view of eq.26 , one has

S(f)∗n(x) = Sn(f)(x) =

∞
∑

m=n

〈Sn | Xm〉(f)∗m(x) (32)

which is zero for n > Nx. Hence the summability of (S(f)∗n)n≥0 which im-
plies that S(f) ∈ Dom(T ). The family (〈T | Xn〉〈Sn | Xm〉(f)∗m)(n,m)∈N2 is
summable because, if x ∈ V and if n or m is greater than Nx then

〈T | Xn〉〈Sn | Xm〉(f)∗m(x) = 0 (33)

thus T (S(f)) is the sum

T (S(f)) =

∞
∑

n=0

〈T | Xn〉S(f)∗n =

∞
∑

n=0

〈T | Xn〉
∞
∑

m=n

〈Sn | Xm〉(f)∗m =

∞
∑

n=0

∞
∑

m=0

〈T | Xn〉〈Sn | Xm〉(f)∗m =

∞
∑

m=0

(

∞
∑

n=0

〈T | Xn〉〈Sn | Xm〉
)

(f)∗m =

∞
∑

m=0

〈T (S) | Xm〉(f)∗m = T (S)(f) (34)

2.2 Theorem of Cartier-Quillen-Milnor-Moore (analytic
form)

2.2.1 General properties of bialgebras

Let A be a unitary commutative ring with all (non-zero) integers invertible (i.e.
Q ⊂ A) and (B, µ, eB,∆, ǫ) a A-bialgebra.
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In a general bialgebra (B, µ, eB,∆, ǫ), one can always consider the Lie algebra of
primitive elements Prim(B) and build the map jB : U(Prim(B)) → B. Then,
A = jB(U(Prim(B))) is the subalgebra generated by the primitive elements. It
is not difficult to see that A is a sub-bialgebra of B as, for any list of primitive
elements L = [g1, g2, · · · gn], one has

∆(g1g2 · · · gn) = ∆(L[{1, 2, .., n}]) =
∑

I+J={1,2,..,n}

L[I]⊗ L[J ] (35)

where, for I = {i1 < i2 < .. < ik} ⊂ {1, 2, .., n},

L[I] = gi1gi1 · · · gik . (36)

From (35) one gets also that jB is a morphism of bialgebras. In order to prove
that it is always into, we need to construct the arrows σ, τ which are a de-
composition of a section of jB. Let us remark that, when Prim(B) is free as a

Prim(B) A B

U(B) T(Prim(B))

iA,P

iU ,P

iB,A

σ
jB

τ

Figure 1: The sub-bialgebra A generated by primitive elements.

A-module, the proof of this fact is a consequence of the PBW theorem10. But,
here, we will construct the section in the general case using projectors which
are now classical for the free case but which still can be computed analytically
[8] as they lie in Q[[X ]] and still converge in A.

Proof. (Injectivity of jB, construction of the section τ ◦ σ). —
Let A be the subalgebra of B generated by Prim(B), it is straightforward to
check that Im(jB) = A.
Remark that all series

∑

n≥0 an(I+)
∗n are summable on A (not in general on B

for example in case of non-trivial group-like elements).
We first prove that

π1 = log∗(I) =
∑

n≥1

(−1)n−1

n
(I+)

∗n (37)

is a projector A → Prim(B). The key point is that ∆A (the restriction of the
comultiplication to A) is a morphism of bialgebras 11 A → A⊗A. We begin by
to proving that ∆A “commutes” with the convolution. This is is a consequence
of the following property

10See [4] Ch2 §1 no 6 th 1 for a field of characteristic zero and §1 Ex. 10 for the free case
(over a ring A with Q ⊂ A).

11In fact it is the case for any cocommutative bialgebra, be it generated by its primitive
elements or not.
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Lemma 1. i) Let fi ∈ End(Bi), be such that ϕf1 = f2ϕ.

B1 B2

B1 B2

ϕ

f1

ϕ

f2

Figure 2: Intertwining with a morphism of bialgebras (the functions of fi below
will be computed with the respective convolution products).

i) Then, if P ∈ A[X ], one has

ϕP (f1) = P (f2)ϕ . (38)

ii) If the series
∑

n≥0(I
+
(i))

∗n, i = 1, 2 are summable, if f1(1) = 0 (which implies

f2(1) = 0) and S ∈ A[[X ]], then the families (〈S | Xn〉f∗n
i )n∈N are summable,

we denote S(fi) their sums (this definition is coherent with the preceding when
S is a polynomial).
One has, for the convolution product,

ϕS(f1) = S(f2)ϕ . (39)

Proof. The only delicate part is (ii). First, one remarks that, if ϕ is a morphism
of bialgebras, one has

(ϕ⊗ ϕ) ◦∆+
1 = ∆+

2 ◦ ϕ (40)

then, the image by ϕ of an element of order less than N (i.e. such that

∆
+(N)
1 (x) = 0) is of order less than N . Let now S be an univariate series

S =
∑∞

k=0 akX
k. For every element x of order less than N and f ∈ End(B)

such that, one has

S(f)(x) =
∞
∑

k=0

akf
∗k(x) =

∞
∑

k=0

akµ
(k−1)f⊗k∆(k−1)(x)

=

∞
∑

k=0

akµ
(k−1)(f⊗k) ◦ (I⊗k

+ )∆(k−1)(x)

=

N
∑

k=0

akµ
(k−1)(f⊗k)∆

(k−1)
+ (x) . (41)

This proves, in view of (i) that ϕ ◦ S(f1) = S(f2) ◦ ϕ.

We reprove now that π1 is a projector[8] B → Prim(B) by means of the following
lemma.
In case B is cocommutative, the comultiplication ∆ is a morphism of bialgebras,
so one has

∆ ◦ log∗(I) = log∗(I ⊗ I) ◦∆ (42)
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But

log∗(I ⊗ I) = log∗((I ⊗ e) ∗ (e ⊗ I))
= log∗(I ⊗ e) + log∗(e⊗ I)
= log∗(I) ⊗ e+ e⊗ log∗(I) (43)

Then
∆(log∗(I)) = (log∗(I)⊗ e+ e⊗ log∗(I)) ◦∆ (44)

which implies that log∗(I)(B) ⊂ Prim(B). To finish to prove that π1 is a
projector onto Prim(B), one has just to remark that, for x ∈ Prim(B) and
n ≥ 2 (Id+)∗n(x) = 0 then

log∗(I)(x) = Id+(x) = x . (45)

Now, we consider

IA = exp∗(log∗(IA)) =
∑

n≥0

1

n!
π∗n
1,[A] . (46)

where π1,[A] = log∗(IA).
Let us prove that the summands form an resolution of unity.
First, one defines A[n] as the linear span of the powers {Pn}P∈Prim(B) or, equiv-
alently of the symmetrized products

1

n!

∑

σ∈Sn

Pσ(1)Pσ(2) · · ·Pσ(n) . (47)

It is obvious that Im(π∗n
1,[A]) ⊂ A[n]. We remark that

π∗n
1,[A] = µ

(n−1)
B π⊗n

1,[A]∆
(n−1) = µ

(n−1)
B π⊗n

1,[A]I
⊗n
+ ∆(n−1) = µ

(n−1)
B π⊗n

1,[A]∆
(n−1)
+

(48)
as π1,[A]I+ = π1,[A]. Now, let P ∈ Prim(A). We compute π∗n

1,[A](P
m). Indeed,

if m < n, one has

π∗n
1,[A](P

m) = µn−1
B ∆n−1

+ (Pm) = 0 . (49)

If n = m, one has, from (35)

∆n−1
+ (Pn) = n!P⊗n (50)

and hence π∗n
1,[A] is the identity on A[n]. If m > n, the nullity of π∗n

1,[A](P
m) is a

consequence of the following lemma.

Lemma 2. Let B be a bialgebra and P a primitive element of B. Then
i) The series log∗(I) is summable on each power Pm

ii) log∗(I)(P
m) = 0 for m > 2

10



A[X ] B

A[X ] B

ϕP

I+
A[X]

ϕP

I+B

Figure 3:

Proof. i) As ∆∗N
+ (Pm) = 0 for N > m, one has I∗N+ (Pm) = 0 for these values.

ii) The morphism of AAU ϕP : A[X ] → B, defined by

ϕP (X) = P (51)

is, in fact a morphism of bialgebras and one checks easily that One has just to
check that π1,[A[X]](X

m) = 0 for m > 2 which is a consequence of the equality

∑

w∈Y ∗

(w ⊗ π1(w)) = log(
∑

w∈Y ∗

w ⊗ w) (52)

because, for Y = X one has

log(
∑

w∈Y ∗

w ⊗ w) = log(
∑

n≥0

Xn ⊗Xn) =

log(
∑

n≥0

1

n!
(X ⊗X)(⊔⊔ ⊗conc)n) = log(exp(X ⊗X)) = X ⊗X (53)

this proves that π∗n
1,[A](A[m]) = 0 for m 6= n and hence the summands of the

sum

IA = exp∗(log∗(IA)) =
∑

n≥0

1

n!
π∗n
1,[A] . (54)

are pairwise orthogonal projectors with Im(π∗n
1,[A]) = A[n] and then

A = ⊕n≥0 A[n] . (55)

This decomposition permits to construct σ by

σ(Pn) =
1

n!
∆

(n−1)
+ (Pn) ∈ Tn(Prim(B)) (56)

for n ≥ 1 and, one sets σ(1B) = 1T (Prim(B).
It is easy to check that jB ◦ τ ◦ σ = IdA as A is generated by the powers
(Pm)P∈Prim(B),m≥0.
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2.2.2 The theorem from the point of view of summability

The bialgebra B being supposed cocommutative, we discuss the equivalent con-
ditions under which we are in the presence of an enveloping algebra i.e.

B ∼=A−bialg U(Prim(B)) (57)

from the point of view of the convergence of the series log∗(I)
12. These condi-

tions are know as the theorem of Cartier-Quillen-Milnor-Moore (CQMM).

Theorem 1. [4] Let B be a A-cocommutative bialgebra (A is a Q-AAU) and A,
as above, the subalgebra generated by Prim(B). Then, the following conditions
are equivalent :

i) B admits an increasing filtration

B0 = A.1B ⊂ B1 ⊂ · · · ⊂ Bn ⊂ Bn+1 · · ·

compatible with the structures of algebra (i.e. for all p, q ∈ N, one has
BpBq ⊂ Bp+q) and coalgebra :

∀n ∈ N, ∆(Bn) ⊂
∑

p+q=n

Bp ⊗ Bq.

ii) ((Id+)∗n)n∈N is summable in End(B).

iii) B = A.

Proof. We prove
(ii) =⇒ (iii) =⇒ (i) =⇒ (ii) (59)

(ii) =⇒ (iii). —

The image of jB it is the subalgebra generated by the primitive elements. Let
us prove that, when ((Id+)∗n)n∈N is summable, one has Im(jB) = B. The series
log(1 +X) is without constant term so, in virtue of (28) and the summability
of ((Id+)∗n)n∈N, one has

exp(log(e+Id+)) = exp(log(1+X))(Id+) = 1End(B)+Id+ = e+Id+ = I (60)

Set π1 = log(e+ Id+).
To end this part, let us compute, for x ∈ B

x = exp(π1)(x) = (
∑

n≥0

1

n!
π∗n
1 )(x) = (

N
∑

n=0

1

n!
µ(n−1)π⊗n

1 )∆(n−1)(x) (61)

12In a A-bialgebra, one can always consider the series of endomorphisms

∑

n≥1

(−1)n−1

n
(I+)∗n . (58)

The family ( (−1)n−1

n
(I+)∗n)n≥0 is summable iff ((I+)∗n)n≥0 is (use eq.20 ).

12



where N is the first order for which ∆+(n−1)(x) = 0 (as π1 ◦ Id+ = π1). This
proves that B is generated by its primitive elements.
(iii) =⇒ (i). —

Remark 1. i) The equivalence (i) ⇐⇒ (iii) is the classical CQMM theorem
(see [4]). The equivalence with (ii) could be called the “Convolutional CQMM
theorem”. The combinatorial aspects of this last one will be the subject of a
forthcoming paper [CT, HNM, GHED Nguyen ?]
ii) When Prim(B) is free, we have B ∼=k−bialg U(Prim(B)) and B is an envelop-
ing algebra.

3 Case study : φ-deformed stuffle

3.1 Results for the φ-deformed stuffle

Let Y = {yi}i∈I be still a totally ordered alphabet and A〈Y 〉 be equipped with
the φ-deformed stuffle defined by

i) for any w ∈ Y ∗, 1Y ∗ φw = w φ1Y ∗ = w,

ii) for any yi, yj ∈ Y and u, v ∈ Y ∗,

yiu φyjv = yj(yiu φv) + yi(u φyjv) + φ(yi, yj)u φv, (62)

where φ is an arbitrary mapping

φ : Y × Y −→ AY .

Definition 2. Let

φ : Y × Y −→ AY

defined by its structure constants

(yi, yj) 7−→ φ(yi, yj) =
∑

k∈I

γk
i,j yk.

Proposition 3. The recursion (62) defines a unique mapping

φ : Y ∗ × Y ∗ −→ A〈Y 〉.

Proof. Let us denote (Y ∗ × Y ∗)≤n the set of words (u, v) ∈ Y ∗ × Y ∗ such that
|u|+ |v| ≤ n. We construct a sequence of mappings

φ≤n
: (Y ∗ × Y ∗)≤n −→ AY.

which satisfy the recursion of eq.62 . For n = 0, we have only a premiage and

φ≤0(1Y ∗) = 1Y ∗ ⊗ 1Y ∗ . Suppose φ≤n
constructed and let

13



(u, v) ∈ (Y ∗ × Y ∗)≤n+1 \ (Y ∗ × Y ∗)≤n, i.e. |u|+ |v| = n+ 1.
One has three cases : u = 1Y ∗ , v = 1Y ∗ and (u, v) ∈ Y + × Y +. For the two
first, one uses the initialisation of the recursion thus

φ≤n+1(w, 1Y ∗) = φ≤n+1(1Y ∗ , w) = w

for the last case, write u = yiu
′, v = yjv

′ and use, to get

φ≤n+1(yiu
′, yjv

′) = yi φ≤n
(u′, yjv

′)+yj φ≤n
(yiu

′, v′)+yi+j φ≤n
(u′, v′)

this proves the existence of the sequence ( φ≤n
)n≥0. Every φ≤n+1 extends

the preceding so there is a mapping

φ : Y ∗ × Y ∗ −→ A〈Y 〉.

which extends all the φ≤n+1 (the graph of which is the union of the graphs

of the φ≤n
). This proves the existence. For unicity, just remark that, if there

were two mappings φ,
′
φ, the fact that they must fulfill the recursion (62)

implies that φ = ′
φ.

We still denote φ and φ the linear extension of φ and φ to AY ⊗AY and
A〈Y 〉 ⊗A〈Y 〉 respectively.
Then φ is a law of algebra (with 1Y ∗ as unit) on A〈Y 〉.

Lemma 3. Let ∆ be the morphism A〈Y 〉 → A〈〈Y ∗⊗Y ∗〉〉 defined on the letters
by

∆(ys) = ys ⊗ 1 + 1⊗ ys +
∑

n,m∈I

γs
n,m yn ⊗ ym (63)

Then

i) for all w ∈ Y + we have

∆(w) = w ⊗ 1 + 1⊗ w +
∑

u,v∈Y +

〈∆(w) | u⊗ v〉u⊗ v (64)

ii) for all u, v, w ∈ Y ∗, one has

〈u φv | w〉 = 〈u⊗ v | ∆(w)〉⊗ 2 (65)

Proof. i) By recurrence on |w|. If w = ys is of length one, it is obvious from
the definition. If w = ysw

′, we have, from the fact that ∆ is a morphism

∆(w) =

(

ys ⊗ 1 + 1⊗ w +
∑

i,j∈I

γs
i,jyi ⊗ yj

)

(

w′ ⊗ 1 + 1⊗ w′ +
∑

u,v∈Y +

〈u ⊗ v | ∆(w′)〉

)

(66)

the development of which proves that ∆(w) is of the desired form.
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ii) Let S(u, v) :=
∑

w∈Y ∗〈u ⊗ v | ∆(w)〉w. It is easy to check (and left to
the reader) that, for all u ∈ Y ∗, S(u, 1) = S(1, u) = u. Let us now prove
that, for all yi, yj ∈ Y and u, v ∈ Y ∗

S(yiu, yjv) = yiS(u, yjv) + yjS(yiu, v) + φ(yi, yj)S(u, v) (67)

Indeed, remarking that ∆(1) = 1⊗ 1, one has

S(yiu, yjv) =
∑

w∈Y ∗

〈yiu⊗ yjv | ∆(w)〉w =
∑

w∈Y +

〈yiu⊗ yjv | ∆(w)〉w

=
∑

ys∈Y, w′∈Y ∗

〈yiu⊗ yjv | ∆(ysw
′)〉 ysw

′

=
∑

ys∈Y, w′∈Y ∗

〈yiu⊗ yjv |

(

ys ⊗ 1 + 1⊗ ys +
∑

n,m∈I

γs
n,m yn ⊗ ym

)

∆(w′)〉 ysw
′

=
∑

ys∈Y, w′∈Y ∗

〈yiu⊗ yjv | (ys ⊗ 1)∆(w′)〉 ysw
′

+
∑

ys∈Y, w′∈Y ∗

〈yiu⊗ yjv | (1⊗ ys)∆(w′)〉 ysw
′

+
∑

ys∈Y, w′∈Y ∗

〈yiu⊗ yjv | (
∑

n,m∈I

γs
n,m yn ⊗ ym)∆(w′)〉 ysw

′

=
∑

w′∈Y ∗

〈u⊗ yjv | ∆(w′)〉 yiw
′ +

∑

w′∈Y ∗

〈yiu⊗ v | ∆(w′)〉 yjw
′

+
∑

ys∈Y, w′∈Y ∗

〈u⊗ v | γs
i,j∆(w′)〉 ysw

′

= yi
∑

w′∈Y ∗

〈u⊗ yjv | ∆(w′)〉w′ + yj
∑

w′∈Y ∗

〈yiu⊗ v | ∆(w′)〉w′

+
∑

ys∈Y

γs
i,j ys

∑

w′∈Y ∗

〈u⊗ v | ∆(w′)〉w′

= yiS(u, yjv) + yjS(yiu, v) + φ(yi, yj)S(u, v)

then the computation of S shows that, for all u, v ∈ Y ∗, S(u, v) = u φv
as S is bilinear, one has S = φ.

Theorem 2. i) The law φ is commutative if and only if the extension

φ : AY ⊗AY −→ AY

is so.

ii) The law φ is associative if and only if the extension

φ : AY ⊗AY −→ AY

is so.
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iii) Let γz
x,y := 〈φ(x, y)|z〉 be the structure constants of φ (w.r.t. the basis Y ),

then φ is dualizable if and only if (γz
x,y)x,y,z∈X is of finite decomposition

type13 in its superscript in the following sense

(∀z ∈ X)(#{(x, y) ∈ X2|γz
x,y 6= 0} < +∞). (68)

Proof. (i) First, let us suppose that φ be commutative and consider T , the twist,
i.e. the operator in A〈〈Y ∗ ⊗ Y ∗〉〉 defined by

〈T (S) | u⊗ v〉 = 〈S | v ⊗ u〉 (69)

it is left to the reader to prove that T is a morhism of algebras. If φ is commu-
tative, then so is the following diagram.

Y A〈〈Y ∗ ⊗ Y ∗〉〉

A〈〈Y ∗ ⊗ Y ∗〉〉

∆
φ

∆
φ

T

and, then, the two morphisms ∆
φ
and T ◦∆

φ
coincide on the generators

Y of the algebra A〈Y 〉 and hence over A〈Y 〉 itself. Now for all u, v, w ∈ Y ∗, one
has

〈v φu | w〉 = 〈v ⊗ u | ∆
φ
(w)〉 = 〈u⊗ v | T ◦∆

φ
(w)〉 =

〈u⊗ v | ∆
φ
(w)〉 = 〈u φv | w〉 (70)

which proves that v φu = u φv. Conversely, if φ is commutative, one has,
for i, j ∈ I

φ(yj , yi) = yj φyi − (yj ⊔⊔ yi) = yi φyj − (yi ⊔⊔ yj) = φ(yi, yj) (71)

(ii) Likewise, if φ is associative, let us define the operators

∆
φ
⊗ I : A〈〈Y ∗ ⊗ Y ∗〉〉 → A〈〈Y ∗ ⊗ Y ∗ ⊗ Y ∗〉〉 (72)

by
〈∆

φ
⊗ I(S) | u⊗ v ⊗ w〉 = 〈S | (u φv)⊗ w〉 (73)

and, similarly,

I ⊗∆
φ
: A〈〈Y ∗ ⊗ Y ∗〉〉 → A〈〈Y ∗ ⊗ Y ∗ ⊗ Y ∗〉〉 (74)

by
〈I ⊗∆

φ
(S) | u⊗ v ⊗ w〉 = 〈S | u⊗ (v φw)〉 (75)

it is easy to check by direct calculation that they are well defined morphisms
and that the following diagram

13One can prove that, in case Y is a semigroup, the associated φ is fulfills eq.68 iff Y fulfills
“condition D” of Bourbaki (see [3])
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Y A〈〈Y ∗ ⊗ Y ∗〉〉

A〈〈Y ∗ ⊗ Y ∗〉〉 A〈〈Y ∗ ⊗ Y ∗ ⊗ Y ∗〉〉

∆
φ

∆
φ

∆
φ
⊗ I

I ⊗∆
φ

is commutative. This proves that the two composite morphisms

∆
φ
⊗ I ◦∆

φ

and
I ⊗∆

φ
◦∆

φ

coincide on Y and then on A〈Y 〉. Now, for u, v, w, t ∈ Y ∗, one has

〈(u φv) φw | t〉 = 〈(u φv)⊗ w | ∆
φ
(t)〉 = 〈u⊗ v ⊗ w | (∆

φ
⊗ I)∆

φ
(t)〉 =

〈u⊗ v ⊗ w | (I ⊗∆
φ
)∆

φ
(t)〉 = 〈u⊗ (v φw) | ∆ φ

(t)〉 = 〈u φ(v φw) | t〉

which proves the associatvity of the law φ. Conversely, if φ is associative,
the direct expansion of the right hand side of

0 = (yi φyj) φyk − yi φ(yj φyk) (76)

proves the associativity of φ.
iii) We suppose that (γz

x,y)x,y,z∈X is of finite decomposition type in its super-
script, in this case ∆

φ
takes its values in A〈Y 〉 ⊗A〈Y 〉 therefore its dual, the

law φ is dualizable. Conversely, if Im(∆
φ
) ⊂ A〈Y 〉 ⊗ A〈Y 〉, one has, for

every s ∈ I

∑

n,m∈I

γs
n,m yn ⊗ ym = ∆(ys)− (ys ⊗ 1 + 1⊗ ys) ∈ A〈Y 〉 ⊗A〈Y 〉

which proves the claim.

Theorem 3. Let A be a commutative ring with unit and φ : AY ⊗ AY −→
AY be an associative and commutative law (of algebra) on AY . Then if φ is
dualizable14, let ∆

φ
: A〈Y 〉 −→ A〈Y 〉⊗A〈Y 〉 denote its dual comultiplication,

then

a) Bφ = (A〈Y 〉, conc, 1Y ∗ ,∆
φ
, ε) is a bialgebra.

14For the pairing defined by

∀x, y ∈ Y, 〈x | y〉 = δx,y)
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b) If A is a field of characteristic 0 then Bφ is an enveloping bialgebra if

and only if the algebra AX admits an increasing filtration
(

(AY )n

)

n∈N

with (AY )0 = {0} and compatible with both the multiplication and the
comultiplication ∆

φ
i.e.

(AY )p(AY )q ⊂ (AY )p+q

∆
φ
((AY )n) ⊂

∑

p+q=n

(AY )p ⊗ (AY )q .

Proof. i) All the properties of bialgebra have been checked for

Bφ = (A〈Y 〉, conc, 1Y ∗ ,∆
φ
, ε)

save one : the fact that ∆
φ
be a morphism for the product. This is a conse-

quence of the fact that, in the general case,

∆
φ
: A〈Y 〉 → A〈〈Y ∗ ⊗ Y ∗〉〉

is a morphism of algebras.
ii) Let us suppose first that Bφ = UG is a enveloping algebra. Then, the
intersection of the standard increasing filtration with AY i.e.

(AY )n := span(Gn) ∩AY

is compatible with product and coproduct and (AY )0 := K.1UG ∩ AY = {0}.

Conversely let
(

(AY )n

)

n∈N
b an increasing filtration of AY which fulfils the

conditions of the theorem and set

(Bφ)n = k.1Bφ
+
∑

k≥0

∑

p1+p2+···pk=n

pi>0

span
(

(AY )p1(AY )p2 · · · (AY )pk

)

(77)

has the properties required for the application of the theorem of Cartier-Milnor-
Moore. Hence Bφ is an enveloping algebra.

With the co-unit

∀P ∈ A〈Y 〉, ǫ(P ) = 〈P | 1Y ∗〉, (78)

and the antipode defined by, for any w = xi1 . . . xir ∈ Y ∗,

a
φ
(yi1 . . . yir ) = −

r−1
∑

k=1

a
φ
(yi1 . . . yik) φyik+1

. . . yir , (79)

one gets mutually dual Hopf algebras H
φ
= (Q〈Y 〉, conc, 1Y ∗ ,∆

φ
, ǫ, a

φ
)

and H∨
φ
= (Q〈Y 〉, φ, 1Y ∗ ,∆conc, ǫ, a φ

).

Lemma 4. Let P = {P ∈ Q〈Y 〉 | ∆
φ
P = P ⊗ 1 + 1⊗ P}. Then P is stable

by the Lie bracket and by linear combinations.
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Proof. Since ∆
φ
y1 = y1 ⊗ 1 + 1⊗ y1 then P 6= ∅. Let P,Q ∈ P and p, q ∈ Q.

Firstly, since ∆
φ
([P,Q]) = ∆

φ
(PQ − QP ) = ∆

φ
(PQ) − ∆

φ
(QP ),

∆
φ
(QP ) = (∆

φ
Q)(∆

φ
P ) and ∆

φ
(PQ) = (∆

φ
P )(∆

φ
Q) then

one has ∆
φ
([P,Q]) = ∆

φ
([P,Q]) ⊗ 1 + 1 ⊗ ∆

φ
([P,Q]) meaning that

[P,Q] ∈ P and P is stable by the Lie bracket. Secondly, ∆
φ
(pP + qQ) =

p∆
φ
P + q∆

φ
Q = p(P ⊗ 1 + 1 ⊗ P ) + q(Q ⊗ 1 + 1 ⊗ Q) = (pP + qQ) ⊗

1 + 1 ⊗ (pP + qQ) meaning that pP + qQ ∈ P and P is then stable by linear
combinations.

Lemma 5. With the notations of Lemma 4, then Y ⊂ P ⇐⇒ LieQ〈Y 〉 = P.

Proof. Since LieQ〈Y 〉 is the smallest algebra containing Y and it is stable by
the Lie bracket and by linear combinations then, by Lemma 4, P ⊂ LieQ〈Y 〉.
If P = LieQ〈Y 〉 then Y ⊂ P . Conversely, if Y ⊂ P ⊂ LieQ〈Y 〉 then, by
definition, LieQ〈Y 〉 ⊂ P .

Proposition 4. With the notations of Lemma 4, then P ( LieQ〈Y 〉.

Proof. For any k ≥ 2 the letter yk is a Lie polynomial but, by (??), one has
∆

φ
yk 6= yk ⊗ 1 + 1⊗ yk. Thus, by Lemma 5, it follows the conclusion.

Lemma 6 (Friedrichs criterium). Let S ∈ Q〈〈Y 〉〉 such that 〈S | 1Y ∗〉 = 1.
Then, for the co-product ∆

φ
,

i) S is primitive, i.e. ∆
φ
S = S ⊗ 1 + 1⊗ S, if and only if,

∀u, v ∈ Y +, 〈S | u φv〉 = 0.

ii) S is group-like, i.e. ∆
φ
S = S ⊗ S, if and only if,

∀u, v ∈ Y +, 〈S | u φv〉 = 〈S | u〉〈S | v〉.

Proof. The expected equivalence is due respectively to the following facts

∆ S = S ⊗ 1 + 1⊗ S − 〈S | 1Y ∗ ⊗ 1Y ∗〉1⊗ 1 +
∑

u,v∈Y +

〈S | u φv〉u⊗ v,

∆ S =
∑

u,v∈Y ∗

〈S | u φv〉u ⊗ v and S ⊗ S =
∑

u,v∈Y ∗

〈S | u〉〈S | v〉u⊗ v.

Lemma 7. Let S ∈ Q〈〈Y 〉〉 such that 〈S | 1Y ∗〉 = 1. Then, for the co-product
∆

φ
, S is group-like if and only if15 logS is primitive.

15For any S ∈ Q〈Y 〉⊗̂Q〈Y 〉, if 〈S | 1Y ∗ ⊗ 1Y ∗ 〉 = 0 then one defines

log(1 + S) =
∑

n≥1

(−1)n−1

n
Sn and exp(S) =

∑

n≥1

Sn

n!
.

and one has usual formulas log(exp(S)) = S and exp(log(1 + S)) = 1 + S.
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Proof. Since ∆
φ
and the maps T 7→ T ⊗ 1, T 7→ 1 ⊗ T are continous homo-

morphisms then if logS is primitve then ∆
φ
(log S) = log S⊗1+1⊗ logS (see

Lemma 6(88)) and since logS⊗ 1 and 1⊗ logS commute then we get successily

∆
φ
S = ∆

φ
(exp(log S))

= exp(∆
φ
(log S))

= exp(logS ⊗ 1) exp(1⊗ logS)

= (exp(logS)⊗ 1)(1⊗ exp(logS))

= S ⊗ S.

This means S is group-like. The reciprocal can be obtained in the same way.

Lemma 8. Let {χl}l∈LynY be a transcendence basis of (Q〈Y 〉, φ) and let
{χw}w∈Y ∗ be the completed basis of (Q〈Y 〉, φ) (viewed as a Q-module) defined
by, for any w = l1 . . . ln with l1, . . . , ln ∈ LynY and l1 ≥ . . . ≥ ln,

χw = χl1 φ . . . φχln

in duality with {ξw}w∈Y ∗ :

∀u, v ∈ Y ∗, 〈χu | ξv〉 = δu,v.

Then, for any w = l1 . . . ln with l1, . . . , ln ∈ LynY and l1 ≥ . . . ≥ ln, one has

〈χw | 1Y ∗〉 = 〈ξw | 1Y ∗〉 = 0 and 〈χw | χl1 . . . χln〉 = 〈ξw | χl1 . . . χln〉 = 1.

Proof. It is immediate by construction and by duality.

Lemma 9. With the notations of Lemma 8, if w /∈ LynY and if16

∀l ∈ LynY, 〈χl1 φ . . . φχln | ξl〉 = 0

then the polynomials {ξl}l∈LynY are primitive, for the co-product ∆
φ
.

Proof. We have

∆
φ
ξl =

∑

u∈Y +

〈u φ1Y ∗ | ξl〉u ⊗ 1 +
∑

v∈Y +

〈1Y ∗ φv | ξl〉1 ⊗ v

+
∑

u,v∈Y +

〈u φv | ξl〉u⊗ v + 〈1Y ∗ φ1Y ∗ | ξl〉1⊗ 1

= ξl ⊗ 1 + 1⊗ ξl.

Because, after decomposing the words u and v on the transcendence basis
{χl}l∈LynY and by assumption, the third sum is vanishing. The last one is
also vanishing since the ξl’s are proper (see Lemma 6).

Lemma 10. Let S1, . . . , Sn be proper formal power series in Q〈〈Y 〉〉.
Let P1, . . . , Pm be primitive elements in Q〈Y 〉, for the co-product ∆⊔⊔ .

16This condition can be viewed as an analogous of the generalized Friedrichs’ criterion [8].
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i) If n > m then 〈S1 φ . . . φSn | P1 . . . Pm〉 = 0.

ii) If n = m then

〈S1 φ . . . φSn | P1 . . . Pn〉 =
∑

σ∈Sn

n
∏

i=1

〈Si | Pσ(i)〉.

iii) If n < m then, by considering the language M over A = {P1, . . . , Pm}

M = {w ∈ A∗|w = Pj1 . . . Pj|w|
, j1 < . . . < j|w|, |w| ≥ 1}

and the morphism µ : Q〈A〉 −→ Q〈Y 〉, one has :

〈S1 φ . . . φSn | P1 . . . Pm〉 =
∑

w1,...,wm∈M
w1 φ... φwm=P1...Pm

n
∏

i=1

〈Si | µ(wi)〉.

Proof. On the one hand, since the Pi’s are primitive then

∆
(n−1)

φ
(Pi) =

∑

p+q=n−1

1⊗p ⊗ Pi ⊗ 1⊗q.

On the other hand, one has ∆
(n−1)

φ
(P1 . . . Pm) = ∆

(n−1)
φ

(P1) . . .∆
(n−1)

φ
(Pm) and

〈S1 φ . . . φSn | P1 . . . Pm〉 = 〈S1 ⊗ . . .⊗ Sn | ∆
(n−1)

φ
(P1 . . . Pm)〉. Hence,

〈S1 φ . . . φSn | P1 . . . Pm〉 = 〈
n

⊗

i=1

Si |
m
∏

i=1

∑

p+q=n−1

1⊗p ⊗ Pi ⊗ 1⊗q〉.

i) For n > m, by expanding ∆
(n−1)

φ
(P1) . . .∆

(n−1)
φ

(Pm), one obtains a sum
of tensors contening at least one factor equal to 1. For j = 1, .., n, the
formal power series Sj is proper and the result follows immediatly.

ii) For n = m, since

n
∏

i=1

∆
(n−1)

φ
(Pi) =

∑

σ∈Sn

n
⊗

i=1

Pσ(i) +Q,

where Q is sum of tensors contening at least one factor equal to 1 and the
Sj ,’s are proper then 〈S1 ⊗ . . .⊗ Sn | Q〉 = 0. Thus, the result follows.

iii) For n < m, since, for j = 1, .., n, the power series Sj is proper then the
expected result follows by expanding the product

m
∏

i=1

∆
(n−1)

φ
(Pi) =

m
∏

i=1

∑

p+q=n−1

1⊗p ⊗ Pi ⊗ 1⊗q..
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Definition 3. Let π1 and π̌1 be the mutually adjoint degree-preserving linear
endomorphisms of Q〈Y 〉 given by, for any w ∈ Y +,

π1(w) = w +
∑

k≥2

(−1)k−1

k

∑

u1,...,uk∈Y +

〈w | u1 φ . . . φuk〉u1 . . . uk,

π̌1(w) = w +
∑

k≥2

(−1)k−1

k

∑

u1,...,uk∈Y +

〈w | u1 . . . uk〉u1 φ . . . φuk.

In particular, for any yk ∈ Y , the polynomials π1(yk) and π̌1(yk) are given by

π1(yk) = yk +
∑

l≥2

(−1)l−1

l

∑

j1,...,jl≥1

j1+...+jl=k

yj1 . . . yjl and π̌1(yk) = yk.

Proposition 5. Let DY be the diagonal series over Y :

DY =
∑

w∈Y ∗

w ⊗ w.

Then

i) logDY =
∑

w∈Y +

w ⊗ π1(w) =
∑

w∈Y +

π̌1(w) ⊗ w.

ii) For any w ∈ Y ∗, we have

w =
∑

k≥0

1

k!

∑

u1,...,uk∈Y ∗

〈w | u1 φ . . . φuk〉π1(u1) . . . π1(uk)

=
∑

k≥0

1

k!

∑

u1,...,uk∈Y ∗

〈w | u1 . . . uk〉π̌1(u1) φ . . . φπ̌1(uk).

Proof. i) Expanding by different ways the logarithm, it follows the results :

logDY =
∑

k≥1

(−1)k−1

k

(

∑

w∈Y +

w ⊗ w

)k

=
∑

k≥1

(−1)k−1

k

∑

u1,...,uk∈Y +

(u1 φ . . . φuk)⊗ u1 . . . uk

=
∑

w∈Y +

w ⊗
∑

k≥1

(−1)k−1

k

∑

u1,...,uk∈Y +

〈w | u1 φ . . . φuk〉u1 . . . uk.

logDY =
∑

w∈Y +

∑

k≥1

(−1)k−1

k

∑

u1,...,uk∈Y +

〈w | u1 . . . uk〉u1 φ . . . φuk ⊗ w.

22



ii) SinceDY = exp(log(DY )) then, by the previous results, one has separately,

DY =
∑

k≥0

1

k!

(

∑

w∈Y +

w ⊗ π1(w)

)k

=
∑

k≥0

1

k!

∑

u1,...,uk∈Y +

(u1 φ . . . φuk)⊗ (π1(u1) . . . π1(uk))

=
∑

w∈Y +

w ⊗
∑

k≥1

1

k!

∑

u1,...,uk∈Y +

〈w | u1 φ . . . φuk〉π1(u1) . . . π1(uk).

DY =
∑

k≥0

1

k!

∑

u1,...,uk∈Y +

(π̌1(u1) φ . . . φπ̌1(uk))⊗ (u1 . . . uk)

=
∑

w∈Y +

∑

k≥0

1

k!

∑

u1,...,uk∈Y +

〈w | u1 . . . uk〉π̌1(u1) φ . . . φπ̌1(uk)⊗ w.

It follows then the expected result.

Lemma 11. For any w ∈ Y +, one has ∆
φ
π1(w) = π1(w) ⊗ 1 + 1⊗ π1(w).

Proof. Let α be the alphabet duplication isomorphism defined by

∀ȳ ∈ Ȳ , ȳ = α(y).

Applying the tensor product of algebra isomorphisms α ⊗ Id to the diagonal
series DY , we obtain, by Lemma 6, a group-like element and then applying the
logarithm of this element (or equivalently, applying α⊗ π1 to DY ) we obtain S
which is, by Lemma 7, a primitive element :

(α⊗ Id)DY =
∑

w∈Y ∗

α(w) w and S = (α⊗ π1)DY =
∑

w∈Y ∗

α(w) π1(w).

The two members of the identity ∆
φ
S = S ⊗ 1 + 1⊗ S give respectively

∑

w∈Y ∗

α(w) ∆
φ
π1(w) and

∑

w∈Y ∗

α(w) π1(w)⊗ 1 +
∑

w∈Y ∗

α(w) 1⊗ π1(w).

Since {w}w∈Ȳ ∗ as a basis for Q〈Ȳ 〉 then identifying the coefficients tn the pre-
vious expressions, we get ∆

φ
π1(w) = π1(w) ⊗ 1 + 1 ⊗ π1(w) meaning that

π1(w) is primitive.

3.2 Pair of bases in duality on φ-deformed stuffle algebra

Definition 4. Let {Πl}l∈LynY and {Πw}w∈Y ∗ be the families of respectively
LieQ〈Y 〉 and U(LieQ〈Y 〉) obtained as follows

Πyk
= π1(yk) for k ≥ 1,

Πl = [Πs,Πr] for l ∈ LynX, standard factorization of l = (s, r),

Πw = Πi1
l1
. . .Πik

lk
for w = li11 . . . likk , l1 > . . . > lk, l1 . . . , lk ∈ LynY.
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Let {Σw}w∈Y ∗ be the family of the quasi-shuffle algebra (viewed as a Q-module)
obtained by duality with {Πw}w∈Y ∗ :

∀u, v ∈ Y ∗, 〈Σv | Πu〉 = δu,v.

Proposition 6. Let P̄ = {P ∈ Q〈Ȳ 〉 | ∆
φ
P = P ⊗ 1 + 1 ⊗ P}, where

Ȳ = {π1(yk)}k≥1. Then17 LieQ〈Ȳ 〉 = P̄.

Proof. By Lemma 11 and by Lemma 5, we get then the expected result.

Proposition 7. i) For l ∈ LynY , the polynomial Πl is upper triangular :

Πl = l +
∑

v>w,(v)=(l)

cvv.

ii) The families {Πw}w∈Y ∗ and {Σw}w∈Y ∗ are upper and lower triangular
respectively18. On other words, for any w ∈ Y +, by denoting (w) the
degree of w with (yk) = deg(yk) = k, one has

Πw = w +
∑

v>w,(v)=(w)

cvv and Σw = w +
∑

v<w,(v)=(w)

dvv.

Proof. i) Let us prove it by induction on the length of l : the result is
immediat for l ∈ Y . The result is suppose verified for any l ∈ LynY ∩ Y k

and 0 ≤ k ≤ N . At N + 1, by the standard factorization (l1, l2) of l, one
has Πl = [Πl1 ,Πl2 ] and l2l1 > l1l2 = l. By induction hypothesis,

Πl1 = l1 +
∑

v>l1,(v)=(l1)

cvv and Πl2 = l2 +
∑

u>l2,(v)=(l2)

duu,

⇒ Πl = l +
∑

w>l,(w)=(l)

eww,

getting ew’s from cv’s and du’s. Actually, the Lie bracket gives

Πl = [l1, l2] +
∑

u>l2,(v)=(l2)

dul1u+
∑

v>l1,(v)=(l2)

u>l2,(u)=(l1)

cvduvu

−
∑

v>l1,(v)=(l1)

cvl2v −
∑

v>l1,(v)=(l2)

u>l2,(u)=(l1)

cvduuv

= [l1, l2] +
∑

u>l1l2,(v)=(l1l2)

d′uu+
∑

vu>l1l2,(vu)=(l1l2)

cvduvu

−
∑

v>l2l1,(v)=(l2l1)

c′vv −
∑

uv>l2l1,(uv)=(l2l1)

cvduuv

17Any P ∈ Q〈Ȳ 〉 is a Lie polynomial if and only if P is primitive, for ∆
φ
.

18The duality preserves the homogeneous degree and interchanges the triangularity of poly-
nomials (see Note 5 for the same construction of the triangular matrices of coeeficients).
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= [l1, l2] +
∑

u>l,(v)=(l)

d′uu+
∑

vu>l,(vu)=(l)

cvduvu

−
∑

v>l2l1>l,(v)=(l)

c′vv −
∑

uv>l2l1>l,(uv)=(l)

cvduuv.

Hence, the conclusion follows.

ii) Let w = l1 . . . lk, with l1 ≥ . . . ≥ lk and l1, . . . , lk ∈ LynY . One has

Πli = li +
∑

v>li,(v)=(li)

ci,vv and Πw = l1 . . . lk +
∑

u>w,(v)=(w)

duu,

where the du’s are obtained from the ci,v’s. Hence, the family {Πw}w∈Y ∗ is
upper triangular and, by duality, the family {Σw}w∈Y ∗ is lower triangular.

Theorem 4. i) The family {Πl}l∈LynY forms a basis of the free Lie algebra.

ii) The family {Πw}w∈Y ∗ forms a basis of the free associative algebra Q〈Y 〉.

iii) The family {Σw}w∈Y ∗ generate freely the quasi-shuffle algebra.

iv) The family {Σl}l∈LynY forms a transcendence basis of (Q〈Y 〉, φ).

Proof. The family {Πl}l∈LynY of primitive upper triangular polynomials is free.
By Lemma 4 and then by a theorem of Viennot [9], we get the first result. The
second is a direct consequence of the Poincaré-Birkhoff-Witt theorem. By the
Cartier-Quillen-Milnor-Moore theorem, we get the third one and the last one is
obtained as consequence of the constructions of {Σl}l∈LynY and {Σw}w∈Y ∗ .

Proposition 8. Let πY : (Q⊕Q〈X〉x1, .) → (Q〈Y 〉, .) be the morphism mapping
xs1−1
0 x1 . . . x

sr−1
0 x1 ∈ X∗x1 to ys1 . . . ysr ∈ Y ∗ and let πX be its inverse. Then

i) The homogeneous polynomials {πY PπX l}l∈LynY are upper triangular and
linearly independent19 and

πY PπX l = Πl +
∑

v>l,(v)=(l)

pvv.

ii) For any w ∈ Y ∗, the following homogeneous polynomial

πY PπXw = Πw +
∑

v>w,(v)=(w)

cvv

is of degree (w) and the family {πY PπXw}w∈Y ∗ forms a basis for Q〈Y 〉.

19For any l ∈ LynY, PπX l and Πl are primitive but πY PπX l is not neccessarily primitive..

For example, PπY y2 = [x0, x1] and Πy2 = y2 − 1
2
y21 are primitive but πY Px0x1 = y2 is not.
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iii) Let {Θw}w∈Y ∗ be the family of homogeneous polynomials in duality with
the family {πY PπXw}w∈Y ∗ :

∀u, v ∈ Y ∗, 〈πY PπXu | Θu〉 = δu,v.

Then, the family {Θw}w∈Y ∗ generate freely the quasi-shuffle algebra and,
for any w ∈ Y ∗, Θw is upper triangular of degree (w) :

Θw = Σw +
∑

v<w,(v)=(w)

dvv.

iv) The family {Θl}l∈LynY does not form a transcendence basis of (Q〈Y 〉, φ).

Proof. i) By (11) (resp. by Proposition 7), for any l ∈ LynX (resp. LynY ),
one has deg(Pl) =| l | (resp. deg(Πl) = (l)) and

Pl = l +
∑

v>l,|v|=|l|

avv

(

resp. Πl = l +
∑

v>l,(v)=(l)

cvv

)

,

Hence, for any l ∈ LynY , we have πX l ∈ LynX and

PπX l = πX

[

Πl −
∑

v>l,(v)=(l)

cvv

]

+
∑

v>πX l,|v|=|l|

avv,

⇒ πY PπX l = Πl +
∑

u>l,(u)=(l)

(a′u − c′u)u.

Hence, we get the expected results by putting pu = a′u−c′u, where the coef-
ficients a′u’s (resp. c

′
u’s) are obtained from av’s (resp. cv’s) by completing

some nul coefficients when it is necessary and by using the fact

∀w1, w2 ∈ Y ∗x1, w1 > w2 ⇒ πY w1 > πY w2.

By Proposition 7, the polynomials {Πl}l∈LynY are upper triangular (see
Note 5) and are linearly independent then the {πY PπX l}l∈LynY are also.

ii) As in Proposition 7, let w = l1 . . . lk, with l1 > . . . > lk, l1, . . . , lk ∈ LynY .
Firstly, one has (πX l1) . . . (πX lk) = πXw and secondly,

PπX li = πX li +
∑

v>li,|v|=|li|

ci,vv and PπXw = πXw +
∑

u>w,|v|=|w|

duu,

where the du’s are obtained from the ci,v’s. Hence, the family {PπXw}w∈Y ∗

is upper triangular. Using the restriction of πY , as being morphism from
(Q ⊕ Q〈X〉x1, ..) to (Q〈Y 〉, .), we get the degree of the upper triangular
homogeneous polynomial πY PπXw as image of Πw is (see Proposition 7).
The family {πY PπXw}w∈Y ∗ forms then a basis for the free algebra Q〈Y 〉.
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iii) It is a consequence of the Cartier-Quillen-Milnor-Moore theorem.

iv) If {Θl}l∈LynY constitutes a transcendence basis of (Q〈Y 〉, φ) then, for
any l ∈ LynY, πY PπX l is primitive but it is false in general (see Note 19).

Now, let us clarify the basis {Σw}w∈Y ∗ and then the transcendence basis {Σl}l∈LynY

of the quasi-shuffle algebra (Q〈Y 〉, φ) as follows

Proposition 9. We have

i) For w = 1Y ∗ , Σw = 1.

ii) For any w = li11 . . . likk , with l1, . . . , lk ∈ LynY and l1 > . . . > lk,

Σw =
Σ φi1

l1 φ . . . φΣ
φik

lk

i1! . . . ik!
.

iii) For any y ∈ Y,Σy = π̌1(y).

Proof. i) Since Π1Y ∗ = 1 then Σ1Y ∗ = 1.

ii) Let u = u1 . . . un = li11 . . . likk , v = v1 . . . vm = hj1
1 . . . h

jp
p with l1 . . . , lk,

h1, . . . , hp, u1, . . . , un, v1, . . . , vm ∈ LynY, l1 > . . . > lk, h1 > . . . > hp,
u1 ≥ . . . ≥ un, v1 ≥ . . . ≥ vm and i1 + . . . + ik = n, j1 + . . . + jp = m.
Hence, if m ≥ 2 (resp. n ≥ 2) then v /∈ LynY (resp. u /∈ LynY ). Since

〈Σu1 φ . . . φΣun
|

n
∏

i=1

Πui
〉 = 〈Σu1 ⊗ . . .⊗ Σun

| ∆
(n−1)

φ
(Πv1 . . .Πvm)〉

then many cases occur :

(a) Case n > m. By Lemma 10(88), 〈Σu1 φ . . . φΣun
| Πv1 . . .Πvm〉 =

0.

(b) Case n = m. By Lemma 10(85), one has

〈Σu1 φ . . . φΣun
|

n
∏

i=1

Πvi〉 =
∑

σ∈Σn

n
∏

i=1

〈Σui
| Πvσ(i)

〉

=
∑

σ∈Σn

n
∏

i=1

δΣui
,Πvσ(i)

.

Thus, if u 6= v then (u1, . . . , un) 6= (v1, . . . , vn) then the second mem-
ber is vanishing else, i.e. u = v, the second member equals 1 because
the factorization by Lyndon words is unique.
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(c) Case n < m. By Lemma 10(iii), let us consider the following language
over the alphabet A = {Πv1 , . . . ,Πvm} :

M = {w ∈ A∗|w = Πvj1
. . .Πvj|w|

, j1 < . . . < j|w|, |w| ≥ 1},

and the morphism µ : Q〈A〉 −→ Q〈Y 〉. We get :

〈Σu1 φ . . . φΣun
|

n
∏

i=1

Πui
〉 =

∑

w1,...,wm∈M
w1 φ... φwm=P1...Pm

n
∏

i=1

〈Σui
| µ(wi)〉 = 0.

Because in the side, on the one hand, there is at least one wi, |wi| ≥ 2,
corresponding to µ(wi) = Πvj1

. . .Πvj|wi|
such that vj1 ≥ . . . ≥ vj|wi|

and on the other hand, νi := vj1 . . . vj|wi|
/∈ LynY and ui ∈ LynY .

By consequent,

〈Σu | Πv〉 = 〈
Σ φi1

l1 φ . . . φΣ
φik

lk

i1! . . . ik!
| Πj1

h1
. . .Π

jp
hp
〉 = δu,v.

iii) For any l ∈ Y,Πl = π1(l),Σl = π̌1(l) and π1, π̌1 are mutually adjoint.

Proposition 10. i) For w ∈ Y +, the polynomial Σw is proper and homoge-
neous of degree (w), for deg(yi) = i, and of rational positive coefficients.

ii) DY =
∑

w∈Y ∗

Σw ⊗Πw =

ց
∏

l∈LynY

exp(Σl ⊗Πl).

iii) The family LynY forms a transcendence basis20 of the quasi-shuffle algebra
and the family of proper polynomials of rational positive coefficients defined
by, for any w = li11 . . . likk with l1 > . . . > lk and l1, . . . , lk ∈ LynY ,

χw =
l φi1
1 φ . . . φl

φik
k

i1! . . . ik!

forms a basis of the quasi-shuffle algebra.

iv) Let {ξw}w∈Y ∗ be the basis of the envelopping algebra U(LieQ〈X〉) obtained
by duality with the basis {χw}w∈Y ∗ :

∀u, v ∈ Y ∗, 〈χv | ξu〉 = δu,v.

Then the family {ξl}l∈LynY forms a basis of the free Lie algebra LieQ〈Y 〉.

20This result is an analogous of a Radford theorem (see [8]). Thus the bases LynY and
{Σl}l∈LynY belong to the class of Radford bases, i.e. the class of trancensdence bases, of
the quasi-shuffle algebra, as well as the bases LynX and {Pl}l∈LynX belong to the class of
Radford bases of the shuffle algebra.
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Proof. i) The proof can be done by induction on the length of w using the
fact that the product φ conserve the property, l’homogenity and rational
positivity of the coefficients.

ii) Expressing w in the basis {Σw}w∈Y ∗ of the quasi-shuffle algebra and then
in the basis {Πw}w∈Y ∗ of the envelopping algebra, we obtain successively

DY =
∑

w∈Y ∗

(

∑

u∈Y ∗

〈Πu | w〉Σu

)

⊗ w

=
∑

u∈Y ∗

Σu ⊗

(

∑

w∈Y ∗

〈Πu | w〉w

)

=
∑

u∈Y ∗

Σu ⊗Πu

=
∑

l1>...>lk
i1,...,ik≥1

Σ φi1
l1 φ . . . φΣ

φik
lk

i1! . . . ik!
⊗Πi1

l1
. . .Πik

lk

=

ց
∏

l∈LynY

∑

i≥0

Σ φi

l

i!
⊗Πi

l

=

ց
∏

l∈LynY

exp(Σl ⊗Πl).

iii) For w = li11 . . . likk with l1, . . . , lk ∈ LynY and l1 > . . . > lk, by Proposition
7, the proper polynomial of positive coefficients Σw is lower triangular :

Σw =
Σ φi1

l1 φ . . . φΣ
φik

lk

i1! . . . ik!
= w +

∑

v<w,(v)=(w)

cvv.

In particular, for any lj ∈ LynY , Σlj is lower triangular :

Σlj = lj +
∑

v<lj ,(v)=(lj)

cvv.

Hence, Σw = χw+χ′
w, where χ

′
w is a proper polynomial ofQ〈Y 〉 of rational

positive coefficients. We deduce then the support of χw contains words
which are less than w and 〈χw | w〉 = 1. Thus, the proper polynomial χw

of rational positive coefficients is lower triangular :

χw = w +
∑

v<w,(v)=(w)

cvv,

⇒ ∀l ∈ LynY, χl = l +
∑

v<l,(v)=(l)

cvv.

It follows then expected results.
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iv) By duality, for w ∈ Y ∗, the proper polynomial ξw is upper triangular. In
particular, for any l ∈ LynY , the proper polynomial ξl is upper triangular :

ξl = l +
∑

v>l,(v)=(l)

dvv.

Hence, the family {ξl}l∈LynY is free and its elements verify an analogous
of the generalized criterion of Friedrichs :

• for w ∈ LynY , one has 〈χw | ξl〉 = δw,l,

• for w = l1 . . . ln /∈ LynY with l1, . . . , ln ∈ LynY and l1 ≥ . . . ≥ ln,
one has 〈χl1 φ . . . φχln | ξl〉 = 〈χw | ξl〉 = 0 (since l ∈ LynY ).

Moreover, by Lemma 9, the polynomials ξl’s are primitive.. By Lemma 4
and then by a Viennot’s theorem [9], we get the expected result.

3.3 Particular case : q-deformation of the shuffle product

In the sequel, we focus on the particular case where

∀yi, yj ∈ Y, φ(yi, yj) = qyi+j .

We call a standard sequence of Lyndon words to be a sequence

S = (ℓ1, · · · , ℓk), k ≥ 1 (80)

if for all i, either ℓi to be a letter or the standard factorization σ(ℓi) = (ℓ′i, ℓ
′′
i )

and ℓ′′i ≥ ℓi+1, · · · , ℓn. Note that a decreasing sequence of Lyndon words is also
a standard sequence. A rise of a sequence S is an index i such that ℓi < ℓi+1.
A legal rise of sequence S is a rise of i such that ℓi+1 ≥ ℓi+2, · · · , ℓk; with the
legal rise i, we define

λi(S) = (ℓ1, · · · , ℓi−1, ℓiℓi+1, ℓi+2, · · · , ℓn), (81)

ρi(S) = (ℓ1, · · · , ℓi−1, ℓi+1, ℓi, ℓi+2, · · · , ℓn) (82)

We denote S ⇒ T if T = λi(S) or T = ρi(S) for some legal rise i; and S
∗
⇒ T ,

transitive closure of ⇒.
A derivation tree T (S) of S to be a labelled rooted tree with the following
properties: if S is decreasing, then T (S) is reduced to its root, labelled S; if
not, T (S) is the tree with root labelled S, with left and right immediate subtree
T (S′) and T (S′′), where S′ = λi(S), S

′′ = ρi(S) for some legal rise i of S; we
define Π(S) = Πℓ1 . . .Πℓn (note that, Π(S) 6= Πℓ1...ℓk because ℓ1, · · · , ℓk can be
not a decreasing sequence).
Conversely, we call a fall of sequence S is an index i such that ℓ1, · · · , ℓi ∈
Y, ℓi > ℓi+1. We define

ρ−1
i (S) = (ℓ1, · · · , ℓi+1, ℓi, · · · , ℓn).
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We call a landmark of sequence S is an index i such that ℓ1, · · · , ℓi−1 ∈ Y, ℓi ∈
Y ∗ \ Y , and we define

λ−1
i (S) = (ℓ1, · · · , ℓi−1, ℓ

′
i, ℓ

′′
i , ℓi+1, · · · , ℓn),

where σ(ℓi) = (ℓ′i, ℓ
′′
i ). We will denote by S ⇐ T if T = ρ−1

i (S) or T = λ−1
i (S)

for some fall or landmark i; and S
∗
⇐ T , transitive closure of ⇐. Similarly, we

call the conversely derivation tree T −1(S) with root labelled S, with left and
right immediate subtree T −1(S′) and T −1(S′′), where S′ = ρ−1

i (S) for some fall
i, S′′ = λ−1

i (S) for some landmark i.

Lemma 12. For each standard sequence S, Π(S) is the sum of all Π(T ) for T
a leaf in a fixed derivation tree of S.

Proof. The Lemma is a consequence of the definitions (81), (82) of λi(S) and
ρi(S), of that of T (S) and Π(S), and of the identity in Q[q]〈X〉 :

ΠℓiΠℓi+1 = [Πℓi ,Πℓi+1 ] + Πℓi+1Πℓi = Πℓiℓi+1 +Πℓi+1Πℓi .

Example 1. Π(y4, y2, y1) = Πy4y2y1+Πy2y1Πy4+Πy4y1y2+Πy2Πy4y1+Πy1Πy4y2+
Πy1Πy2Πy4 , we can see the following diagram (note that y4 < y2 < y1)

Figure 4: Derivation tree T (y4, y2, y1)

Proposition 11. i) For any Lyndon word ys1 . . . ysk , we have

Σys1 ...ysk
=

∑

{s′
1
,··· ,s′

i
}⊂{s1,··· ,sk}

ℓ1≥···≥ℓninLynY

(ys1 ···ysk
)
∗
⇐(y

s′
1
,··· ,y

s′n
,ℓ1,··· ,ℓn)

qi−1

i!
ys′1+···+s′

i
Σℓ1···ℓn . (83)
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ii) In special case, if ys1 ≤ · · · ≤ ysk then

Σys1 ...ysk
=

k
∑

i=1

qi−1

i!
ys1+···+siΣysi+1

...ysk
. (84)

Proof. (Proposition 11) At first, we remark that the equality (83) is equivalent
to saying that for any word u and any letter ys,

〈Σys1 ...ysk
|ysu〉 =

∑

{s′1,··· ,s′
i
}⊂{s1,··· ,sk}

ℓ1≥···≥ℓninLynY

(ys1 ···ysk
)
∗
⇐(y

s′1
,··· ,y

s′n
,ℓ1,··· ,ℓn)

qi−1

i!
δs′1+···+s′

i
,s〈Σℓ1...ℓn |u〉. (85)

Since the duality, we have

u =
∑

w∈Y ∗

〈Σw|u〉Πw,

this and (??) we imply

ysu =
∑

w

〈Σw|u〉ysΠw (86)

=
∑

w

〈Σw|u〉





∑

i≥1

qi−1

i!

∑

s′1+···+s′
i
=s

Πys′1
. . .Πys′

i



Πw (87)

=
∑

w

〈Σw|u〉
∑

i≥1

qi−1

i!

∑

s′1+···+s′
i
=s

Πys′
1
. . .Πys′

i

Πw. (88)

For each w fixed, we write w form factorization of Lyndon wordsw = ℓ1 . . . ℓn, ℓ1 ≥
· · · ≥ ℓn, then we have S := (ys′1 , · · · , ys′i , ℓ1, · · · , ℓn) is a standard sequence, so
we obtain from Lemma 12

Π(S) = Π(ys′1 , · · · , ys′i , ℓ1, · · · , ℓn) =
∑

S
∗
⇒T

αTΠ(T ).

Consequently

〈Σy1...yk
|ysu〉 =

∑

w

〈Σw|u〉
∑

i≥1

qi−1

i!

∑

s′1+···+s′
i
=s

〈Σy1···yk
|Πys′

1
. . .Πys′

i

Πw〉

=
∑

ℓ1≥···≥ℓninLynY

〈Σℓ1...ℓn |u〉
∑

i≥1

qi−1

i!

∑

s′
1
+···+s′

i
=s

(ys1,··· ,ysi
,ℓn,··· ,ℓn)

∗
⇒T

αT 〈Σy1...yk
|Π(T )〉.

Note that, the leaves T ’s of derivation tree T (S) are decreasing sequences of Lyn-
don words with length ≥ 2 except leaves form T = (ℓ), where ℓ ∈ LynY . There-
fore 〈Σy1...yk

|Π(T )〉 6= 0 if T = (ys1 . . . ysk). By maps ρ−1 and λ−1, we construct
a conversely derivation tree from the standard sequence of one Lyndon word S =
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(ys1 . . . ysk), we take standard sequences form (ys1, · · · , ysi , ℓn, · · · , ℓn), i ≥ 1; at
that time, for each S of these sequences, we get unique leaf T = (ys1 . . . ysk) in
the derivation tree T (S), it mean αT = 1. We thus get (85).
In other words, if ys1 ≤ · · · ≤ ysk then the standard sequence (ys1 . . . ysk)
may only be a leaf of a derivation tree T (S) after applying map λi more
times, we imply that 〈Σys1 ...ysk

|Πys′1
. . .Πys′

i

Πw〉 6= 0 if and only if ys1 . . . ysk =

ys′1 . . . ys′iℓ1 . . . ℓn, then ys1 = ys′1 , · · · , ys′i = ysi and ysi+1 . . . ysk = ℓ1 . . . ℓn.
Hence

〈Σys1 ...ysk
|Πys′

1
. . .Πys′

i

Πw〉 = δs1+···+si,sδysi+1
...ysk

,w,

we thus get

〈Σys1 ...ysk
|ysu〉 =

∑

w

〈Σw|u〉
∑

i≥1

qi−1

i!

∑

s′1+···+s′
i
=s

〈Σys1 ...ysk
|Πys′1

. . .Πys′
i

Πw〉

=
qi−1

i!
δs1+···+si,s〈Σysi+1

...ysk
|u〉.
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